
A Tool for Managing
Evolving Security Requirements�

Gábor Bergmann1, Fabio Massacci2, Federica Paci2, Thein Than Tun3,
Dániel Varró1, and Yijun Yu3

1 DMIS - Budapest University of Technology and Economics
{bergmann,varro}@mit.bme.hu
2 DISI - University of Trento

{fabio.massacci,federica.paci}@unitn.it
3 Department of Computing - The Open University

{t.t.tun,y.yu}@open.ac.uk

Abstract. Management of requirements evolution is a challenging
process. Requirements change continuously making the traceability of
requirements difficult and the monitoring of requirements unreliable.
Moreover, changing requirements might have an impact on the secu-
rity properties a system design should satisfy: certain security properties
that are satisfied before evolution might no longer be valid or new secu-
rity properties need to be satisfied after changes have been introduced.
This paper presents SeCMER, a tool for requirements evolution man-
agement developed in the context of the SecureChange project. The tool
supports automatic detection of requirement changes and violation of
security properties using change-driven transformations. The tool also
supports argumentation analysis to check security properties are pre-
served by evolution and to identify new security properties that should
be taken into account.

Keywords: security requirements engineering, secure i*, security argu-
mentation, change impact analysis, security patterns.

1 Introduction

Modern software systems are increasingly complex and the environments where
they operate are increasingly dynamic. The number and needs of stakeholders
are also changing constantly as they adjust to changing environments. A conse-
quence of this trend is that the requirements for a software system are many and
they change continuously. To deal with evolution, we need analysis techniques
that assess the impact of system evolution on the satisfaction of requirements.
Requirements for system security, in particular, are very sensitive to evolution:
security properties satisfied before the evolution might no longer hold or new
security properties need to be satisfied as result of the evolution.

� Work partly supported by the project EU-FP7-ICT-FET-IP-SecureChange.

S. Nurcan (Ed.): CAiSE Forum 2011, LNBIP 107, pp. 110–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Tool for Managing Evolving Security Requirements 111

Another important aspect is that change management process is a complex
process that would benefit from tool support. However, changes make the trace-
ability of requirements difficult and the monitoring of requirements unreliable:
requirements management is time-consuming and error-prone when done manu-
ally. Thus, a semi-automated requirements evolution management environment,
supported by a tool, will improve requirement management with respect to keep-
ing requirements traceability consistent, realizing reliable requirements monitor-
ing, improving the quality of the documentation, and reducing the manual effort.

In this paper we present SeCMER1, a tool developed in the context of the Se-
cureChange European project2. The tool supports the different steps of SeCMER
methodology for evolutionary requirements [10]. The methodology supports the
automatic detection of requirement changes and violation of security proper-
ties, and argumentation analysis [16] to check security properties are preserved
by evolution and to identify new security properties that should be taken into
account.

In the next section we give an overview of the SeCMER methodology; then in
Sec. 3 we describe the tool architecture. In Sec. 4 we illustrate the tool features
based on an industrial example of evolution taken from the air traffic man-
agement domain. After presenting related works in Sec. 5, the results of tool
evaluation are discussed in Sec. 6. Finally Sec. 7 concludes the paper.

2 SeCMER Methodology

The SecureChange Methodology for Evolutionary Requirements (SeCMER) [10]
supports:

– a conceptual model of security requirements and a process for the elicitation
of security goals

– a light-weighted approach to formalizing and reasoning about changing se-
curity goals, and

– an approach based on argumentation and model transformation to reason
about the impact of change.

The main output from the methodology is either an assurance that the changes
did not make the system violate the existing security properties, or a formulation
of new properties to be satisfied by the new design. In the next subsections we
will illustrate the main steps of the SeCMER methodology.

2.1 Modeling of Evolving Requirements

The Modeling of Evolving Requirements step produces two requirements model
the before model and the after model which are an instance of the SeCMER
conceptual model [13]. The conceptual model identifies a set of core concepts
1 A detailed description of the tool implementation is reported in [11].
2 www.securechange.eu

112 G. Bergmann et al.

(a) Package-level overview (extract)

(b) Package of core SeCMER concepts (extract)

Fig. 1. SeCMER conceptual model

that link the empirical security knowledge such as information about assets,
security goals and threats to the stakeholders’ security goals. To create this
link, the conceptual model amalgamates concepts from Problem Frames (PF)
[12] and SI* requirements engineering methodology [14] with traditional security
concepts such as security goal and asset.

