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Abstract. We consider pseudorandom generators in which each output
bit depends on a constant number of input bits. Such generators have
appealingly simple structure: they can be described by a sparse input-
output dependency graph G and a small predicate P that is applied at
each output. Following the works of Cryan and Miltersen (MFCS ’01)
and by Mossel et al (FOCS ’03), we ask: which graphs and predicates
yield “small-bias” generators (that fool linear distinguishers)?

We identify an explicit class of degenerate predicates and prove the
following. For most graphs, all non-degenerate predicates yield small-bias
generators, f : {0, 1}n → {0, 1}m, with output length m = n1+ε for some
constant ε > 0. Conversely, we show that for most graphs, degenerate
predicates are not secure against linear distinguishers, even when the
output length is linear m = n + Ω(n). Taken together, these results
expose a dichotomy: every predicate is either very hard or very easy, in
the sense that it either yields a small-bias generator for almost all graphs
or fails to do so for almost all graphs.

As a secondary contribution, we give evidence in support of the view
that small bias is a good measure of pseudorandomness for local func-
tions with large stretch. We do so by demonstrating that resilience to
linear distinguishers implies resilience to a larger class of attacks for such
functions.
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1 Introduction

In recent years there has been interest in the study of cryptographic primitives
that are implemented by local functions, that is functions in which each output
bit depends on a constant number of input bits. This study has been in large
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part spurred by the discovery that, under widely accepted cryptographic as-
sumptions, local functions can achieve rich forms of cryptographic functionality,
ranging from one-wayness and pseudorandom generation to semantic security
and existential unforgeability [6].

Local functions have simple structure: they can be described by a sparse
input-output dependency graph and a sequence of small predicates applied at
each output. Besides allowing efficient parallel evaluation, this simple structure
makes local functions amenable to analysis, and gives hope for understanding
their computational properties. Given that the cryptographic functionalities that
local functions can achieve are quite complex, it is very interesting and appeal-
ing to try to understand which properties of local functions (namely, graphs and
predicates) are necessary and sufficient for them to implement such functionali-
ties.

In this work we focus on the study of local pseudorandom generators with large
stretch. We give evidence that for most graphs, all but a handful of “degenerate”
predicate types yield pseudorandom generators with output length m = n1+ε for
some constant ε > 0. Conversely, we show that for almost all graphs, degenerate
predicates are not secure even against linear distinguishers. Taken together, these
results expose a dichotomy: every predicate is either very hard or very easy, in
the sense that it either yields a small-bias generator for almost all graphs or fails
to do so for almost all graphs.

1.1 Easy, Sometimes Hard, and Almost Always Hard Predicates

Recall that a pseudorandomgenerator is a length-increasing function f : {0, 1}n →
{0, 1}m such that no efficiently computable test can distinguish with noticeable
advantage between the value f(x) and a randomly chosen y ∈ {0, 1}m, when
x ∈ {0, 1}n is chosen at random. The additive stretch of f is defined to be the
difference between its output length m and its input length n.

In the context of constructing local pseudorandom generators of superlinear
stretch, we may assume without loss of generality that all outputs apply the same
predicate P : {0, 1}d → {0, 1}.1 We are interested in understanding which d-local
functions fG,P : {0, 1}n → {0, 1}m, described by a graph G and a predicate P ,
are pseudorandom generators. For a predicate P , we will say

– P is easy if fG,P is not pseudorandom for every G (against a given class of
adversaries),

– P is sometimes hard if fG,P is pseudorandom for some G, and
– P is almost always hard if fG,P is pseudorandom for a 1 − o(1) fraction of

graphs G.2

1 If this is not the case, project on the outputs labeled by the most frequent predicate.

This decreases the stretch only by a constant factor as there are only 22
d

different
predicates.

2 One cannot hope for always hard predicates, for which fG,P is pseudorandom for
all graphs, as there are simple examples of “easy” graphs G for which fG,P fails to
be pseudorandom regardless of P .
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Cryan and Miltersen [17] and Mossel et al. [27] identified several classes of pred-
icates that are easy for polynomial time algorithms when the stretch is a suffi-
ciently large linear function. These include four types of predicates:

1. linear predicates, i.e., P (w) = b+Σiwi (mod 2) where b ∈ {0, 1},
2. unbalanced predicates, i.e., Prw[P (w) = 1] �= 1

2 ,
3. predicates that are biased towards one input, i.e., Prw[P (w) = wi] �= 1

2 ,
4. predicates that are biased towards a pair of inputs, i.e., Prw[P (w) = wi+wj

(mod 2)] �= 1
2 .

