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Abstract. Over the past years, Autonomic Computing has become very
popular, especially in scenarios of Cloud Computing, where there might
be several autonomic loops aiming at turning each layer of the cloud
stack more autonomous, adaptable and aware of the runtime environ-
ment. Nevertheless, due to conflicting objectives, non-synchronized au-
tonomic loops may lead to global inconsistent states. For instance, in
order to maintain its Quality of Service, an application provider might
request more and more resources while the infrastructure provider, due
to power shortage may be forced to reduce the resource provisioning. In
this paper, we propose a generic model to deal with the synchronization
and coordination of autonomic loops and how it can be applied in the
context of Cloud Computing. We present some simulation results to show
the scalability and feasibility of our proposal.

Keywords: Cloud Computing, Autonomic Computing, Autonomic Loop
Synchronization, Coordination.

1 Introduction

The necessity of modern software systems to be more responsive and autonomous
to environment changes is one of the main reasons for the popularization of Auto-
nomic Computing [7]. Cloud Computing is one of the most expressive examples
of this great adoption. Indeed, the flexibility inherent to cloud services along
with the high variability of demand for those services have recently contributed
to the large adoption of Autonomic Computing in Cloud-based systems [1].

In point of fact, from the application provider perspective, Autonomic Com-
puting makes application capable of reacting to a highly variable workload by
dynamically adjusting the amount of resources needed to be executed while keep-
ing its Quality of Service (QoS) [11]. From the infrastructure provider point of
view, it also makes the infrastructure capable of rapidly reacting to environment
changes (e.g. increase/decrease of physical resource usage) by optimizing the
allocation of resources and thereby reduce the costs related to energy consump-
tion [4].

However, getting several control loops working on common or inter-dependent
managed elements is not a trivial task [6]. For example, in order to cope with
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a high demand, Application Providers may request more and more computing
resources to the Infrastructure Provider. At the same time, the Infrastructure
Provider may turn off part of its physical infrastructure to meet power con-
straints. Therefore, dealing with multiple control loops with conflicting objec-
tives (performance vs power) may lead to inconsistent global results. Besides,
inter-control loop interactions must be synchronised and coordinated for the
various phases of adaptations [13].

This paper proposes a generic model for synchronization and coordination of
control loops. We have studied a communication model for several control loops
and proposed a coordination protocol based on interloop events and actions. To
allow safe interactions, we propose a shared knowledge-based synchronization
pattern. That way, decisions taken by one control loop may take into considera-
tion some information provided by other control loops. This model is applied to
a Cloud Computing scenario in which several self-adaptive applications interact
with a common self-adaptive infrastructure. The objective at the application
level is to manage the runtime context to minimize costs while maximizing the
QoS, whereas at the infrastructure level, the objective is to manage the context
to optimize the utilization rate. The feasibility and scalability of this approach is
evaluated via simulation-based experiments on the Cloud Computing scenario.

The remainder of this paper is organized as follows: Section 2 presents our con-
tribution by describing a generic model for synchronization and coordination of
multiple control loops. In Section 3, thismodel is instantiated in a scenario ofCloud
Computing. Section 4 presents the evaluation of our approach. Section 5 presents
a brief discussion about the most relevant works related to this paper. Finally, Sec-
tion 6 concludes the paper and provides some future research directions.

2 A Multiple Control Loops Architecture Model

Autonomic computing [7] aims at providing self-management capabilities to sys-
tems. The managed system is monitored through sensors, and an analysis of this
information is used, in combination with knowledge about the system, to plan
and execute reconfigurations through actuators. Classically, an autonomic man-
ager internal structure is implemented by a MAPE-K (Monitor-Analyze-Plan-
Execute phases over a Knowledge base) control loop [5]. Bottom-up interactions
between the managed system and the autonomic manager are realized via events
whereas top-down interactions via actions.