SI* [14] extends the i* framework which allows to model the stakeholders for a
given project, their goals and their social inter-dependencies. In SI*, actors have
goals, and own resources and tasks. The Problem Frames [12] approach (PF)
instead explores the relationship between the machines, the physical domains in
the problem world context and the requirements. Concepts from Problem Frames
diagrams are similar to SI* concepts. For instance, the notion of biddable domain
is similar to the notion of actor. Other types of domains such as lexical domains
and causal domains are similar to resource and asset. The notion of phenomena
in Problem Frames is generic enough to cover action, event and state.

The combination of the two security goals engineering approaches has several
advantages: with SI* analysis, malicious intentions of attackers can be identified
through explicit characterization of social dependencies among actors; with PF
security goals analysis, valuable assets that lie within the system boundary can

A Tool for Managing Evolving Security Requirements 113

be identified through explicit traceability of shared phenomena among physical
domains and the machine itself.

The SecMER conceptual model is illustrated in Figure 1. Figure 1 b) shows
the core requirement concepts that are relevant for change detection and security
analysis based on argumentation:

– An actor is an entity that can act and intend to want or desire something.
– An action is a means to achieve a goal.
– A resource is an entity without intention or behavior, and can be provided

by actors.
– An asset is any entity of value for which protection is required.
– A goal is a proposition an actor wants to make true.
– A requirement is a goal that could be satisfied by a software system.
– A security goal is a goal to prevent harm to an asset through the violation

of security properties.

The conceptual model also includes a set of relationships between concepts which
include do-dependency, can-dependency and trust-dependency adopted from SI*.
The protects relationship is a relationship between a security goal and a resource,
action or goal – that denotes they are assets. For a complete list of all the possible
relationships supported in SeCMER conceptual model the reader is referred to
[13].

2.2 Change Detection Based on Security Patterns

The SeCMER methodology includes a lightweight automated analysis step that
evaluates requirements-level compliance with security principles. These security
principles are declaratively specified by an extensible set of security patterns.

A security pattern expresses a situation (a graph-like configuration of model
elements) that leads to the violation of a security property. Whenever a new
match of the security pattern (i.e. a new violation of the security property)
emerges in the model, it can be automatically detected and reported. The speci-
fication of security patterns may also be augmented by automatic remedies (i.e.
templates of corrective actions) that can be applied in case of a violation to fix
the model and satisfy the security property once again.

SeCMER includes extension facilities that allow plug-ins to contribute the
declarative definition of security patterns in a high-level change-driven lan-
guage [9] based on the notion of graph patterns. Automated solution templates
(defined programmatically) can also be contributed. The tool then detects vio-
lations of these security patterns, which will appear as problem markers (warn-
ings). The suggested solutions appear as Quick Fix rules offered for the problem
marker.

Although the set of security patterns is extensible, the main focus points
of security patterns are the following: trust (which can be explicitly modeled,
and interpreted transitively), access (which can also be granted / delegated
transitively), and need (expressed by carrying out an action that consumes a
resource). The patterns are further characterised by the following:

114 G. Bergmann et al.

– The security patterns only consider assets that are protected by security
goals.

– If a trusted actor performs an action that is known to fulfill the security
goal, then no further investigation is required.

– If there is access to an asset without trust (regardless of need), then it is
considered a violation of the trusted path property.

– If there is access to an asset without the need thereof (regardless of trust),
then it is considered a violation of the least privilege property.

– If there is need for an asset but no actual access, then the model is reported
as inconsistent / incomplete.

– Security violation reports can be suppressed by manual arguments support-
ing the satisfaction of the security goal.

Example: The trusted path security pattern finds security violations where an
asset is communicated via an untrusted path. The pattern has the following
structure: if a concerned actor wants a security goal that expresses that a resource
must be protected, then each actor that the resource is delegated to must be
trusted (possibly transitively) by the concerned actor. An exception is made if a
trusted actor performs an action to explicitly fulfill the security goal, e.g. digital
signature makes the trusted path unnecessary in case of an integrity goal.

