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Abstract. We motivate, define and construct quantum proofs of knowledge,
proofs of knowledge secure against quantum adversaries. Our constructions
are based on a new quantum rewinding technique that allows us to extract
witnesses in many classical proofs of knowledge. We give criteria under which
a classical proof of knowledge is a quantum proof of knowledge. Combining
our results with Watrous’ results on quantum zero-knowledge, we show that
there are zero-knowledge quantum proofs of knowledge for all languages in NP
(assuming quantum 1-1 one-way functions).

1 Introduction

Cryptographic protocols, with few exceptions, are based on the assumption that
certain problems are computationally hard. Typical examples include specific
number-theoretic problems such as the difficulty of finding discrete logarithms,
and general problems such as inverting one-way functions. It is well-known, how-
ever, that many such problems would become easy in the advent of quantum
computers. Shor’s algorithm [16], e.g., efficiently solves the discrete logarithm
problem and allows to factor large integers. While quantum computers do not
exist today, it is not unreasonable to expect quantum computers to be available
in the future. To meet this threat, we need cryptographic protocols that are
secure even in the presence of an adversary with a quantum computer. We stress
that this does not necessarily imply that the protocol itself should make use
of quantum technology; instead, it is preferable that the protocol itself can be
easily implemented on today’s readily-available classical computers.

Finding such quantum-secure protocols, however, is not trivial. Even when
we have found suitable complexity-theoretic assumptions such as the hardness
of certain lattice problems, a classical protocol based on these assumptions may
fail to be secure against quantum computers. The reason for this is that many
cryptographic proofs use a technique called rewinding. This technique requires
that it is possible, when simulating some machine, to make snapshots of the
state of that machine and then later to go back to that snapshot. As first ob-
served by van de Graaf [9], classical rewinding-based proofs do not carry over to
the quantum case. Two features unique to the quantum setting prohibit (naive)
rewinding: The no-cloning theorem [21] states that quantum-information cannot
be copied, so we cannot make snapshots. Furthermore, measurements destroy
information, so interacting with a simulated machine may destroy information
that would be needed later.
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This leads to the following observation: Even if a classical protocol is proven
secure based on the hardness of some problem, and even if that problem is
hard even for quantum computers, we have no guarantee that the protocol is
secure against quantum computers. The reduction of the protocol’s security to
the problem’s hardness may be based on inherently classical features such as the
possibility of rewinding.

An example of a protocol construction that suffers from this difficulty is zero-
knowledge proofs. Zero-knowledge proofs are interactive proofs with the special
property that the verifier does not learn anything except the validity of the
proven statement. Zero-knowledge proofs are inherently based on rewinding (at
least as long as we do not assume additional trusted setup such as so-called
common-reference strings). Yet, zero-knowledge proofs are one of the most pow-
erful tools available to the cryptographer; a multitude of protocol constructions
use zero-knowledge proofs. These protocol constructions cannot be proven se-
cure without using rewinding. To resolve this issue, Watrous [19] introduced a
quantum rewinding technique. This technique allows to prove the quantum se-
curity of many common zero-knowledge proofs. One should note, however, that
Watrous’ technique is restricted to a specific type of rewinding: If we use Wa-
trous’ technique, whenever some machine rewinds another machine to an earlier
point, the rewinding machine forgets everything it learned after that point (we
call this oblivious rewinding). That is, we can only use Watrous’ technique to
backtrack if the rewinding machine made a mistake that should be corrected, but
it cannot be used to collect and combine information from different branches of
an execution.

Constructing quantum zero-knowledge proofs solves, however, only half of the
problem. In many, if not most, applications of zero-knowledge proofs one needs
zero-knowledge proofs of knowledge. A proof of knowledge [7,3] is a proof system
which does not only show the truth of a certain statement, but also that the
prover knows a witness for that statement. This is made clearer by an example:
Assume that Alice wishes to convince Bob that she (the prover) is in possession
of a signature issued by some certification authority. For privacy reasons, Alice
does not wish to reveal the signature itself. If Alice uses a zero-knowledge proof,
she can only show the statement “there exists a signature with respect to the
CA’s public key”. This does not, however, achieve anything: A signature always
exists in a mathematical sense, even if it has never been computed. What Al-
ice wishes to say is: “I know a signature with respect to the CA’s public key.”
To prove such a statement, Alice needs a zero-knowledge proof of knowledge; a
proof of knowledge would convince Bob that Alice indeed knows a witness, i.e.,
a signature. Very roughly, the definition of a proof of knowledge is the following:
Whenever the prover can convince the verifier, one can extract the witness from
the prover given oracle access to the prover. Here oracle access means that one
can interact with the prover and rewind him. Thus, we have the same problem
as in the case of quantum zero-knowledge proofs: To get proofs of knowledge
that are secure against quantum adversaries, we need to use quantum rewind-
ing. Unfortunately, Watrous’ oblivious rewinding does not work here; proofs of
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knowledge use rewinding to produce two (or more) different protocol traces and
compute the witness by combining the information from both traces. Thus, we
are back to where we started: to make classical cryptographic protocols work in
a quantum setting, we need (in many cases) quantum zero-knowledge proofs of
knowledge, but we only have constructions for quantum zero-knowledge proofs.

Our Contribution. We define and construct quantum proofs of knowledge. Our
protocols are classical (i.e., honest parties do not use quantum computation or
communication) but secure against quantum adversaries. Our constructions are
based on a new quantum rewinding technique (different from Watrous’ technique)
that allows us to extract witnesses in many classical proofs of knowledge. We
give criteria under which a classical proof of knowledge is a quantum proof of
knowledge. Combining our results with Watrous’ results on zero-knowledge, we
can show that there are zero-knowledge quantum proofs of knowledge for all
languages in NP (assuming quantum 1-1 one-way functions). (We leave it as an
open question whether unconditionally secure protocols exist for more restricted
languages related, e.g., to lattice-problems.)

