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Adrien Lèbre1, Paolo Anedda2, Massimo Gaggero2, and Flavien Quesnel1

1 ASCOLA Research Group, Ecole des Mines de Nantes, Nantes, France
{firstname.lastname}@mines-nantes.fr

2 CRS4 Distributed Computing Group, Edificio 1, Polaris, Pula, Italy
{firstname.lastname}@crs4.it

Abstract. Although the use of virtual environments provided by cloud
computing infrastructures is gaining consensus from the scientific com-
munity, running applications in these environments is still far from reach-
ing the maturity of more usual computing facilities such as clusters or
grids. Indeed, current solutions for managing virtual environments are
mostly based on centralized approaches that barter large-scale concerns
such as scalability, reliability and reactivity for simplicity. However, con-
sidering current trends about cloud infrastructures in terms of size (larger
and larger) and in terms of usage (cross-federation), every large-scale con-
cerns must be addressed as soon as possible to efficiently manage next
generation of cloud computing platforms.

In this work, we propose to investigate an alternative approach lever-
aging DIStributed and COoperative mechanisms to manage Virtual En-
viRonments autonomicallY (DISCOVERY). This initiative aims at over-
coming the main limitations of the traditional server-centric solutions
while integrating all mandatory mechanisms into a unified distributed
framework. The system we propose to implement, relies on a peer-to-
peer model where each agent can efficiently deploy, dynamically schedule
and periodically checkpoint the virtual environments they manage. The
article introduces the global design of the DISCOVERY proposal and
gives a preliminary description of its internals.

1 Introduction

Since the first proposals almost ten years ago [15,20], the use of virtual technolo-
gies has radically changed the perception of distributed infrastructures. Through
an encapsulation of software layers into a new abstraction – the virtual machine
(VM) –, users can run their own runtime environment without considering, in
most cases, software and hardware restrictions which were formerly imposed by
computing centers. Relying on specific APIs, users can create, configure and up-
load their VMs to cloud computing providers, which in turn are in charge of
deploying and running the requested virtual environment (VE) on their physical
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infrastructure. In some ways, users may consider the distributed infrastructure
as a unique and large hardware where they can launch as many VMs as they
want to compose and recompose their environment on demand.

Because of its flexibility and its indubitable economic advantage, this ap-
proach, known now as Infrastructure-as-a-Service (IaaS), is becoming more and
more popular. However, running applications in those virtualized environments
and upon those infrastructures is still far from reaching the maturity of more
usual computing facilities such as clusters or grids. Indeed, most IaaS frame-
works, such as Nimbus [1], OpenStack [3] and OpenNebula [32], have been de-
signed with the ultimate goal of deploying VEs upon physical resources, setting
aside or addressing only as secondary concerns large-scale infrastructure chal-
lenges.

Considering that cloud computing providers permanently invest in new phys-
ical resources to satisfy the increasing demand of VEs, all issues related to the
management of large-scale infrastructures should be considered as major con-
cerns of IaaS frameworks. This is reinforced with recent proposals promoting
the federation of IaaS infrastructures, leading to larger and more complex sys-
tems [21]. From our point of view, both the design of IaaS frameworks and the
management of VEs should be driven by:

– Scalability, targeting the management of hundred thousands of VMs upon
thousands of physical machines (PMs), potentially spread across multiple
sites;

– Reliability, considering “hardware failures as the norm rather the excep-
tion” [8];

– Reactivity, handling each reconfiguration event as swiftly as possible to main-
tain VEs’ Quality of Service (QoS).

If the first point is a well-known challenge, some clarifications should be made
regarding the expectations about the two latest ones. Concerning reliability,
IaaS frameworks should be robust enough to face failures. Besides remaining
operational – i.e. users can continue to interact with them –, they must provide
mechanisms to resume any faulty VEs in a consistent state, while limiting the
impact on the sound ones. Regarding reactivity, IaaS frameworks should swiftly
handle events that require performing particular operations either on virtual or
on physical resources. These events can be related to submissions or completions
of VEs, to physical resource changes, or to administrator’s interventions. The
main objective is to maximize the system utilization while insuring the QoS
expectations.

Although, the management and the use of VMs in distributed architectures is
a hot topic leading to a significant number of publications, most of the current
works only focus on one particular concern. To our best knowledge, no work
currently investigates whether all these concerns can be tackled all together into
a unified system.