See Lst. 1 for the simplified definition of the pattern using the declarative
model query language of EMF-IncQuery [8]. According to the pattern defini-
tion, a violation of the trusted path property is characterized by a quadruplet
of model elements ConcernedActor, SecGoal, Asset, UntrustedActor, provided
that they satisfy a list of criteria (graph constraints listed between the pair of
braces). Regarding the type and configuration of these elements, as enforced by
the two edge and one node constraint in lines 2-4, SecGoal is an instance of
type Security Goal that is wanted by an actor ConcernedActor and expresses
the protection of the element Asset. Lines 5-6 state that Asset is provided
by some actor ProviderActor (not exposed as a parameter of the pattern),
and - through a chain of transitive delegation - is eventually possessed by the
UntrustedActor; thanks to the pattern composition language feature, the latter
is expressed by a helper pattern transitiveDelegation (defined elsewhere). A
negated condition on line 7 ensures that UntrustedActor is not trusted (transi-
tively) by the ConcernedActor. A second negative constraint (line 8) expresses
that the SecGoal is not fulfilled explicitly by any action that is trusted by the
ConcernedActor.

The security pattern in Lst. 1 can be applied to enforce a security property
such as integrity. Requirements engineers are further assisted by a set of sug-
gested fixes that can be applied on violations of the security property. In fact,
each of these suggestions can be implemented as automated corrective actions
to be applied to the model in order to re-establish the security property. The
requirements engineers can then choose one of the suggestions, or come up with
their own solution. Possible examples of corrective actions include:

A Tool for Managing Evolving Security Requirements 115

Listing 1. Pattern to capture violations of the trusted path property

1 shareable pattern untrustedPath (ConcernedActor ,SecGoal ,Asset ,UntrustedActor)={
2 Actor .wants (ConcernedActor ,SecGoal);
3 SecurityGoal (SecGoal);
4 SecurityGoal .protects (SecGoal , Asset);
5 Actor .provides(ProviderActor ,Asset);
6 find transitiveDelegation (ProviderActor ,UntrustedActor ,Asset);
7 neg Actor .trust *(ConcernedActor ,UntrustedActor);
8 neg find trustedFulfillment (ConcernedActor ,AnyActor ,AnyTask ,SecGoal);
9 }

– Add a trust relationship from ConcernedActor to UntrustedActor to reflect
that the security decision was that there must be trust between these actors
(e.g. by establishing a liability contract between them).

– Alternatively, an action can be created that explicitly fulfills SecGoal, such
as introducing a policy or technological process that makes it impossible for
UntrustedActor to abuse the situation (e.g. digital signature to ensure the
security goal of data integrity).

These solution templates can be attached to the security pattern so that they are
offered whenever a violation of the corresponding security property is detected.
The solutions can be implemented by arbitrary program code, typically short
snippets that manipulate the model according to the description of the solution.

2.3 Argumentation-Based Security Analysis

In this step of the SeCMER methodology, the developers check whether there are
new security properties to be added or to be removed (Δ Security Properties)
as a result of changes in the requirement model. This phase is supported by
argumentation analysis.

As shown in the meta-model of the SeCMER arguments in Figure 2, an ar-
gument diagram may have several arguments linked to each other. An argument
contains one and only one claim. It also contains facts and warrants. A claim is
a predicate whose truth-value will be established by an argument. A fact is a
true proposition (an argument with a claim only). A warrant links facts in an
argument to the claim. Since facts and warrants can themselves be arguments,
arguments can be nested. Every argument has an optional timestamp, which
indicates the time (or the round) during the argumentation process at which the
argument is introduced.

As well as nesting of arguments, arguments may be related to each other
through rebuttal and mitigation/restore relationships. A rebuttal argument is a
kind of argument whose purposes are to establish the falsity of their associated
argument or make them inconsistent. Similarly, mitigations are another special
kind of arguments following the iteration of rebuttals in order to reestablish the
truth-value of the associated original claims. Mitigations may or may not negate
the claims of the rebuttals: sometimes they add further facts overlooked by the
rebuttals.

116 G. Bergmann et al.

Fig. 2. Meta-Model of SeCMER Arguments

Figure 3 illustrates the visual syntax of SeCMER argument diagrams. Graph-
ically, an argument is represented by a box with three compartments: the claim
is written in the top compartment, the fact(s) in the middle compartment and
the warrant(s) in the bottom compartment. Rebuttal and mitigation links are
represented by the red and green arrows respectively.