Also, we believe that the use of our rewinding technique is not limited to
QPoKs. For example, we encourage the reader to try to prove the following
without using our technique: Given a quantum computationally binding com-
mitment scheme, first let the adversary commit, and then give a random value v
to the adversary. Then the probability that the adversary opens the commitment
to v is negligible.1

Follow-up Work. In subsequent work, Lunemann and Nielsen [14] and Hallgren,
Smith, and Song [12] developed zero-knowledge QPoKs with the additional ad-
vantage of allowing to simultaneously simulate an interaction with the malicious
prover and extract the witness; this property is necessary in some multi-party
computations. (In contrast, in our setting the initial state of the prover could be
lost after extracting.) We stress, however, that this powerful feature comes at a
cost: They need considerably stronger assumptions, namely quantum mixed com-
mitments (while we only need quantum 1-1 one-way functions). Both their zero-
knowledge property and their extractability hold only against polynomial-time
adversaries. In contrast, we get unconditional extractability and computational
zero-knowledge; and by adapting our construction to unconditionally hiding com-
mitments, we could instead make the zero-knowledge property unconditional –
this would be necessary, e.g., for constructions that achieve everlasting security.
Finally, note that the protocols from [14,12] are much more involved than their
classical counterparts while we only slightly modify existing classical protocols.
Thus, [14,12] give valuable alternatives to our protocols but do not supersede
them.

1 The definition of a computationally binding commitment only guarantees that the
adversary cannot simultaneously produce opening information for two different val-
ues. Thus, to get a contradiction, we need to rewind the adversary to extract two
values. If the commitment is strictly binding (Definition 9), our rewinding technique
can be used.
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Organization. In Section 1.1, we give an overview over the techniques under-
lying our results. In Section 2 we present and discuss the definition of quantum
proofs of knowledge (QPoKs). In Section 3, we give criteria under which a proof
system is a QPoK. In Section 4, we show that zero-knowledge QPoKs exist for
all languages in NP. Omitted proofs and definitions are presented in the full
version [18].

1.1 Our Techniques

Defining Proofs of Knowledge. In the classical setting, proofs of knowledge
are defined as follows:2 A proof system consisting of a prover P and a verifier V is
a proof of knowledge (PoK) with knowledge error κ if there is a polynomial-time
machine K (the extractor) such that the following holds: For any prover P∗, if P∗

convinces V with probability PrV ≥ κ, then KP∗
(the extractor K with rewinding

black-box access to P∗) outputs a witness with probability PrK ≥ 1
p (PrV−κ)d for

some polynomial p and constant d > 0. In order to transfer this definition to the
quantum setting, we need to specify what it means that K has quantum rewinding
black-box access to P∗. We choose the following definition: Let U denote the
unitary transformation describing one activation of P∗ (if P∗ is not unitary, this
needs to work for all purifications of P∗). K may invoke U (this corresponds to
running P∗), he may invoke the inverse U † of U (this corresponds to rewinding
P∗ by one activation), and he may read/write a shared register N for exchanging
messages with P∗. But K may not make snapshots of the state of P∗. Allowing
K to invoke U † is justified by the fact that all quantum circuits are reversible;
given a circuit for U , we can efficiently apply U †. Note that previous black-box
constructions such as Watrous’ rewinding technique and Grover’s algorithm [10]
make use of this fact. We can now define quantum proofs of knowledge: (P,V)
is a quantum proof of knowledge (QPoK) with knowledge error κ iff there is a
polynomial-time quantum algorithm K such that for all malicious provers P∗,
KP∗

(the extractor K with quantum rewinding black-box access to P∗) outputs a
witness with probability PrK ≥ 1

p (PrV−κ)d for some polynomial p and constant
d > 0.

We illustrate that QPoKs according to this definition are indeed useful for
analyzing cryptographic protocols. Assume the following toy protocol: In phase
1, a certification authority (CA) signs the pair (Alice, a) where a is Alice’s
age. In phase 2, Alice uses a zero-knowledge QPoK with negligible knowledge
error κ to prove to Bob that she possesses a signature σ on (Alice, a′) for some
a′ ≥ 21. That is, a witness in this QPoK would consist of an integer a′ ≥ 21 and
a signature σ on (Alice, a′) with respect to the CA’s public key. We can now
show that, if Alice is underage, i.e., if a < 21, Bob accepts the QPoK only with
negligible probability: Assume that Bob accepts with non-negligible probability
ν. Then, by the definition of QPoKs, KAlice will, with probability 1

p (ν − κ)d,

2 This is one of different possible definitions, loosely following [11]. It permits us to
avoid the use of expected polynomial-time. We discuss alternatives in Section 2.2
“On the success probability of the extractor”.
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output an integer a′ ≥ 21 and a (forged) signature σ on (Alice, a′) with respect
to the CA’s public key (given the information learned in phase 1 as auxiliary
input). Notice that 1

p (ν − κ)d is non-negligible. However, the CA only signed
(Alice, a) with a < 21. This implies that KAlice can produce with non-negligible
probability a valid signature of a message that has never been signed by the CA.
This contradicts the security of the signature scheme (assuming, e.g., existential
unforgeability [8]). This shows the security of our toy protocol.

Relation to Classical Proofs of Knowledge. Notice that a quantum proof of
knowledge according to our definition is not necessarily a classical PoK because
the quantum extractor might have more computational power. (E.g., in a proof
system where the witness is a factorization, a quantum extractor could just com-
pute this witness himself.) We stress that this “paradox” is not particular to our
definition, it occurs with all simulation-based definitions (e.g., zero-knowledge
[19], universal composability [17]). If needed, one can avoid this “paradox” by
requiring the extractor/simulator to be classical if the malicious prover/verifier
is. (This would actually be equivalent to requiring that the scheme is both a
classical ZK PoK and a quantum one.)