Our approach aims to provide synchronized and coordinated control loops
by introducing a synchronization of the shared knowledge and a coordination
protocol.

2.1 A Model of Autonomic Behavior

We make a distinction between three kinds of control loops:

– Independent: this type of control loop is completely independent from the
others. The source of the received events is always the managed system
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Fig. 1. Actions and Events hierarchy

and the actions are executed only on the considered system. There is no
communication between control loops and the knowledge is entirely internal
(private to the control loop).

– Coordinated: this type of control loop communicates with the others.
Events may come from other control loops and actions may notify other
control loops. A business-specific protocol defines a way for the control loops
to communicate. In this case, we do not consider the sharing of information
between control loops but only simple asynchronous communication.

– Synchronized: this type of control loop synchronizes with the others in
order to share some information for a collective activity. Access to this shared
information may lead to concurrency and consistency problems.

In our Cloud Computing scenario, we consider coordinated and synchronized
control loops and demonstrate both situations.

A Public and Private Knowledge Model. In the case of synchronized con-
trol loops, regarding the sharing of information we separate the knowledge base
in two parts: the private knowledge that stores the internal information needed
by the internal control loop phases and the public knowledge shared among
other control loops. The public knowledge base may have to be synchronized if
the actions executed by the control loops require to modify the information (di-
rectly or indirectly). Indeed, the simultaneous actions of multiple control loops
may require to change the public knowledge at the same time (concurrency prob-
lem) and may lead to non-logical global results (consistency problem). In our
approach, we consider that the owner of the public knowledge is the only one
able to modify it directly, which limits the concurrency problem.

Actions. In order to clarify the interactions between several control loops, it is
important to differentiate actions and events that are part of the managed system
and those part of the multi control loop system model. Figure 1 introduces a
hierarchy of the different types of events and actions.

Actions can be executed on the considered managed system, can start a phase
within the control loop (intraloop) or notify another control loop (interloop).

The actions on the managed system and the interloop actions are always
executed by the execution phase of the control loop. The intraloop actions are
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either executed by the monitoring phase to launch the analysis phase or the
execution phase (M → A or M → E), by the analysis phase to launch the
planning phase (A → P ) or by the planning phase to launch the execution
phase (P → E).

An interloop action may notify another control loop as if it was asking for a
service and waiting for the response. In this case, the planning phase creates a
handler that contains all the other actions that have to be executed in response
to this interloop action. This interloop action is therefore a notify action that
creates an interloop event for the target control loop.

Intraloop actions are either Change Public Knowledge or Invoke Handler ac-
tions. In our approach, we consider that these actions do not need analysis or
planning phases to be launched, which corresponds to the M → E case.

Events. In Figure 1, we differentiate endogenous and exogenous events. The
source of endogenous events is always the considered managed system. The
source of exogenous events is another control loop. For the exogenous events,
we consider the difference between the interloop events - created by the inter-
loop action - and the Public Knowledge Changed - created by the Change Public
Knowledge action.

In order for the control loops to send and receive events, we consider that
they already implement the publish/subscribe paradigm. The control loops using
some public knowledge of other control loops automatically subscribe to the
Public Knowledge Changed events.

2.2 Control Loop Synchronization and Coordination

Token Protocol for Synchronizing the Public Knowledge. The public
knowledge is divided into one non-critical section and some critical sections.
One control loop may access multiple non-critical sections but one and only
one critical section at a time in order to avoid deadlocks. To synchronize the
public knowledge we introduce a simple token protocol. Each critical section is
associated with one token. As for transactions in databases, this synchronization
protocol ensures that only one control loop can access a critical section. To access
the critical section, a control loop has to get the corresponding token. To get
the token, a control loop can either ask explicitly for the token with a TOKEN
REQUEST message (active token request) or can receive the token from another
control loop with a TOKEN TRANSFER message (passive token reception).
Whenever a control loop does not need the token anymore it releases it with a
TOKEN RELEASE message. Whenever a token is requested, the requester has
to wait for a TOKEN ACQUIRED message. Each control loop having a public
knowledge with critical sections implements a token manager which is in charge
of managing the token protocol.