We call such predicates degenerate. It turns out that all predicates of locality at
most 4 are degenerate.

On the positive side, Mossel et al. [27] also gave examples of 5-bit predicates
that are sometimes (exponentially) hard against linear distinguishers. Apple-
baum et al. [5] show that when the locality is sufficiently large, almost always
hard predicates against linear distinguishers exist.

Pseudorandomness against linear distinguishers means that there is no subset
of output bits whose XOR has noticeable bias. This notion, due to Naor and
Naor [28], was advocated in the context of local pseudorandom generators by
Cryan and Miltersen [17]. A bit more formally, for a function f : {0, 1}n →
{0, 1}m, we let

bias(f) = max
L
|Pr[L(f(Un)) = 1]− Pr[L(Um) = 1]| ,

where the maximum is taken over all affine functions L : Fm
2 → F2. A small-bias

generator is a function f for which bias(f) is small (preferrably negligible) as a
function of n.

1.2 Our Results

We fully classify predicates by showing that all predicates that are not known
to be easy, are almost always hard.

Theorem 1 (Non-degenerate predicates are hard). Let P : {0, 1}d →
{0, 1} be any non-degenerate predicate. Then, for every ε < 1/4 and m = n1+ε:

Pr
G
[bias(fG,P ) ≤ δ(n)] > 1− o(1),

where δ(n) = exp(−Ω(n1/4−ε)) and G is randomly chosen from all d-regular hy-
pergraphs with n nodes (representing the inputs) and m hyperedges (representing
the outputs).

The theorem shows that, even when locality is large, the only easy predicates
are degenerate ones, and there are no other “sources of easiness” other than ones
that already appear in predicates of locality 4 or less.

Conversely, we show that degenerate predicates are easy for linear distinguish-
ers (as opposed to general polynomial-time distinguishers).
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Theorem 2 (Linear tests break degenerate predicates). For every m =
n+Ω(n), and every degenerate predicate P : {0, 1}d → {0, 1}

Pr
G
[bias(fG,P ) > Ω(1/ log(n))] > 1− o(1),

where G is randomly chosen from all d-regular hypergraphs with n nodes and m
hyperedges.

The proof of Theorem 2 mainly deals with degenerate predicates that are cor-
related with a pair of their inputs; In this case, we show that the non-linear
distinguisher which was previously used in [27] and was based on a semi-definite
program for MAX-2-LIN [21] can be replaced with a simple linear distinguisher.
(The proof for other degenerate predicates follows from previous works).

Taken together, Theorems 1 and 2 expose a dichotomy: a predicate can be
either easy (fail for almost all graphs) or hard (succeeds for almost all graphs).
One possible interpretation of our results is that, from a designer point of view,
a strong emphasis should be put on the choice of the predicate, while the choice
of the input-output dependency graph may be less crucial (since if the predicate
is appropriately chosen then most graphs yield a small-bias generator). In some
sense, this means that constructions of local pseudorandom generators with large
stretch are robust: as long as the graph G is “typical,” any non-degenerate
predicate can be used (our proof classifies explicitly what is a typical family of
graphs and in addition shows that even a mixture of different non-degenerate
predicates would work).

1.3 Why Polynomial Stretch?

While Applebaum et al. [6] give strong evidence that local pseudorandom gen-
erators exist, the stretch their construction achieves is only sublinear, that is
m = n + n1−ε. (This stretch can be achieved even for 4-local predicates which
are necessarily degenerate.) In contrast, the regime of large (polynomial or even
linear) stretch is not as well understood, and the only known constructions are
based on non-standard assumptions. (See Section 1.5.)