Amplification. Our toy example shows that QPoKs with negligible knowledge
error can be used to show the security of protocols. But what about QPoKs with
non-negligible knowledge error? In the classical case, we know that the knowl-
edge error of a PoK can be made exponentially small by sequential repetition.
Fortunately, this result carries over to the quantum case; its proof follows the
same lines.

Elementary Constructions. In order to understand our constructions of
QPoKs, let us first revisit a common method for constructing classical PoKs.
Assume a protocol that consists of three messages: the commitment (sent by
the prover), the challenge (picked from a set C and sent by the verifier), and
the response (sent by prover). Assume that there is an efficient algorithm K0

that computes a witness given two conversations with the same commitment
but different challenges; this property is called special soundness. Then we can
construct the following (classical) extractor K: KP∗

runs P∗ using a random chal-
lenge ch. Then KP∗

rewinds P∗ to the point after it produced the commitment,
and then KP∗

runs P∗ with a random challenge ch ′. If both executions lead to an
accepting conversation, and ch �= ch ′, K0 can compute a witness. The probability
of getting two accepting conversations can be shown to be Pr2V, where PrV is the
probability of the verifier accepting P∗’s proof. From this, a simple calculation
shows that the knowledge error of the protocol is 1/#C.

If we directly translate this approach to the quantum setting, we end up with
the following extractor: K runs one step of P∗, measures the commitment com,
provides a random challenge ch, runs the second step of P∗, measures the re-
sponse, runs the inverse of the second step of P∗, provides a random challenge
ch ′, runs the second step of P∗, and measures the response resp′. If ch �= ch′,
and both (com , ch, resp) and (com , ch′, resp′) are accepting conversations, then
we get a witness using K0. We call this extractor the canonical extractor. The
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problem is to bound the probability F of getting two accepting conversations. In
the classical setting, one uses that the two conversations are essentially indepen-
dent (given a fixed commitment), and each of them is, from the point of view
of P∗, the same as an interaction with the honest verifier V. In the quantum
setting, this is not the case. Measuring resp disturbs the state of P∗; we hence
cannot make any statement about the probability that the second conversation
is accepting.

How can we solve this problem? Note that we cannot use Watrous’ oblivious
rewinding since we need to remember both responses resp and resp′ from two
different execution paths of P∗. Instead, we observe that, the more information
we measure in the first conversation (i.e., the longer resp is), the more we destroy
the state of P∗ used in the second conversation. Conversely, if would measure
only one bit, the disturbance of P∗’s state would be small enough to still get a
sufficiently high success probability. But if resp would contain only one bit, it
would clearly be too short to be of any use for K0. Yet, it turns out that this
conflict can be resolved: In order not to disturb P∗’s state, we only need that the
resp information-theoretically contains little information. For K0, however, even
an information-theoretically determined resp is still useful; it might, for example,
reveal a value which P∗ was already committed to. To make use of this observa-
tion, we introduce an additional condition on our proof systems, strict soundness.
A proof system has strict soundness if for any commitment and challenge, there
is at most one response that makes the conversation accepting. Given a proof
system with special and strict soundness, we can show that measuring resp does
not disturb P∗’s state too much; the canonical extractor is successful with prob-
ability approximately Pr3V. A precise calculation shows that a proof system with
special and strict soundness has knowledge error 1/

√
#C.

QPoKs for All Languages in NP. Blum [4] presents a classical zero-
knowledge PoK for showing the knowledge of a Hamiltonian cycle. Using a
suitable commitment scheme (it should have the property that the opening infor-
mation is uniquely determined by the commitment), the proof system is easily
seen to have special and strict soundness, thus it is a QPoK. By sequential rep-
etition, we get a QPoK for Hamiltonian cycles. Using the Watrous’ results, we
get that the QPoK is also zero-knowledge. Using the fact that the Hamiltonian
cycle problem is NP-complete, we get zero-knowledge QPoKs for all languages
in NP (assuming quantum 1-1 one-way functions).

1.2 Preliminaries

General. A non-negative function μ is called negligible if for all c > 0 and all
sufficiently large k, μ(k) < k−c. ⊕ denotes the XOR operation on bitstrings. #C
is the cardinality of the set C.

Quantum Systems. We can only give a terse overview over the formalism used
in quantum computing. For a thorough introduction, we recommend the text-
book by Nielsen and Chuang [15, Chap. 1–2]. A (pure) state in a quantum system
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is described by a unit vector |Φ〉 in some Hilbert space H. We always assume a
designated orthonormal basis for each Hilbert space, called the computational
basis. The tensor product of several states (describing a joint system) is written
|Φ〉 ⊗ |Ψ〉. We write 〈Ψ | for the linear transformation mapping |Φ〉 to the scalar
product 〈Ψ |Φ〉. The norm ‖|Φ〉‖ is defined as

√〈Φ|Φ〉. A unit vector is a vector
with ‖|Φ〉‖ = 1. The Hermitean transpose of a linear operator A is written A†.

2 Quantum Proofs of Knowledge

2.1 Definitions

Interactive Machines. A quantum interactive machine M (machine, for short)
is a machine that gets two inputs, a classical input x and a quantum input |Φ〉.
M operates on two quantum registers; a network register N and a register SM for
the state. SM is initialized with |Φ〉. The operation of M is described by a unitary
transformation Mx (depending on the classical input x). In each activation of M,
Mx is applied to N,SM. We write 〈M(x, |Φ〉),M′(x′, |Φ′〉)〉 for the classical output
of M′ in an interaction where M is activated first (and where M and M′ share
the register N). Often, we will omit the quantum input |Φ〉 or |Φ′〉. In this case,
we assume the input |0〉.
Oracles Algorithms with Rewinding. A quantum oracle algorithm A is an
algorithm that has oracle access to a machine M. In an execution AM(x′,|Φ〉)(x),
two registers N,SM are used for the communication with and the state of M. A’s
behavior is described by a quantum circuit; A has access to two special gates
� and �† that invoke the unitary transformations Mx′ and M†

x′ , respectively.
This corresponds to running and rewinding M. A is not allowed to access SM

directly, and he is allowed to apply � and �† only to N,SM. (I.e., A has no
access to the internal state and the quantum input of the prover. Any access to
this information is done by communicating with M.) Details on the definitions of
interactive quantum machines and quantum oracle algorithms are given in the
full version [18].