Control Loop Coordination Protocol. Considering the coordinated case
with multiple control loops, we take into consideration what we call the col-
laboration problem where two control loops have to communicate in order to
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accomplish a global activity together. Indeed, the execution phase of one control
loop may ask another control loop a service and wait for the result in return. To
do this, the first control loop triggers an interloop event that starts the second
control loop. As for the ”future objects” in distributed concurrency problems [2],
the first control loop creates at the same time a handler containing all the actions
that need to be executed after the service is terminated. The interloop event is,
as always, detected by the monitoring phase of the second control loop. Once the
service is terminated, another interloop event is sent back to the caller control
loop. Parts of the results may be transferred using the public knowledge base,
to do this, the interloop events may be coupled with token transfer messages.

Timing the Control Loops. All the control loops are evolving in a dynamic
environment where multiple events may occur simultaneously. The arrival rate
of these events may vary from one control loop to another and are usually stored
in a waiting queue. In order to manage the arrival of these events, the moni-
toring phase of each control loop has a scheduling process. This scheduler may
implement different policies, some of them may take into account the events
priorities. In our approach and for the sake of simplicity, we consider a FIFO
(First-In First-Out) scheduling policy without priorities for endogenous events,
and consider the interloop events that invoke handlers with the highest priority.
Indeed, handlers are containing actions that have to be executed in response to a
service request and need to be treated in priority in order for the source event to
be considered as treated as soon as possible. Therefore, one event is considered
to be treated only if the entire control loop is finished, including the possible
handlers.

In order to formalize the timings, we introduce these notations:

T j
i = Tlock + μj

i (1)

μj
i = T jA

i + ρi(modif) ∗ (T jP
i + T jE

i ) (2)

T jE
i = T jEactions

i + ρi(interloop) ∗ (T j′
i′ + T jEhandler

i ) (3)

T j
i : Time to treat event i for control loop j

Tlock : Waiting time for the token to be acquired

μj
i : service time on control loop j for event i

ρi(modif) : probability to start a planning and execution phase (modification of the

system required)

T jA
i : Analysis phase time for event i and control loop j

T jP
i : Planning phase time for event i and control loop j

T jE
i : Execution phase time for event i and control loop j

T jEactions
i : First part of the execution phase time for event i and control loop j

ρi(interloop) : Probability to ask another control loop a service with an interloop event

T j′
i′ : Time for the other control loop j′ to treat the interloop event i′

T
jEhandlers
i : Time to execute the handlers for event i and control loop j



34 F.A. de Oliveira Jr., R. Sharrock, and T. Ledoux

A-1 P-1 E-1M-1 M-2

endogenous
event 1

TOKEN

1

1

INTER

INTER

2

2

TT

TReq

TA

TA

TA

TReq

TRel

TRel

TRel

Treq = Token request
Trel = Token release
TA = Token Aquired
TT = Token Transfer

INTRA = Intraloop action
INTER = Interloop action/event

TReq

A-2
P-2
E-2

waiting 
queue

T
lo

ck
T

lo
ck

T
lo

ck

A-2
P-2
E-2

INTRA
Invoke Handler

endogenous
event 2

endogenous
event 3

endogenous
event 1

Event 1 treated

Event 2 treated

INTRA

INTRA

INTRA

INTRA

exogenous
event 2

T
1
A

2

T
1
P

2

T
1
E

a
c
ti

o
n

s
2

T
1
E

h
a

n
d
le

r
s

2

T
1
A

1

T 2
2

exogenous
event 4

Fig. 2. Control loops coordination and token synchronization protocols and timings

Figure 2 shows how two control loops would use the token synchronization
protocol and the coordination protocol with a sequence diagram. The M-1 to
E-1 vertical lines are the phases of the first control loop and we show only the
monitoring phase of the second control loop M-2. The TOKEN line shows which
control loop has the token to access one critical section of the public knowledge
of the second control loop.