Fig. 3. Visual Syntax of SeCMER Arguments

Since argumentation is a costly manual process, it is preferable to avoid its
re-execution after each small change of the requirement model. However, some
arguments may be invalidated by evolution and require attention from security
experts. Therefore, if a change affects one of the elements that was recorded as
an evidence for an argument, then the argument is marked for re-examination.
This relies on traceability links that can be established between the argument
and requirement models.

3 SeCMER Tool Architecture and Implementation

SeCMER is an Eclipse-based heterogeneous modeling environment for managing
evolving requirements models. It has the following features:

A Tool for Managing Evolving Security Requirements 117

– Modeling of Evolving Requirements. Requirement models can be drawn
in SI*, Problem Frames or SeCMER. Traceability and bidirectional synchro-
nization is supported between SeCMER and SI* requirements models.

– Change detection based on security patterns. Violations of formally
defined static security properties expressed as security patterns can be au-
tomatically identified. Detection of formal or informal arguments that has
been invalidated by changes affecting model elements that contributed to
the argument as evidence is also supported.

– Argumentation-based security analysis. Reasoning about security prop-
erties satisfaction and identification of new security properties is supported.

These capabilities of the tool are provided by means of the integration of a set
of EMF-based [15] Eclipse plug-ins written in Java, relying on standard EMF
technologies such as GMF, Xtext and EMF Transaction. The components of the
tool are:

– Eclipse plug-ins of OpenPF including (a) the implementation of the SecMER
conceptual model, (b) the argumentation model and tools, as well as (c)
external modeling tools for Problem Frames [17],

– SI* (requirements engineering tool [14]),
– traceability models to represent the relationship between corresponding

model elements in different languages, e.g. the SecMER conceptual model
and SI*,

– run-time platform components of EMF-IncQuery (incremental EMF model
query engine) for change-driven transformations,

– model query plug-ins automatically generated from (a) security patterns or
(b) transformation specification by the development-time tools of EMF-
IncQuery,

– integration code developed solely for this tool, including User Interface com-
mands and the Java definition of the action parts of (a) quick fixes and (b)
model synchronization.

The relationship of the most important model management components are
depicted on Fig. 4, focusing on the SI* and SeCMER models in particular, as well
as the traceability model established between them. User Interface components
are omitted from this diagram.

All the involved EMF models are accessed through a common
EMF ResourceSet and edited solely through the corresponding
TransactionalEditingDomain (from the EMF Transaction API). Conse-
quently, all modifications are wrapped into EMF Transactions, including those
carried out by manual editing through the User Interface (e.g. the SI* diagram
editor) as well as changes performed by automated mechanisms such as model
transformation. As one of the benefits, concurrent modifications are serialized
and therefore conflict-free. Furthermore, the commit process of the transactions
provides an opportunity for triggering change-driven actions.

The incremental query mechanism provided by EMF-IncQuery plays a key
role in the functionality of the tool. Incremental query evaluation code is gen-
erated automatically at development time by EMF-IncQuery, from a graph

118 G. Bergmann et al.

Fig. 4. Architectural overview of model management components

pattern-based declarative description of EMF model queries. Through this incre-
mental evaluation functionality, change-driven rules can be efficiently triggered
by changes captured as graph patterns. The implementation currently supports
detecting the presence, appearance and disappearance of graph patterns. A more
advanced formalism for capturing changes is already defined [9], but support is
not implemented yet.

The core trigger engine plug-in offers an Eclipse extension point for defining
change-driven rules. Multiple constituent plug-ins contribute extensions to reg-
ister their respective set of rules. The graph pattern-based declarative guard of
the rules is evaluated efficiently (see measurements in [8]) by the incremental
graph pattern matcher plug-ins automatically generated from the declarative de-
scription by EMF-IncQuery. At the commit phase of each EMF transaction,
the rules that are found to be triggered will be executed to provide their reac-
tions to the preceding changes. These reactions are implemented by arbitrary
Java code, and they are allowed to modify the model as well (wrapped in nested
transactions) and could therefore be reacted upon.

So far, there are three groups of change-driven rules as extension points:

– transformation rules that realize the on-the-fly synchronization between mul-
tiple modeling formalisms,

– security-specific rules that detect the appearance of undesired security pat-
terns, raise alerts and optionally offer candidate solutions.

– rules for invalidating arguments when their ground facts change.