Proof Systems. A quantum proof system for a relation R is a pair of two
machines (P,V). We call P the prover and V the verifier. The prover expects a
classical input (x,w) with (x,w) ∈ R, the verifier expects only the input x. We
call (P,V) complete if there is a negligible function μ such that for all (x,w) ∈ R,
we have that Pr[〈P(x,w),V(x)〉 = 1] ≥ 1− μ(|x|). (Remember that, if we do not
explicitly specify a quantum input, we assume the quantum input |0〉.) Although
we allow P and V to be quantum machines, and in particular to send and receive
quantum messages, we will not need this property in the following; all protocols
constructed in this paper will consist of classical machines. We call a (P,V) sound
with soundness error s iff for all malicious prover P∗, all auxiliary inputs |Φ〉, and
all x with �w : (x,w) ∈ R, we have Pr[〈P∗(x, |Φ〉),V(x)〉 = 1] ≤ s(|x|). A proof
system is computational zero-knowledge iff for all polynomial-time verifiers V∗

there is a polynomial-time machine S (the simulator) such that for all auxiliary
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inputs |Φ〉, and all (x,w) ∈ R, we have that the quantum state of V∗ after an
interaction 〈P(x,w),V∗(x, |Φ〉)〉 is computationally indistinguishable from the
output of S(x, |Φ〉); we refer to [19] for details.

Quantum Proofs of Knowledge. We can now define quantum proofs of knowl-
edge (QPoKs). Roughly, a quantum proof system (P,V) is a QPoK if there is a
quantum oracle algorithm K (the extractor) that achieves the following: When-
ever some malicious prover P∗ convinces V that a certain statement holds, the
extractor KP∗

with oracle access to P∗ is able to return a witness. Here, we allow
a certain knowledge error κ; if P∗ convinces V with a probability smaller than κ,
we do not require anything. Furthermore, we also do not require that the success
probability of KP∗

is as high as the success probability of P∗; instead, we only
require that it is polynomially related. Finally, to facilitate the use of QPoKs as
subprotocols, we give the malicious prover an auxiliary input |Φ〉. We get the
following definition:

Definition 1 (Quantum Proofs of Knowledge). We call a proof system
(P,V) for a relation R quantum extractable with knowledge error κ if there exists
a constant d > 0, a polynomially-bounded function p > 0, and a polynomial-time
quantum oracle machine K such that for any interactive quantum machine P∗,
any state |ψ〉, and any x ∈ {0, 1}∗, we have that

Pr[〈P∗(x, |ψ〉),V(x)〉 = 1] ≥ κ(|x|) =⇒
Pr[(x,w) ∈ R : w← KP∗(x,|ψ〉)(x)] ≥ 1

p(|x|)
(
Pr

[〈P∗(x, |ψ〉),V(x)〉 = 1
]−κ(|x|)

)d
.

A quantum proof of knowledge for R with knowledge error κ (QPoK, for short)
is a complete3 quantum extractable proof system for R with knowledge error κ.

Note that by quantifying over all unitary provers P∗, we implicitly quantify over
all purifications of all possible non-unitary provers. Note that extractability
with knowledge error κ implies soundness with soundness error κ. We thus do
not need to explicitly require soundness in Definition 1. The knowledge error κ
can be made exponentially small by sequential repetition:

Theorem 2. Let n be a polynomially bounded and efficiently computable func-
tion. Let (P,V) be extractable with knowledge error κ. Let (P′,V′) be the proof
system consisting of n-sequential executions of (P,V). Then (P′,V′) is extractable
with knowledge error κn.

2.2 Discussion

In this section, we motivate various design choices made in the definition of
QPoKs.

Access to the Black-Box Prover’s State and Input. The extractor has no
access to the prover’s state nor to its quantum input. (This is modeled by the fact
3 I.e., for honest prover and verifier, the proof succeeds with overwhelming probability.
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that an oracle algorithm may not apply any gates except for �,�† to the register
containing the oracle’s state and quantum input.) In this, we follow [3] who argue
in Section 4.3 that a proof of knowledge is supposed to “capture the knowledge
of the prover demonstrated by the interaction” and that thus the extractor is not
supposed to see the internal state of the prover. We stress, however, that our
results are independent of this issue; they also hold if we allow the extractor to
access the prover’s state directly.

Unitary and Invertible Provers – Technical View. Probably the most im-
portant design choice in our definition is to require the prover to be a unitary
operation, and to allow the extractor to also execute the inverse of this oper-
ation. We begin with a discussion of this design choice from a technical point
of view. First, we stress that seems that these assumptions are necessary: Since
in a quantum world, making a snapshot/copy of a state is not possible or even
well-defined, we have to allow the extractor to run the prover “backwards”. But
the inverse of a non-unitary quantum operation does not, in general, exist. Thus
rewinding seems only possible with respect to unitary provers. Second, the prob-
ably most important question is: Does the definition, from an operational point
of view, make sense? That is, does our definition behave well in cryptographic,
reduction-based proofs? A final answer to this question can only be given when
more protocols using QPoKs have been analyzed. However, the toy protocol dis-
cussed on page 138 gives a first indication that our definition can be used in a
similar fashion to classical proofs of knowledge. Third, we would like to remind
the reader that any non-unitary prover can be transformed into a unitary one by
purification before applying the definition of QPoKs. Thus allowing only unitary
malicious provers does not seem to be a restriction in practice.