As we can see the monitoring phases are continuously listening for events.
A first endogenous event arrives for control loops 1 and 2. The control loop 1
acquires the token (TReq and TA), launches the analysis (INTRA) and releases
the token straight after the event is treated (TRel). The same goes for control
loop 2 which acquires the token as soon as it is released by control loop 1.
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A second endogenous event is treated by control loop 1 which requires a
coordination between control loop 1 and control loop 2. First, the loop 1 acquires
the token and launches the analysis A-1, the planning P-1 and the execution
phases E-1. As we can see control loop 1 sends an exogenous event to control
loop 2 (first INTER, exogenous event 2) along with the token (TT). This allows
control loop 2 to eventually modify its knowledge. As soon as control loop 2
finishes to treat this event, it sends back an exogenous event to control loop 1
(second INTER, exogenous event 4), which allows control loop 1 to execute the
handler (INTRA invoke handler) and to finish treating the event 2.

3 Cloud Computing Scenario

The objective of this section is to instantiate the generic model presented in
Section 2 in the context of Cloud Computing. First, we give some definitions and
assumptions for this scenario. Then, we present a multi-control loop architecture
along with its possible events, actions and public knowledge.

3.1 Definitions and Assumptions

The Cloud Computing architecture is typically defined as a stack of several
inter-dependent systems, in which systems on lower layer are service providers to
subsystems on upper layers. Our scenario consists of two types of inter-dependent
managed systems: Applications and Infrastructure. An application is defined as
a set of components. Each component offers a set of services, which, in turn,
might depend on a set of references to services offered by other components.
Services are bound to references through bindings. The application can operate
in different architectural configurations, which are determined by the subset of
components used and how they are linked to each other. In other words, one
configuration is composed of a set of bindings. In addition, each configuration
has also its QoS defined in terms of performance and an application-specific QoS.
The former corresponds to the application responsiveness when dealing with a
given number of simultaneous requests λ (requests/sec), whereas the latter is a
quality degree specific to the application domain.

The infrastructure consists of a set of Physical Machines (PMs), whose com-
puting resources (CPU and RAM) are made available by means of Virtual Ma-
chines (VMs). There might be one or several classes of VM, each one with a
different CPU or RAM capacity. Application Providers are charged an amount
per hour for using a VM instance. They may deploy the same component on
one or more VMs, that is, for each component there might be one or several
instances. Finally, the Infrastructure Provider may give a limited number of dis-
counts for each VM classes in order to attract Application Providers so as to
occupy portions of resources that are not being utilized and hence improve their
utilization rate.

Figure 3 illustrates two cloud applications hosted by the same infrastructure.
Application 1 is composed of 4 components and Application 2 is composed of
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3 components. The dotted lines express a potential bind between components,
whereas the solid lines mean a binding of the current configuration. For appli-
cation 1, there are two possible configurations ({c1, c2, c3} and {c1, c4, c3}). For
application 2, there are also two possible configurations: {c1, c2} and {c1, c3}.

PM1 PM2

VM1 VM2 VM3 VM4

PM3

VM5 VM6 VM7

c1

c4

c2

c3

Application1

c1

c3

c2

Application2

Fig. 3. Cloud Computing Scenario

The infrastructure is composed of
3 PMs and offers computing resources
through three different kinds of VMs
(small, medium and large). There are
7 VMs instances to host all the com-
ponents of both applications. It should
be noticed that there are two instances
for components c2 (application 1) and
c1 (application 2), that is, there are
two VMs allocated to each component.
That way, components may scale up
and down according to the application
demand.

3.2 Multi-control Loop Architecture

This scenario comprises several coordinated control loops: one at the infrastruc-
ture level, namely the infrastructure manager (IM) and one per-application at
application level, namely application manager (AM), as shown in Figure 4.