Yet, we assume that the maturity of system virtualization capabilities and re-
cent improvements in their usage [7, 14] enable to design and implement such a
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system. To overcome the issues of traditional server-centric solutions, its design
should benefit from the lessons learnt from distributed operating systems and
Single System Image proposals [29]. Furthermore, to address the different objec-
tives and reduce the management complexity, we advocate the use of autonomic
mechanisms [22]. In other words, we argue for the design and the implementa-
tion of a distributed OS, sometimes referred as “Cloud OS”, manipulating VEs
instead of processes. We strongly support to use micro-kernel concepts to de-
liver a platform agnostic framework where a physical node, as well as a complete
IaaS platform, can be seen as a simple bare hardware. As a consequence, the
framework can manage each VM of a VE throughout a federation of bare hard-
ware, using the capabilities provided by each of them (for example start/stop,
suspend/resume).

To our best knowledge, XenServer [4] and VSphere [24] are probably the
most advanced proprietary solutions targeting most of these goals. However,
they are still facing scalability issues and do not address, for instance, IaaS
federation concerns. In this paper, we propose to go further by giving an overview
of the DISCOVERY architecture, a DIStributed and COoperative framework to
manage Virtual EnviRonments autonomicallY.

The remaining of the paper is organized as follows. First, we present current
IaaS frameworks and most advanced mechanisms to manage VEs in Section 2.
Second, we introduce the global architecture and briefly discuss scientific and
technical challenges of the components of the DISCOVERY system in Section 3.
Section 4 presents an overview of the DISCOVERY engine. Finally, Section 5
concludes and highlights the importance to address such a proposal through a
solid community composed of experts of each domain (storage, network, fault-
tolerance, P2P, security . . . ).

2 Related Work

Due to the recent widespread diffusion of cloud computing (CC), there is a
growing number of software projects that deal with the management of virtual
infrastructures, especially in the context of private CC. Most of these systems
are designed to substantially reduce the administrative burden of managing clus-
ters of virtual machines while simultaneously improving the ability of users to
request, control, and customize their virtual computing environment. Beyond
the previously cited Nimbus, OpenStack and OpenNebula projects, there are a
lot of Open Source projects. Among the others, we can mention: OpenQRM [2],
SnowFlock [23], Usher [26] and Eucalyptus [28]. Although they differ in ap-
proach and technological aspects, most of these systems are designed with a
traditional centralized approach. As reported in [13], these systems do not scale
well and moreover, lead to the problem of Single Point Of Failures (SPOFs).
Such drawbacks have not been really addressed until now and major improve-
ments have rather focused on virtualization internals or on particular needs. For
instance, VMs live-migration [12] provides flexibility by enabling to schedule VEs
dynamically in a cluster-wide context [17]. But, migrating several VMs among
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different physical nodes transparently, while ensuring the correctness of their
computation, requires advanced memory management and data transfer strate-
gies [18, 19]. Moreover, when live migration is done at a Wide Area Network
(WAN) scale [9, 10], also VM image concerns must be taken into account. As
we stated in Section 1, failures become an important issue to address and cloud
resiliency is becoming an important task [16]. Checkpointing is a promising ap-
proach to system reliability [6,11], since it ensures a way for taking snapshots of
the execution of a virtual environment and allows, in case of failure, to restart
computations from a previously saved state. VM images management is another
big concern. Using traditional network solutions for storage such as the Network
File-System (NFS), while it is a perfectly adequate solution for small clusters,
it will not scale as the number of nodes increases. Apart from the specifics of a
given hardware setup, this is a direct consequence of having an external fixed
storage system, whose bandwidth is independent from the computational clus-
ter size. On the contrary, the use of distributed file-systems in the context of
VMs management [5] seems very promising and is encouraging the development
of dedicated distributed FS specifically tailored to the VMs management [27].
Finally, deploying several VMs in different administrative domains [34], while
providing a unified network overlay, requires new solutions based on the cre-
ation of virtual isolated network environments [25, 31].

A lot of works have and still continue to be done in virtualization in distributed
architectures. However none of these works are focusing on the design and the
implementation concerns of a unified system leveraging recent contributions to
efficiently manage VEs across a large-scale infrastructure.

3 The DISCOVERY Proposal

While considering previous and on-going works as foundations for the DISCOV-
ERY initiative, we argue for the design and the implementation of a unified
framework that aims at insuring scalability, reliability and reactivity in the
management of a significant number of VEs. In this section, we present the
architecture overview we designed to meet these objectives and then, highlight
scientific and technical challenges of each component.

3.1 Architecture Overview

The DISCOVERY architecture relies on a peer-to-peer model composed of sev-
eral agents (see Figure 1). Each agent cooperates in managing VEs throughout
the DISCOVERY network.

In the DISCOVERY system, we define a VE as a set of VMs that may have
specific requirements in terms of hardware, software and also in terms of place-
ment: a user may express the wish to have particular VMs in a same location
to cope with performance objectives whereas he/she can ask that others should
not be collocated to insure high-availability criteria for instance.