Unitary and Invertible Provers – Philosophical View. Intuitively, a QPoK
should guarantee that a prover that convinces the verifier “knows” the witness.4
The basic idea is that if an extractor can extract the witness using only what
is available to the prover, then the prover “knew” the witness (or could have
computed it). In particular, we may allow the extractor to run a purified (unitary)
version of the prover because the prover himself could have done so. Similarly
for the inverse of that operation. Of course, this leaves the question why we give
these two capabilities to the extractor but not others (e.g., access to the circuit of
the prover)? We would like to stress that analogous questions are still open (from
a philosophical point) even in the classical case: Why is it natural to allow an
extractor to rewind the prover? Why is it natural to give a trapdoor for a common
reference string to the extractor? We would like to point out one justification for
the assumption that the prover is unitary, though: [3] suggests that we “capture
the knowledge of the prover demonstrated by the interaction”. A prover that
performs non-unitary operations is identical in terms of its interaction to one
that is purified. Thus, by restricting to unitary provers, we come closer to only
capturing the interaction but not the inner workings of the prover.

4 We believe, though, that this issue is secondary to the technical suitability; it is
much more important that a QPoK is useful as a cryptographic subprotocol.



144 D. Unruh

On the Success Probability of the Extractor. We require the extractor
to run in polynomial-time and to succeed with probability 1

p (PrV − κ)d where
PrV is the probability that the prover convinces the verifier. (We call this an
A-style definition.) In classical PoKs, a more common definition is to require
the extractor to have expected runtime p

PrV−κ and to succeed with probability 1.
(We call this a B-style definition.) This definition is known to be equivalent
to the definition in which the extractor runs in expected polynomial-time and
succeeds with probability 1

p (PrV − κ). (We call this a C-style definition.) The
advantage of an A-style definition (which follows [11]) is that we can consider
polynomial-time extractors (instead of expected polynomial-time extractors). To
get extractors for B-style and C-style definitions, one has to increase the success
probability of an extractor by repeatedly invoking it until it outputs a correct
witness. In the quantum case, however, this does not work directly: If the invoked
extractor fails once, the auxiliary input of the prover is destroyed. The oblivious
rewinding technique by Watrous’ would seem to help here, but when trying
to apply that technique one gets the requirement that the invoked extractors’
success probability must be independent of the auxiliary input. This condition is
not necessarily fulfilled. To summarize, all three styles of definitions have their
advantages, but it is not clear how one could fulfil B- and C-style definitions
in the quantum case. This is why we chose an A-style definition. There are,
however, applications that would benefit from a proof system fulfilling a C-style
definition. For example, general multi-party computation protocols such as [5]
use extractors as part of the construction of the simulator for the multi-party
computation; these extractors must then succeed with probability close to 1. We
leave the construction of C-style QPoKs as an open problem.

3 Elementary Constructions
In this section, we show that under certain conditions, a classical PoK is also
a QPoK (i.e., secure against malicious quantum provers). The first condition
refers to the outer form of the protocol; we require that the proof systems is
a protocol with three messages (commitment, challenge, and response) with a
public-coin verifier. Such protocols are called Σ-protocols. Furthermore, we re-
quire that the proof system has special soundness. This means that given two
accepting conversations between prover and verifier that have the same commit-
ment but different challenges, we can efficiently compute a witness. Σ-protocols
with special soundness are well-studied in the classical case; many efficient clas-
sical protocols with these properties exist. The third condition (strict soundness)
is non-standard. We require that given the commitment and the challenge of a
conversation, there is at most one response that would make the verifier accept.
We require strict soundness to ensure that the response given by the prover does
not contain too much information; measuring it will then not disturb the state
of the prover too much. Not all known protocols have strict soundness (the proof
for graph isomorphism [6] is an example). Fortunately, many protocols do satisfy
strict soundness; a slight variation of the proof for Hamiltonian cycles [4] is an
example (see Section 4).
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Definition 3 (Σ-protocol). A proof system (P,V) is called a Σ-protocol if P
and V are classical, the interaction consists of three messages com , ch, resp (sent
by P, V, and P, respectively, and called commitment, challenge, and response),
and ch is uniformly chosen from some set Cx (the challenge space) that may only
depend on the statement x. Furthermore, the verifier decides whether to accept
or not by a deterministic polynomial-time computation on x, com , ch, resp. (We
call (com , ch, resp) an accepting conversation for x if the verifier would accept
it.) We also require that it is possible in polynomial time to sample uniformly
from Cx, and that membership in Cx should be decidable in polynomial time.

Definition 4 (Special soundness). We say a Σ-protocol (P,V) for a relation
R has special soundness if there is a deterministic polynomial-time algorithm
K0 (the special extractor) such that the following holds: For any two accept-
ing conversations (com , ch, resp) and (com , ch ′, resp′) for x such that ch �= ch ′

and ch, ch ′ ∈ Cx, we have that w := K0(x, com , ch, resp, ch′, resp′) satisfies
(x,w) ∈ R.

Definition 5 (Strict soundness). We say a Σ-protocol (P,V) has strict sound-
ness if for any two accepting conversations (com , ch, resp) and (com , ch, resp′)
for x, we have that resp = resp′.