AMs control loops aim at minimizing the amount of VMs needed to keep
the level of QoS as high as possible. Furthermore, AMs are able to adapt their
application’s architectural configuration in order to cope with resource restriction
imposed by the IM. More precisely, AMs monitor/listen for events that come
either from the application itself or from the IM; analyze whether or not it
is necessary to reconfigure the application by considering the execution context
(e.g. the workload, the current application configuration, the current mapping of
components to VMs, etc.); elaborate a reconfiguration plan; and execute actions
corresponding to the reconfiguration plan.

Regarding the IM, apart from dealing with requests sent by AMs, its objective
is to optimize the placement of these VMs on PMs so that it is possible to
reduce the number of PMs powered on and consequently reduce the energy
consumption. To this end, the IM monitors/listens for events that come either
from the infrastructure itself (e.g. PMs Utilization) or from the AMs; analyze
whether or not it is necessary to replace or to change its current configuration
by considering the execution context (e.g. the current mapping VMs to PMs);
plan and execute the reconfiguration.

As previously mentioned, multiple control loops might have conflicting ob-
jectives. Particularly in this scenario, while the IM looks forward to allocate
all VMs in the fewest possible number of PMs (due to energy constraints rea-
sons), some AMs may request more VMs in order to cope with an increase in the
demand. In this context, we can apply the coordination and synchronization pro-
tocols presented in Section 2. The coordination protocol defines a set of messages
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Fig. 4. Multi-control loop Architecture for the Cloud Computing Scenario

exchanged by control loops that transformed into actions and events and used for
instance to inform AMs about energy shortage at the infrastructure level. The
synchronization protocol defines a set of public knowledge (critical) sections that
are used for all control loops. For instance, the IM can change the VMs renting
fees by putting some VMs on sale. The shared knowledge is used by AMs to take
into consideration those changes in order to take better decisions.

Application Manager Events and Actions. Workload Increased/Decreased
are endogenous events corresponding to the percentage of the workload in-
crease/decrease within a pre-defined amount of time. It triggers the analysis
phase to determine whether or not it is necessary to request or release resources
(VM). The result of this process is translated into a Request VMs interloop ac-
tion (Figure 5 (a)) or Stop and Unbind Component actions on the application
(managed system), followed by a Release VMs interloop (Figure 5 (b)).

It is important to notice that in this scenario the public knowledge resides at
infrastructure level and it corresponds to the VMs renting fees. Hence, Renting
Fees Changed is a Public Knowledge Changed event that happen when the VM
Renting Fees are changed (e.g. new VMs with discount available). This kind of
event triggers the analysis phase that may result in a Request VMs action (scale
up) (Figure 5 (c)).

Scale Down is an interloop (exogenous) event whose objective is to notify
the AM (from the IM) that it should meet some constraints on the number
of VMs allocated to the application. Basically, it informs which VMs among
those allocated to the application should be immediately destroyed, giving AMs
an amount of time to adapt to this constraint. Thus, this event triggers an
analysis phase to reallocate the components on a smaller number of VMs. To this
end, it might be necessary to change the application architectural configuration
(e.g. to replace components that are more resource consuming). As a result, a
set of Deploy, Bind/Unbind, Start/Stop Component actions on the application,
followed by a Release VMs interloop action are executed (Figure 5 (d)).
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Finally, VMs Created is also an interloop event which objective is to notify
(from the IM) that the VMs Requested are ready for use. It triggers the execution
phase that does nothing but invoking the handler (Figure 5 (e)). In this case, the
executor deploys the components on the created VMs, bind those components
to other (existing or new ones) and start the just deployed components.