In order to be platform agnostic, each agent leverages virtualization technolo-
gies wrappers. This enables to start, stop, suspend, resume and relocate VMs
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Fig. 1. The DISCOVERY infrastructure

without limiting the DISCOVERY proposal to a particular virtualization plat-
form. Moreover, the adoption of the Open Virtualization Format (OVF) [14] by
major virtualization actors should enable to soon assign any VM on whatever
virtualization platforms. Similarly, we propose to leverage IaaS APIs. By means
of specialized DISCOVERY agents that wrap the IaaS functionalities, it allows
to treat IaaS frameworks as if they were “super” nodes of the system. Although
it implies few restrictions such as the inability to use live-migration between an
external PM and an IaaS framework yet, it enables to hide all the underlying
instruments so that the VEs are unaware of the physical resources they are run-
ning on. Regarding the VM snapshotting capability that is required to insure
reliability of VEs, we assume that IaaS providers will extend their API in order
to offer it in a mid-term future.

3.2 The DISCOVERY Agent

Relying on the peer-to-peer approach, on the concept of the VEs and on the
common set of VM operations, we designed the DISCOVERY agent. At coarse-
grain, it is composed of three major services (see Figure 2) (i) the DISCOVERY
Network Tracker (DNT), (ii) the Virtual Environments Tracker (VET) and (iii)
the Local Resources Tracker (LRT).

DISCOVERY Network Tracker. The DNT is in charge of maintaining a
logical view of the DISCOVERY network to make communications and informa-
tion sharing between services transparent and reliable. Leveraging Distributed
Hash Table (DHT) mechanisms [30, 33, 35], it relieves each service of dealing
with the burden of nodes’ resiliency. First works will focus on reducing as far as
possible the DISCOVERY’s system states that should be saved into the DHT.
The objective is to minimize the performance degradation while insuring the
reliability of the whole system. Mid-term challenges will concern the definition
of one or several network overlays with respect to the network topologies so that
when one peer leaves or fails, the one that takes over is “well” located. Finally,
the study of voluntary split or merge of overlays can be also relevant.
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Fig. 2. Architecture overview

Virtual Environment Tracker. Each VET is charge of managing a set of VEs
during their whole life cycle. This includes handling user-requests, uploading VM
images into the DISCOVERY network and insuring that the VEs it manages can
start and correctly run until their completion. The main challenges concern:

– The configuration of the network (covering VM IP assignments and use of ad-
vanced technologies to maintain intra-connectivity while insuring isolations
and avoiding conflicts between the different VEs [25, 31, 34]).

– The management of the VM images that should be (i) consistent with regard
to the location of each VM throughout the DISCOVERY network and (ii)
reachable in case of failures.

– The efficient use of the snapshotting capability to resume a VE from its
latest consistent state in case of failures.

These three concerns are respectively addressed through functionalities available
in the Network, Image and Reliability layers. Each layer will rely on solutions
such as the ones described in Section 2. Our objective is to let the possibility to
developers to switch between several mechanisms.

Local Resources Tracker. The LRT is in charge of monitoring the resource
usage of the bare hardware. It notifies events (such as overloaded, underloaded,
extinction requested . . . ) to other LRTs in order to balance or suspend VMs of
VEs with respect to the scheduling policy that has been defined (consolidation,
load-balancing, . . . ). The main challenges concern :

– The management of the events (considering that each event may occur
simultaneously throughout the infrastructure leading to several schedul-
ing/reconfigurations processes).

– The scheduling process itself (keeping in mind that for scalability reason, it
will not be able to rely on a global view of the resource usage).
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– And finally the application of each reconfiguration that may occur concur-
rently throughout the infrastructure.

According to the lack of solutions that try to address these concerns and con-
sidering that the LRT component is central for the DISCOVERY architecture,
we chose to start our investigation from it.

4 DISCOVERY in a Nutshell

Assuming that a lot of works has to be done to develop a framework as complex
as the one we described, we present in this section, a basic overview of the
DISCOVERY engine. This description has been driven by major events/actions
that may occur throughout the DISCOVERY network.

When a peer joins the DISCOVERY network, it queries the DNT to get a
VET instance. If one peer of the network manages more than one VET, the DNT
will assign one of these VETs to the new peer. Otherwise, a new VET instance
with a unique id is allocated on the new peer that starts to become active.