Canonical Extractor. Let (P,V) be a Σ-protocol with special soundness and
strict soundness. Let K0 be the special extractor for that protocol. We define
the canonical extractor K for (P,V). K will use measurements, even though our
definition of quantum oracle algorithms only allows for unitary operations. This
is only for the sake of presentation; by purifying K one can derive a unitary
algorithm with the same properties. Given a malicious prover P∗, KP∗(x,|Φ〉)(x)
operates on two quantum registers N,SP∗ . N is used for communication with
P∗, and SP∗ is used for the state of P∗. The registers N,SP∗ are initialized with
|0〉, |Φ〉. Let P∗

x denote the unitary transformation describing a single activation
of P. First, K applies P∗

x to N,SP∗ . (This can be done using the special gate �.)
This corresponds to running the first step of P∗; in particular, N should now
contain the commitment. Then K measures N in the computational basis; call
the result com . Then K initializes N with |0〉. Then K chooses uniformly random
values ch, ch ′ ∈ Cx. Let Uch denote the unitary transformation operating on
N such that Uch |x〉 = |x ⊕ ch〉. Then K applies P∗

xUch . (Now N is expected to
contain the response for challenge ch.) Then K measures N in the computational
basis; call the result resp. Then K applies (P∗

xUch)† (we rewind the prover). Then
P∗
xUch′ is applied. (Now N is expected to contain the response for challenge ch ′.)

Then N is measured in the computational basis; call the result resp′. Then
(P∗
xUch′)† is applied. Finally, K outputs w := K0(x, com , ch, resp, ch ′, resp′).

Analysis of the Canonical Extractor. In order to analyze the canonical
extractor (Theorem 8 below), we first need a lemma that bounds the probability
that two consecutive binary measurements Pch and Pch′ with random ch �= ch′

succeed in terms of the probability that a single such measurement succeeds. In
a classical setting (or in the case of commuting measurements), the answer is
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simple: the outcomes of the measurements are independent; thus the probability
that two measurements succeed is the square of the probability that a single
measurement succeeds. In the quantum case, however, the first measurement
may disturb the state; this makes the analysis considerably more involved. We
first prove some inequalities needed in the proof:

Lemma 6. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors
on a Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖2

and F :=
∑
i,j∈C

1
c2 ‖PiPj |Φ〉‖2. Then F ≥ V 3.

Proof. To prove the lemma, we first show two simple facts:

Claim. For any positive operator A on H and any unit vector |Φ〉 ∈ H, we have
that (〈Φ|A|Φ〉)3 ≤ 〈Φ|A3|Φ〉.

Since A is positive, it is diagonalizable. Thus we can assume without loss of
generality that A is diagonal (by applying a suitable basis transform to A and
|Φ〉). Let ai be the i-th diagonal element of A, and let fi be the i-th component
of |Φ〉. Then

(〈Φ|A|Φ〉)3 =
(∑

i

|fi|2ai
)3 (∗)

≤
∑

i

|fi|2a3
i = 〈Φ|A3|Φ〉.

Here (∗) uses Jensen’s inequality [13] and the facts that ai ≥ 0, that ai �→ a3
i is a

convex function on nonnegative numbers, and that
∑
i|fi|2 = 1. This concludes

the proof of Lemma 3.

Claim. For vectors |Ψ1〉, . . . , |Ψc〉 ∈ H, it holds that ‖ 1
c

∑
i|Ψi〉‖2 ≤ 1

c

∑
i‖|Ψi〉‖2.

To show the claim, let |Ψ̄〉 :=
∑
i

1
c |Ψi〉. Then

∑

i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
=

∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)(
‖|Ψi〉‖ − ‖|Ψ̄〉‖+ 2‖|Ψ̄〉‖

)

=
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)2

+ 2‖|Ψ̄〉‖
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)

≥ 2‖|Ψ̄〉‖
∑

i

(
‖|Ψi〉‖ − ‖|Ψ̄〉‖

)
= 2‖|Ψ̄〉‖

(∑

i

‖|Ψi〉‖ − ‖n|Ψ̄〉‖
)

(1)

= 2‖|Ψ̄〉‖
(∑

i

‖|Ψi〉‖ −
∥
∥
∥
∑

i

|Ψi〉
∥
∥
∥
)

(2)

From the triangle inequality, it follows that
∑

i‖|Ψi〉‖ ≥ ‖
∑
i|Ψi〉‖, hence with

(2), we have
∑

i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
≥ 0. Since 1

c

∑
i‖|Ψi〉‖2 − ‖ 1

c

∑
i|Ψi〉‖2 =

1
c

∑
i

(
‖|Ψi〉‖2 − ‖|Ψ̄〉‖2

)
≥ 0, Lemma 3 follows.
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We proceed to prove Lemma 6. Let A :=
∑

i
1
cPi, let |Ψij〉 := PjPi|Φ〉. Then

A is positive. Furthermore,

V 3 =
(∑

i

1
c 〈Φ|Pi|Φ〉

)3

=
(〈Φ|A|Φ〉)3 (∗)

≤ 〈Φ|A3|Φ〉 =
∑

i,j,k

1
c3 〈Φ|PiPjPk|Φ〉

=
∑

i,j,k

1
c3 〈Ψij |Ψkj〉 =

∑

j

1
c

(∑

i

1
c 〈Ψij |

)(∑

k

1
c |Ψkj〉

)
=

∑

j

1
c

∥
∥
∥
∑

i

1
c |Ψij〉

∥
∥
∥

2

(∗∗)≤
∑

j

1
c

∑

i

1
c‖|Ψij〉‖2 = F.

Here (∗) uses Lemma 3 and (∗∗) uses Lemma 3. Thus we have F ≥ V 3 and
Lemma 6 follows.

Lemma 7. Let C be a set with #C = c. Let (Pi)i∈C be orthogonal projectors
on a Hilbert space H. Let |Φ〉 ∈ H be a unit vector. Let V :=

∑
i∈C

1
c‖Pi|Φ〉‖2

and E :=
∑

i,j∈C,i�=j
1
c2 ‖PiPj |Φ〉‖2. Then, if V ≥ 1√

c
, E ≥ V (V 2 − 1

c ).