Another key feature is a bi-directional synchronizing transformation between SI*
and the SeCMER model with changes propagated on the fly, interactively. Since
the languages have different expressive power, the following challenges arise:

A Tool for Managing Evolving Security Requirements 119

1. some concepts are not mapped from one formalism to the other or vice versa,
2. some model elements may be mapped into multiple (even an unbounded

amount of) corresponding model elements in the other formalism, and finally
3. it is possible that a single model element has multiple possible translations

(due to the source formalism being more abstract); one of them is created
as a default choice, but it can later be changed to the other options, which
are also tolerated by the transformation system.

4 Illustrative Example

We now illustrate the features supported by our tool using the ongoing evolu-
tion of ATM (Air Traffic Management) systems as planned by the ATM 2000+
Strategic Agenda [7] and the SESAR Initiative.

Part of ATM system’s evolution process is the introduction of the Arrival
Manager (AMAN), which is an aircraft arrival sequencing tool to help manage
and better organize the air traffic flow in the approach phase. The introduc-
tion of the AMAN requires new operational procedures and functions that are
supported by a new information management system for the whole ATM, an
IP based data transport network called System Wide Information Management
(SWIM) that will replace the current point to point communication systems with
a ground/ground data sharing network which connects all the principal actors
involved in the Airports Management and the Area Control Centers.

We have chosen to illustrate the following steps of the SeCMER methodology
based on the above evolutionary scenario.

1. Requirements evolution. We show how SeCMER supports the represen-
tation of the evolution of the requirement model as effect of the introduction
of the SWIM.

2. Change detection based on security patterns.
a Detection of a security property violation based on security patterns. We

show how the tool detects that the integrity security property of the
resource MD “Meteo Data” is violated due to the lack of a trusted path.

b Automatically providing corrective actions based on security patterns. We
show how violations of the integrity security property, as detected by a
security pattern, may have corrective actions associated with them.

3. Argumentation-based security analysis. We show how argumentation
analysis [16] can be carried to provide evidence that the information access
property applied to the meteo data is satisfied after evolution.

The entities involved in the simple scenario are the AMAN, the Meteo Data
Center (MDC), the SWIM-Box and the SWIM-Network. The SWIM-Box is the
core of the SWIM information management system which provides access via de-
fined services to data that belong to different domain such as flight, surveillance,
meteo, etc. The introduction of the SWIM requires suitable security properties
to be satisfied: we will show how to protect information access on meteo data
and how to ensure integrity of meteo data.

120 G. Bergmann et al.

Fig. 5. Requirement Model before evolution (Si* syntax)

Requirements evolution. Figure 5 shows the before requirement model which
consists of two actors the AMAN and MDC : MDC provides the asset Meteo
Data (MD) to the AMAN. The AMAN has an integrity security goal MDIntegrity
for MD, and MDC is entrusted with this goal. AMAN also performs an Action,
SecurityScreening, to regularly conduct a background check on its employees to
ensure that they do not expose to risk the information generated by the AMAN.

As the communication between the AMAN and MDC is mediated by the
SWIM, the before model evolves as follows (see Figure 6):

– The Actors SWIM, SWIMBox_MDC and SWIMBox_AMAN are intro-
duced in the SI* model

– As the meteo data is no longer directly provided by MDC to AMAN, the
delegation relation between the two is removed.

– Delegation relationships are established between the Actors MDC, SWIM-
Box_MDC, SWIM, SWIMBox_AMAN, AMAN.

– As the SWIM network can be accessed by multiple parties, the AMAN has
a new security goal MDAccessControl protecting MD resource.

Detecting violations of security properties based on security patterns. Accord-
ing to the pattern of Lst. 1, the integrity property for MD is violated because
AMAN entrusts MDC with the integrity security goal, but not the communi-
tation intermediary actors SWIMBox_MDC, SWIM and SWIMBox_AMAN.
The violation (i.e. a match of the pattern) is detected and reported by the tool,
as shown on Fig. 7.

Automatic corrective actions based on security patterns. The following quick fix
suggestions are associated with the security pattern:

– Add a trust relationship between MDC and SWIM Network having the in-
tegrity security goal as dependum.

A Tool for Managing Evolving Security Requirements 121

Fig. 6. Requirement after evolution (Si* syntax)

(a) Detected Security Issues

(b) Possible Corrective Actions

Fig. 7. Detection of Security Issues

122 G. Bergmann et al.

Fig. 8. A fragment of the argumentation model

– Alternatively, an Action such as “MD is digitally signed” can be created to
protect the integrity of MD even when handled by untrusted actors.