A user can query any active peer for the creation of a particular VE. His/her
request is forwarded to one of the VETs available in the system according to
the DISCOVERY balancing policy. Once the request has been assigned to a
particular VET, a VE handler (VEH) is created. This VEH is identified by a
unique id composed of the id of the VET and a local id incremented each time the
VET launches a new VEH. The VEH will monitor and will apply each operation
that is mandatory to correctly run the VE. Similarly to the VEH, a VM handler
(VMH) is created for each VM composing the VE. The VEH and the VMHs
interact during the whole execution of the VE.

At the beginning, the VEH starts, locally, as many VMHs as it is requested.
The LRT detects these new VMHs and checks whether it will be able to host the
related VMs. According to the available resources, each VMH may be relocated
to another peer or be informed that the system cannot satisfy their requirements
due to a lack of resources. When enough resources are available in the DISCOV-
ERY system, each VMH contacts its VEH to notify it to effectively start the
VMs. The VEH is then in charge of delivering the VM images to the right loca-
tions and configuring the network (including IP assignments and VLAN setup).
When all VMs are started, the VE switches to the running state. Each time
the LRT decides to relocate (or suspend) a VM, it notifies the VMH, which in
turn informs its VET to perform the requested operation. By preventing direct
interactions on VMs, we insure to keep VEs in consistent state. If one of the
VMs should be suspended due to a lack of resources, the VEH will suspend the
whole VE, keeping it in a consistent state.

When a peer wants to leave the DISCOVERY network, the LRT switches to
an overloaded state where each VMH (and by transitivity the related VMs) have
to be relocated somewhere else in the DISCOVERY network. In the meantime,
the DNT associates the VET to another node so that VMHs can continue to
contact it (as illustrated on Figure 2), a DISCOVERY agent can be composed



DISCOVERY, Beyond the Clouds 453

of several VETs). Once the VET has been assigned to another node and once
all VMHs have been relocated (or suspended), the peer can properly leave.

Regarding reliability, two cases must be considered: the crash of VMs and the
crash of nodes. In the first case, the reliability relies on (i) the snapshots of the
VE, which is periodically performed by the VEH and (ii) the heartbeats that are
periodically sent by each VMHs to the VEH. If the VEH does not receive one
of the VMHs’ heartbeats, it has to suspend all remaining VMs and resume the
whole VE from its latest consistent state. This process is similar to the starting
one: the missing VMHs are launched locally and the LRT is in charge of assigning
them throughout the DISCOVERY network. When the LRT completes this op-
eration, the VMHs receive a notification and in turn contact the VET to resume
all VMs from their latest consistent state. Before resuming each VM, the VET
checks whether it has to deliver the snapshot images to the nodes. Regarding
the crash of a node, the recovery process relies on DHT mechanisms used by the
DNT. When a VET starts a new VEH, the description of the associated VE is
stored in the DHT. Similarly, this description is updated/completed each time
the VEH snapshots the VE (mainly to update the locations of the snapshots).
By such a way, when a failure of a node is detected (either by leveraging DHT
principles or simply by implementing a heartbeat approach between nodes), the
“neighbor” node is able to restart the VET and the associated VEHs from the
information that have been previously replicated through the DHT. Once all
VEHs have recovered, the VMHs heartbeat mechanism is used either to reat-
tach the VMHs to the VEH or to resume the VE from its latest consistent state
if it is needed.

5 Conclusion

It is undeniable: virtualization technology has become a key element of dis-
tributed architectures. Although there have been considerable improvements, a
lot of works continue to focus on virtualization internals and only few actions
address design and implementation concerns of the frameworks that leverage
virtualization technologies to manage distributed architectures. Considering the
growing size of infrastructures in terms of nodes and virtual machines, new
proposals relying on more autonomic and decentralized approaches should be
discussed to overcome the limitations of traditional server-centric solutions.

In this paper, we introduced the DISCOVERY initiative that aims at leverag-
ing recent contributions on virtualization technologies and previous distributed
operating systems proposals to design and implement a new kind of virtualiza-
tion frameworks insuring scalability, reliability and reactivity of the whole sys-
tem. Our proposal relies on micro-kernel approaches and peer-to-peer models.
Starting from the point that each node may be seen as a bare-hardware provid-
ing basic functionalities to manipulate VMs and monitor resources usages, we
design an agent composed of several services that cooperate in managing virtual
environments throughout the DISCOVERY network.

Although the design may look simple at the first sight, the implementation
of each block will require specific expertise. As an example, strong assumptions
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on the internals of the Virtual Environments Tracker have been done (consider-
ing that the three layers: Image, Network and Reliability were available). Each
of them requires deeper investigations with the contributions of the scientific
community. Furthermore, the DISCOVERY framework should be extended with
other concerns such as security, user quota . . . to meet our objective to design
and implement a complete distributed OS of VMs. Again, this cannot be done
without querying the scientific community.
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