Proof. Let F be as in Lemma 6. Then

E =
∑

i,j∈C
i�=j

1
c2
‖PiPj |Φ〉‖2 =

∑

i,j∈C

1
c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1
c2
‖PiPi|Φ〉‖2

(∗)=
∑

i,j∈C

1
c2
‖PiPj |Φ〉‖2 −

∑

i∈C

1
c2
‖Pi|Φ〉‖2 = F − V

c

(∗∗)≥ V 3 − V

c
= V (V 2 − 1

c )

Here (∗) uses that Pi = PiPi since Pi is a projection, and (∗∗) uses Lemma 6. ��
Theorem 8. A Σ-protocol (P,V) for a relation R with special and strict sound-
ness and challenge space Cx is extractable with knowledge error 1√

#Cx
.

Proof. To show that (P,V) is extractable, we will use the canonical extractor K.
Fix a malicious prover P∗, a statement x, and an auxiliary input |Φ〉. Let PrV
denote the probability that the verifier accepts when interacting with P∗. Let
PrK denote the probability that KP∗(x,|Φ〉)(x) outputs some w with (x,w) ∈ R.
We will show that PrK ≥ PrV · (Pr2V − 1

#Cx
). For PrV ≥ 1√

#Cx
, we have that

PrV(Pr2V− 1
#Cx

) ≥ (PrV− 1√
#Cx

)3. Since furthermore K is polynomial-time, this
implies that (P,V) is extractable with knowledge error 1√

#Cx
.

In order to show PrK ≥ PrV · (Pr2V − 1
#Cx

), we will use a short sequence of
games. Each game will contain an event Succ, and in the first game, we will
have Pr[Succ : Game 1] = PrK. For any two consecutive games, we will have
Pr[Succ : Game i] ≥ Pr[Succ : Game i+ 1], and for the final game, we will
have Pr[Succ : Game 7] ≥ PrV · (Pr2V − 1

#Cx
). This will then conclude the proof.

The description of each game will only contain the changes with respect to the
preceding game.
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Game 1. An execution of KP∗(x,|Φ〉)(x). Succ denotes the event that K outputs
a witness for x. By definition, PrK = Pr[Succ : Game 1].

Game 2. Succ denotes the event that (com, ch, resp) and (com , ch ′, resp′) are
accepting conversations for x and ch �= ch ′. (The variables (com , ch, resp) and
(com , ch′, resp′) are as in the definition of the canonical extractor.) Since (P,V)
has special soundness, if Succ occurs, K outputs a witness. Thus Pr[Succ :
Game 1] ≥ Pr[Succ : Game 2].

Game 3. Before K measures resp, it first measures whether measuring
resp would yield an accepting conversation. More precisely, it measures N
with the orthogonal projector Pch projecting onto Vch := span{|resp〉 :
(com , ch, resp) is accepting}. Analogously for the measurement of resp′ (using
the projector Pch′ .) Since a complete measurement (of resp and resp′, respec-
tively) is performed on N after applying the measurement Pch and Pch′ , in-
troducing the additional measurements does not change the outcomes resp and
resp′ of these complete measurements, nor their post-measurement state. Thus
Pr[Succ : Game 2] = Pr[Succ : Game 3].

Game 4. Succ denotes the event that ch �= ch′ and both measurements Pch and
Pch′ succeed. By definition of these measurements, this happens iff (com , ch, resp)
and (com , ch ′, resp′) are accepting conversations. Thus Pr[Succ : Game 3] =
Pr[Succ : Game 4].

Game 5. We do not execute K0, i.e., we stop after applying (P∗
xUch′)†. Since

at that point, Succ has already been determined, Pr[Succ : Game 4] = Pr[Succ :
Game 5].

Game 6. We remove the measurements of resp and resp′. Note that the out-
comes of these measurements are not used any more. Since (P,V) has strict
soundness, Vch = span{|resp0 〉} for a single value resp0 (depending on com and
ch, of course). Thus if the measurement Pch succeeds, the post-measurement
state in N is |resp0〉. That is, the state in N is classical at this point. Thus,
measuring N in the computational basis does not change the state. Hence, the
measurement of resp does not change the state. Analogously for the measurement
of resp′. It follows that Pr[Succ : Game 5] = Pr[Succ : Game 6].

Game 7. First, N and SP∗ are initialized with |0〉 and |Φ〉. Then the unitary
transformation P∗

x is applied. Then com is measured (complete measurement
on N), and N is initialized to |0〉. Random ch, ch′ ∈ Cx are chosen. Then
P∗
xUch is applied. Then the measurement Pch is performed. Then (P∗

xUch)† is
applied. Then P∗

xUch′ is applied. Then the measurement Pch′ is performed. Then
(P∗
xUch′)† is applied. The event Succ holds if ch �= ch′ and both measurements

succeed. Games 6 and 7 are identical; we have just recapitulated the game for
clarity. Thus, Pr[Succ : Game 6] = Pr[Succ : Game 7].

In Game 7, for some value d , let pd denote the probability that com = d is
measured. Let |Φd〉 denote the state of N,SP∗ after measuring com = d and
initializing N with |0〉. (I.e., the state directly before applying P∗

xUch .) Let Kd

denote the probability that starting from state |Φd〉, both measurements Pch and
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Pch′ succeed. Let c := #Cx. Then we have that Pr[Succ : Game 7] =
∑

d pdKd

and

Kd =
∑

ch,ch′∈Cx

ch �=ch′

1
c2
‖(P∗

xUch′)†Pch′(P∗
xUch′)(P∗

xUch)†Pch(P∗
xUch)|Φd〉‖2

=
∑

ch,ch′∈Cx

ch �=ch′

1
c2
‖P ∗

ch′P ∗
ch |Φd〉‖2

where P ∗
ch := (P∗

xUch)†Pch(P∗
xUch). Since Pch is an orthogonal projector and

P∗
xUch is unitary, P ∗

ch is an orthogonal projector. Let ϕ(v) := v(v2 − 1
c ) for

v ∈ [ 1√
c
, 1] and ϕ(v) := 0 for v ∈ [0, 1√

c
]. Then, by Lemma 7, Kd ≥ ϕ(Vd) for

Vd :=
∑

ch∈Cx

1
c‖P ∗

ch |Φd〉‖2.
Furthermore, by construction of the honest verifier V, we have that

PrV =
∑

d

pd
∑

ch∈Cx

1
c‖PchP∗

xUch |Φd〉‖2

(∗)=
∑

d

pd
∑

ch∈Cx

1
c‖(P∗

xUch)†Pch (P∗
xUch)|Φd〉‖2 =

∑

d

pdVd

where (∗) uses that (P∗
xUch)† is unitary. Finally, we have

PrK = Pr[Succ : Game 1] ≥ Pr[Succ : Game 7]

=
∑

d

pdKd ≥
∑

d

pdϕ(Vd)
(∗)≥ ϕ(PrV).