Infrastructure Manager Events and Actions. Regarding the IM, VM Re-
quested is an interloop event that happens when some AM performs a Request
VMs interloop action. They trigger the analysis phase that evaluates the place-
ment of the requested VMs on PMs so as to minimize the number of PMs needed.
The result of this analysis is translated into a set of Power-on PM actions and a
set of Create VM actions on the infrastructure. Finally, it notifies the AM that
requested the VMs by executing a VMs Created interloop action (Figure 6 (a)).

VMs Released is also an interloop event that happens when some AM performs
a Release VMs interloop action. It is directly translated into VM Destroy actions
on the infrastructure (Figure 6 (b)).

Energy Shortage is an endogenous event that comes from the infrastructure
context data (e.g. power meters or an announcement of energy unavailability).
It triggers the analysis phase to determine which VM should be destroyed. As a
consequence, which PMs should be powered-off. The result is translated into a
Scale Down interloop action to notify the concerned AMs about the constraints.
Then, it sets a timeout after which the VMs to be destroyed have actually to be
destroyed along with a set of possible Power-off PM actions (if there are unused
PMs) may take place on the infrastructure (Figure 6 (c)).

Low PM Utilization is also an infrastructure endogenous event which is de-
tected anytime a PM has been under-utilized during a certain period of time.
It triggers the analysis phase to evaluate whether to give a certain number of
discount on VMs or not. The result is translated into an Update Renting Fees
(Change Public Knowledge) action (Figure 6 (d)).
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Similarly, Unused PM is an infrastructure endogenous event which is detected
anytime a PM has not hosted any VM during a certain period of time. It directly
triggers the execution phase that runs Power-off PM actions (Figure 6 (e)).

Finally, Timeout Expired is an infrastructure endogenous event which is de-
tected when the timeout set along with the Scale Down interloop action expires.
It directly triggers the execution phase that invokes the handler specified before
the Scale Down interloop action. This handler simply executes a set of Destroy
VM and Power off PM actions on the infrastructure (Figure 6 (f)).

Public Knowledge Management. In our scenario, only one token is used,
since the Renting Fees is the only Public Knowledge resource that is accessed by
more than one control loop. At the application level, every time an AM triggers
the analysis phase that takes into account the discount prices, a TOKEN RE-
QUEST message is sent to the token manager that responds back with a TOKEN
ACQUIRED message, once it has the token available. A TOKEN TRANSFER
message is sent along with a Request VMs interloop action from the AM to the
IM. Once the requested VMs (in discount) are created and the Renting Fees are
updated, the IM sends a TOKEN RELEASE message to the token manager.

In the same way, the IM sends a TOKEN REQUEST every time a Low PM
Utilization event is detected. Once it receives a TOKEN ACQUIRED message,
it analyzes the discount opportunity. If there are discounts to be given, the IM
sends a TOKEN RELEASE after having updated the Renting Fees. Otherwise,
the TOKEN RELEASE message is sent right after the analysis phase is done.

4 Evaluation

This section aims at presenting some results obtained from experiments on the
proposed approach. We applied the proposed model to the cloud computing sce-
nario presented in Section 3and performed simulation-based evaluations regarding
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the system stability and scalability when dealing with several control loops. The
evaluation regarding the optimization problems (e.g. QoS and energy consump-
tion trade-off improvements) were already addressed in our previous works [11].
We first describe the experiment setup, then we present and discuss the results
found.

4.1 Setup

The experiments were performed on a machine with the following configuration:
Intel Core 2 Duo processor, 4GB DRAM, Mac OS X Lion operating system. Con-
cerning the simulator, Java 6 was used to implement it. Based on our experience
from previous work [1], the execution time for each phase of each control loop j
was fixed as follows: T jA = 2 ∗ T jP and T jE = 3 ∗ T jP . For sake of simplicity
we assigned the same values for each phase execution time to all kinds events.

More precisely, for all AMs T amA = T imA = 200± εA, T
amP = T imP

= 100± εP
and T amE = T imE = 300± εE , where εA, εP and εE means a variation of more
or less at most 20% of the value.