Argumentation for the information access property. Fig. 8 shows the different
rounds of the argumentation analysis that is carried out for the information
access security property applied to MD resource. The diagram says that the
AMAN system is claimed to be secure before the change (Round #1), and the
claim is warranted by the facts the system is known to be a close system (F1),
and the physical location of the system is protected (F2). This argument is
rebutted in Round #2, in which another argument claims that the system is no
longer secure because SWIM will not keep AMAN closed. The rebuttal argument
is mitigated in Round #3 by three arguments, which suggest that the AMAN
may still be secure given that the physical infrastructure is secure, personnel are
trustworthy and access to data is controlled.

A Tool for Managing Evolving Security Requirements 123

5 Related Works

There are many requirement engineering tools available but only some of them
support specific capabilities for requirement change management. CASE Spec
[1] makes easy to generate traceability reports and perform impact analysis with
built-in visual and tabular traceability tools. Dimensions RM [2] allows enter-
prises to effectively manage change in requirements during the project lifecycle.
In particular, DimRM facilitates the understanding of the impact of require-
ment changes and the creation of reports on requirements definition, baselines,
change impact, and traceability. IBM Rational DOORS [3] has powerful capa-
bilities for capturing, linking, analyzing and managing changes to requirements
and their traceability. IBM Rational RequisitePro [4] is a requirements man-
agement tool that incorporates a powerful database infrastructure to facilitate
requirements organization, integration, traceability and analysis. Moreover, it
provides detailed traceability views that display parent/child relationships and
shows requirements that may be affected by upstream or downstream changes.
MKS Integrity 2009 [5] provides reuse and requirements change management ca-
pabilities coupled with meaningful (and traceable) relationships to downstream
code and testing assets, which ensure communication of change, conformance to
requirements and compliance with applicable governance or regulations.

Reqtify [6] is an interactive requirement traceability and impact analysis tool
which can trace requirement from system, program and project levels to the
entire levels of software or hardware component development lifecycle.

Compared with the above tools, SecMER provides support to the requirement
engineer for handling security related changes. The tool supports automatic de-
tection of requirement changes that lead to violation of security properties using
change-driven transformations and suggests possible corrective actions. The tool
also supports argumentation analysis to check security properties are preserved
by evolution and to identify new security properties that should be taken into
account.

6 Tool Evaluation

The SecMER tool has been validated during a workshop with Air Traffic Man-
agement experts. We had a total of fifteen participants: four requirement analysts
and eleven ATM experts who were air traffic controllers and the others were Deep
Blue3 consultants. The participants were divided in three groups. Each group
has to first create the before and after requirement models for the illustrative
scenario introduced in Sec. 4; then, check security violations and select a possi-
ble suggested quick fix; and build an argument model for the after requirement
model. The domain experts were given wild cards to provide feedbacks related to
the application of the methodology steps and on the usability and reliability of
3 Deep Blue is a human factors, safety and validation consultancy providing so-

lutions throughout industry and the public sector in the field of transportation
(http://www.dblue.it/)

http://www.dblue.it/

124 G. Bergmann et al.

the tool. The validation session had a duration of one hour and thirty minutes.
During the validation session each group was observed by a requirement analyst.
At the end of the validation session the requirement analysts gave a question-
naire to be filled out by the participants. Useful feedbacks have been provided
by the domain experts that have been used to improve the tool usability and
reliability. Each group reported that was not clear how to create before and after
models and how to maintain the history of changes. The experts suggested to
have a guideline or a source of help that explains when to use the most critical
concepts; and the possibility of saving in the same project the before and after
models. These issues have been addressed since. Moreover, for the participants
was confusing to have different views of the same model - SeCMER view and
SI* view. Since the protects relationship is not part of the standard SI* concep-
tual model but only of the SeCMER conceptual model, the participants were
required to switch from the SI* view to the SeCMER view and add the rela-
tionship to the model. In order to improve the usability of the tool, the protects
information is now made part of SI*, and does not require manual effort from
the final user; we have also named the SI* concepts in the palette of the SI* view
as the mapped concepts in the SeCMER view to converge the terminologies of
the two views. About the automatic detection of violation of security properties,
the participants suggested that more guildelines should be given about the state
of security modeling even when no violations are detected. The tool now guides
the user in creating the first security goal, as well as in identifying the protected
assets of security goals.