Here (∗) uses Jensen’s inequality [13] and the fact that ϕ is convex on [0, 1]. As
discussed in the beginning of the proof, PrK ≥ ϕ(PrV) = PrV · (Pr2V − 1

c ) for
PrV ≥ 1√

c
implies that (P,V) is a QPoK with knowledge error 1/

√
#Cx.

4 QPoKs for All Languages in NP

In the preceding section, we have seen that complete proof systems with strict
and special soundness are QPoKs. The question that remains to be asked is: do
such proof systems, with the additional property of being zero-knowledge, exist
for interesting languages? In this section, we will show that for any language
in NP (more precisely, for any NP-relation), there is a zero-knowledge QPoK.
(Assuming the existence of quantum 1-1 one-way functions.) Here and in the
following, by zero-knowledge we mean quantum computational zero-knowledge.

The starting point for our construction will be the Blum’s zero-knowledge
PoK for Hamiltonian cycles [4]. In this Σ-protocol, the prover’s commits to the
vertices of a graph using a perfectly binding commitment scheme. In the prover’s
response, some of these commitments are opened. That is, the response contains
the opening information for some of the commitments. The problem is that
standard definitions of commitment schemes do not guarantee that the opening
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information is unique; only the actual content of the commitment has to be deter-
mined by the commitment. This means that the prover’s response is not unique.
Thus, with a standard commitment scheme we do not get strict soundness. In-
stead we need a commitment scheme such that the sender of the commitment
scheme is committed not only to the actual content of the commitment, but also
to the opening information.

Definition 9 (Strict binding). A commitment scheme COM is a determinis-
tic polynomial-time function taking two arguments a, y, the opening information
a and the message y. We say COM is strictly binding if for all a, y, a′, y′ with
(a, y) �= (a′, y′), we have that COM(a, y) �= COM(a′, y′).

Furthermore, in order to get the zero-knowledge property, we will need that
our commitment schemes are quantum computationally concealing. We refer to
[19] for a precise definition of this property. In [2], an unconditionally binding,
quantum computationally concealing commitment scheme based on quantum 1-1
one-way function is presented.5 Unfortunately, to the best of our knowledge, no
candidates for quantum 1-1 functions are known. Their definitions differ some-
what from those of [19], but as mentioned in [19], their proof carries over to
the definitions from [19]. Furthermore, in the scheme from [2], the commitment
contains the image of the opening information under a quantum 1-1 one-way
function. Thus the strict binding property is trivially fulfilled. Thus strictly bind-
ing, quantum computationally concealing commitment schemes exist under the
assumption that quantum 1-1 one-way functions exist.

Given such a commitment scheme COM, we can construct the proof system
(P,V). This proof system differs from the original proof system for Hamiltonian
cycles [4] only in the following aspect: The prover does not only commit to
the vertices in the graph π(x), but also to the permutation π and the cycle H .
Without these additional commitments, we would not get strict soundness; there
might be several permutations leading to the same graph, or the graph might
contain several Hamiltonian cycles. The full description of the protocol is given
in Figure 1.

Theorem 10. Let (x,w) ∈ R iff w is a Hamiltonian cycle of the graph x. As-
sume that COM is a strictly binding, quantum computationally concealing com-
mitment scheme. Then the proof system (P,V) is a zero-knowledge QPoK for R
with knowledge error 1√

2
.

The zero-knowledge property is proven using the techniques from [19]. Ex-
tractability is shown by proving special and strict soundness. The strict sound-
ness follows from the fact that the prover is committed to all the information
sent in his response using a strictly binding commitment.
5 In [2], the result is stated for quantum one-way permutations f : {0, 1}n → {0, 1}n.

(To the best of our knowledge, no candidates for quantum one-way permutations
are known.) Inspection of their proof reveals, however, that the result also holds for
families of quantum 1-1 one-way functions fi : {0, 1}n → D for arbitrary domain
D and efficiently samplable indices i, assuming that given an index i, it can be
efficiently verified that fi is injective.
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Inputs: A directed graph x (the statement) with vertices W , and a Hamiltonian
cycle w in x (the witness).
Protocol:
1. P picks a random permutation π on W . Let A be the adjacency matrix of the

graph π(x). Let H := {(π(i), π(j)) : (i, j) ∈ w}. Using COM, P commits to π, H ,
and to each entry Aij of A. P sends the resulting commitments to V.

2. V picks ch ∈ {0, 1} and sends ch to P.
3. If ch = 0, P opens the commitments to π and A. If ch = 1, P opens the commit-

ments to H and to all Aij with (i, j) ∈ H .
4. If ch = 0, V checks that the commitments are opened correctly, that π is a permu-

tation, and that A is the adjacency matrix of π(x). If ch = 1, V checks that the
commitments are opened correctly, that H is a cycle, that exactly the Aij with
(i, j) ∈ H are opened, and that Aij = 1 for all (i, j) ∈ H . If all checks succeed, V
outputs 1.

Fig. 1. A QPoK (P, V) for Hamiltonian cycles

Corollary 11 (QPoKs for all languages in NP). Let R be an NP-relation.6
Then there is a zero-knowledge QPoK for R with negligible knowledge error.
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