We generate the arrival rates for the endogenous events based on a Poisson
distribution. Table 1 shows two classes of arrival rates used in the experiments:
high and low. Furthermore, we perform several runs while varying the number of
AM control loops: 10, 20, 30, 50 and 70. The idea is to observe how the variation
of these parameters (arrival rates and number of AMs) can affect the system
performance (e.g. the token waiting time and events processing time).

When the AMs detect a Workload Increased event, the probability that the
result of the analysis phase requires a Request VMs interloop action was fixed
to 0.7 (i.e. ρwi(modif) = 0.7 and ρwi(interloop) = 1). Idem for a Workload De-
creased event. When they receive a Renting Fees Changed event, the probability
that the result of the analysis phase requires a Request VMs interloop action
was fixed in 0.3 (i.e. ρrfc(modif) = 0.3 and ρrfc(interloop) = 1). The others
events are treated in a deterministic way, i.e. the probabilities ρi(modif) and
ρi(interloop) are equal either to 0 or 1 1.

4.2 Results

Table 1. Arrival Rates for Endogenous Events

Workload Workload Low PM PM Energy
Class Increased Decreased Util. Unused Shortage

High 0.1 0.1 0.1 0.05 0.01
Low 0.05 0.05 0.05 0.025 0.01

Stability. Figure 7
shows the average to-
ken waiting time Tlock

evolution in time. Each
line corresponds to one
run regarding a different
number of AMs in the
system. When dealing
with low arrival rates

1 Due to space limitations, we omit this information.
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Fig. 7. Average Token Waiting Time for (a) Low and (b) High Arrival Rates
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Fig. 8. Per-Event Processing Time for (a) Low and (b) High Arrival Rates

(Figure 7 (a)), for 50 and 70 AMs, Tlock increases until it reaches a peak and sta-
bilizes afterwards. For 10, 20 and 30 AMs, Tlock remains always under 10000ms.
When dealing with high arrival rates (Figure 7 (b)), we can observe a similar
behavior for all the curves. Notice that Tlock rapidly increases for the highest
numbers of AMs (i.e. 30, 50, 70) and stabilizes afterwards.

Scalability. Figure 8 presents the evolution of the event processing time (T j
i ,

for control loop j and event i) when varying the number of AMs in the system.
Not surprisingly, Workload Increased, Renting Fees Changed, Scale Down and
Workload Decreased trigger the most time consuming processes, since the two
first ones might be followed by a token request, which may lead to a sharp
increase of the token manager queue. The two last ones may stay stuck waiting
until the others have finished.

Discussion. With respect to the stability, there might be high token waiting
times as the arrival rates approach the service rate (frequency in which a control
loop can process an event). For instance, a high rate of the Workload Increased
event along with a high number of concurrent AMs may produce a token arrival
rate that might exceed the token manager service, leading to an infinite growth
of the token manager queue. However, as long as the arrival and service rates
are well managed, the token waiting time will always tend to stabilize.

Conversely, the number of AMs along with high arrival rates may have a
negative impact on the system scalability. For instance, for events that depend
on a token, a long token waiting time may lead to long event processing time.
Thus, the more AMs the longer the token waiting times and consequently the
event processing times. Again, by adjusting the arrival rates and the number
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of AMs in the system properly, the system can be scaled with respect to the
number of AMs and the frequency of requests f produced by them (resulting
from the coordination). Although the control of exceeding arrival rates has not
been tackled in this work, we believe that admission control techniques [14], along
with event prioritization / preemption policies, can be effective to implement it.

5 Related Work

The issue of orchestrating autonomic managers has been addressed by IBM since
2005 [5] and the first interesting results have been proposed by J. Kephart and
al. in order to achieve specific power-performance trade-offs [6]. The authors
developed architectural and algorithmic choices allowing two managers to work
together to act in accordance, resulting in power savings.