7 Conclusions

This paper has presented SeCMER, a tool for managing evolving requirements.
As shown by the ATM-based illustrative scenario, the tool supports visual mod-
eling of security requirements. Additionally, argument models can be constructed
manually to investigate the satisfaction of security properties; the tool detects
invalidated arguments if the requirements model evolves. Finally, the tool per-
forms continuous and automatic pattern-based violation detection of security
properties, with optional “quick fix” corrective actions.

We plan to extend the tool in order to support other sets of security patterns
to automate the detection and handling of security violations in a wider range of
application scenarios. We plan also to realize a tighter integration with additional
modeling formalisms (Problem Frames) and industrial tools e.g DOORS-TREK.

References

1. CASE Spec, http://www.analysttool.com/
2. Dimensions RM, http://www.serena.com/products/rm/index.html
3. IBM Rational DOORS, http://www-01.ibm.com/software/awdtools/doors/
4. IBM Requisite Pro, http://www-01.ibm.com/software/awdtools/reqpro/
5. IMKS Integrity (2009), http://www.mks.com/

http://www.analysttool.com/
http://www.serena.com/products/rm/index.html
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www.mks.com/

A Tool for Managing Evolving Security Requirements 125

6. Reqtify, http://www.geensoft.com/en/article/reqtify
7. EUROCONTROL ATM Strategy for the Years 2000+ Executive Summary (2003)
8. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh, Z., Ökrös,

A.: Incremental Evaluation of Model Queries over EMF Models. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 76–90.
Springer, Heidelberg (2010)

9. Bergmann, G., et al.: Change-Driven Model Transformations. Change (in) the Rule
to Rule the Change. Software and System Modeling (2011) (to appear)

10. Bergmann, G., et al.: D3.2 Methodology for Evolutionary Requirements,
http://www.securechange.eu/sites/default/files/deliverables/
-%20Methodology%20for%20Evolutionary%20Requirements_v3.pdf

11. Bergmann, G., et al.: D3.4 Proof of Concept Case Tool,
http://www.securechange.eu/sites/default/files/deliverables/D3.4
tt%20Proof-of-Concept%20CASE%20Tool%20for%20early%20requirements.pdf

12. Jackson, M.: Problem Frames: Analyzing and structuring software development
problems. ACM Press, Addison Wesley (2001)

13. Massacci, F., Mylopoulos, J., Paci, F., Tun, T.T., Yu, Y.: An Extended Ontology
for Security Requirements. In: Salinesi, C., Pastor, O. (eds.) CAiSE Workshops
2011. LNBIP, vol. 83, pp. 622–636. Springer, Heidelberg (2011)

14. Massacci, F., Mylopoulos, J., Zannone, N.: Computer-aided support for secure
tropos. Automated Software Engg. 14, 341–364 (2007)

15. The Eclipse Project: Eclipse Modeling Framework, http://www.eclipse.org/emf
16. Tun, T.T., et al.: Model-based argument analysis for evolving security require-

ments. In: Proceedings of the 2010 Fourth International Conference on Secure
Software Integration and Reliability Improvement, SSIRI 2010, pp. 88–97. IEEE
Computer Society, Washington, DC (2010)

17. Yu, Y., Tun, T.T.: OpenPF - The Open Requirements Engineering Lab,
http://computing-research.open.ac.uk/trac/openre

http://www.geensoft.com/en/article/reqtify
http://www.securechange.eu/sites/default/files/deliverables/D3.2-%20Methodology%20for%20Evolutionary%20Requirements_v3.pdf
http://www.securechange.eu/sites/default/files/deliverables/D3.2-%20Methodology%20for%20Evolutionary%20Requirements_v3.pdf
http://www.securechange.eu/sites/default/files/deliverables/D3.4%20Proof-of-Concept%20CASE%20Tool%20for%20early%20requirements.pdf
http://www.securechange.eu/sites/default/files/deliverables/D3.4%20Proof-of-Concept%20CASE%20Tool%20for%20early%20requirements.pdf
http://www.eclipse.org/emf
http://computing-research.open.ac.uk/trac/openre

	A Tool for Managing Evolving Security Requirements
	Introduction
	SeCMER Methodology
	Modeling of Evolving Requirements
	Change Detection Based on Security Patterns
	Argumentation-Based Security Analysis

	SeCMER Tool Architecture and Implementation
	Illustrative Example
	Related Works
	Tool Evaluation
	Conclusions
	References