Coordinating multiple autonomic managers to achieve specific and common
goal have been receiving a lot of attention in the last years. [8] identifies five
different patterns of interacting control loops in self-adaptive systems where each
pattern can be considered as a particular way to orchestrate the control loops. [3]
goes further and proposes a collection of architectural design patterns addressing
different classes of integration problems focusing on the possibly conflicting goals.
[10] proposes a hierarchical model of control loops where a coordination manager
orchestrates the other autonomic managers to satisfy properties of consistency.
[13] extends control loops with support for two types of coordination: intra-loop
and inter-loop coordinations very close to ours; however, the implementation
framework is dedicated to a self-healing use case.

In comparison to these works, this paper provides a more focused discussion
to the general problem of orchestrating autonomic managers and proposes a
generic model to manage the coordination of multiple autonomic loops.

In the context of Cloud Computing, [12] proposed an approach for cloud re-
sources management which objective is to determine the number of VMs neces-
sary and thereafter to pack those VMs into the minimum number of PMs. Our
work extends this approach by providing coordination protocols to cope with con-
flicting objectives. Finally, focusing on the granularity constraints of actuators and
sensors, [9] relied on proportional thresholding in order to provide a more effective
control for coarse-grained actuators.Ourwork, instead, focuses onminimizing con-
flicting objectives by providing a shared data-based knowledge along with a set of
protocols to help the coordination and synchronization of multiple control loops.

6 Conclusion

The flexible and dynamic nature of modern software systems is one of the main
reasons for the popularization of Autonomic Computing. As a consequence, mul-
tiple control loops cohabiting in the system is more and more often used. How-
ever, managing multiple control loops towards a single goal is not an easy task,
since it may pose problems like conflicting objectives and concurrency issues.

In this context, this paper proposed a generic model to manage the synchro-
nization and coordination of multiple control loops. The model was applied to
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a scenario in the context of Cloud Computing and evaluated under simulation-
based experiments. The results suggest the feasibility of our approach by showing
that the system scales and stabilizes in time.

Currently, we are working on a more realistic experimentation setup. Firstly,
we aim at deploying the Cloud Computing scenario on a large scale physical
infrastructure under mainstream cloud solutions (e.g. OpenNebula, Eucalyptus,
etc.). After, we plan to evaluate our proposal in other scenarios than Cloud
Computing to show the genericity of our approach.
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10. Mak-Karé Gueye, S., de Palma, N., Rutten, E.: Coordinating energy-aware admin-
istration loops using discrete control. Proc. of the 8th International Conference on
Autonomic and Autonomous Systems, ICAS 2012 (March 2012)

11. Alvares de Oliveira, Jr. F., Ledoux, T.: Self-management of applications qos for
energy optimization in datacenters. In: Proc. of the 2nd International Workshop
on Green Computing Middleware (GCM 2011), pp. 3:1–3:6. ACM (2011)

12. Van, H.N., Tran, F.D., Menaud, J.M.: Sla-aware virtual resource management for
cloud infrastructures. In: Proceedings of the 9th IEEE International Conference on
Computer and Information Technology, CIT 2009. IEEE Computer Society (2009)

13. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On Interacting Control Loops in
Self-Adaptive Systems. In: Proc. of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, pp. 202–207. ACM (2011)

14. Wu, L., Garg, S.K., Buyya, R.: Sla-based admission control for a software-as-a-
service provider in cloud computing environments. Journal of Computer and Sys-
tem Sciences, 195–204 (2011)


	Synchronization of Multiple Autonomic Control Loops: Application to Cloud Computing
	Introduction
	A Multiple Control Loops Architecture Model
	A Model of Autonomic Behavior
	Control Loop Synchronization and Coordination

	Cloud Computing Scenario
	Definitions and Assumptions
	Multi-control Loop Architecture

	Evaluation
	Setup
	Results

	Related Work
	Conclusion
	References