Local generators of large stretch have several applications in cryptography and
complexity, such as secure computation with constant overhead [24] and strong
(average-case) inapproximability results for constraint-satisfaction problems [7].
These results are not known to follow from other (natural) assumptions. It should
be mentioned that it is possible to convert small polynomial stretch of m =
n1+ε into arbitrary (fixed) polynomial stretch of m = nc at the expense of
constant blow-up in the locality. (This follows from standard techniques, see [4]
for details). Hence, it suffices to focus on the case of m = n1+ε for some fixed ε.

The proof of Theorem 1 yields exponentially small bias when m = O(n), and
sub-exponential bias for m = n1+ε where ε < 1/4. We do not know whether this
is tight, but it can be shown that some non-degenerate predicates become easy
(to break on a random graph) when the output length is m = n2 or even m =
n3/2. In general, it seems that when m grows the number of hard predicates of
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locality d decreases, till the point m� where all predicates become easy. (By [27],
m� ≤ nd/2.) It will be interesting to obtain a classification for larger output
lengths, and to find out whether a similar dichotomy happens there as well.

1.4 Why Small-Bias?

Small-bias generators are a strict relaxation of cryptographic pseudorandom gen-
erators in that the tests L : Fm

2 → F2 are restricted to be affine (as opposed to
arbitrary efficiently computable functions). Even though affine functions are,
in general, fairly weak distinguishers, handling them is a necessary first step to-
wards achieving cryptographic pseudorandomness. In particular, affine functions
are used extensively in cryptanalysis and security against them already rules out
an extensive class of attacks.

For local pseudorandom generators with linear stretch, Cryan and Miltersen
conjectured that affine distinguishers are as powerful as polynomial-time distin-
guishers [17]. In Section 5, we attempt to support this view by showing that
resilience against small-bias, by itself, leads to robustness against other classes
of attacks.

Small-bias generators are also motivated by their own right being used as build-
ing blocks in constructions that give stronger forms of pseudorandomness. This in-
cludes constructions of local cryptographic pseudorandom generators [7,4], as well
as pseudorandom generators that fool low-degree polynomials [14], small-space
computations [23], and read-once formulas[11].

1.5 Related Work

The function fG,P was introduced by Goldreich [22] who conjectured that when
m = n, one-wayness should hold for a random graph and a random predicate.
This view is supported by the results of [22,29,3,16,26,20,25] who show that a
large class of algorithms (including ones that capture DPLL-based heuristics)
fail to invert fG,P in polynomial-time.

At the linear regime, i.e., when m = n+Ω(n), it is shown in [12] that if the
predicate is degenerate the function fG,P can be inverted in polynomial-time.
(This strengthens the results of [17,27] who only give distinguishers.) Recently,
a strong self-amplification theorem was proved in [13] showing that for m =
n + Ωd(n) if fG,P is hard-to-invert over tiny (sub-exponential small) fraction
of the inputs with respect to sub-exponential time algorithm, then the same
function is actually hard-to-invert over almost all inputs (with respect to sub-
exponential time algorithms).

Pseudorandom generators with sub-linear stretch can be implemented by 4-
local functions based on standard intractability assumptions (e.g., hardness of
factoring, discrete-log, or lattice problems) [6], or even by 3-local functions based
on the intractability of decoding random linear codes [8]. However, it is unknown
how to extend this result to polynomial or even linear stretch since all known
stretch amplification procedures introduce a large (polynomial) overhead in the
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locality. In fact, for the special case of 4-local functions (in which each out-
put depends on at most 4 input bits), there is a provable separation: Although
such functions can compute sub-linear pseudorandom generators [6] they cannot
achieve polynomial-stretch [17,27].

Alekhnovich [1] conjectured that for m = n + Θ(n), the function fG,P is
pseudorandom for a random graph and when P is a randomized predicate which
computes z1 ⊕ z2 ⊕ z3 and with some small probability p < 1

2 flips the result.
Although this construction does not lead directly to a local function (due to the
use of noise), it was shown in [7] that it can be derandomized and transformed
into a local construction with linear stretch. (The restriction to linear stretch
holds even if one strengthen Alekhnovich’s assumption to m = poly(n).)

More recently, [4] showed that the pseudorandomness of fG,P with respect
to a random graph and output length m, can be reduced to the one-wayness of
fH,P with respect to a random graphH and related output length m′ (for certain
settings of the stretch and security parameters). The current paper complements
this result as it provides a criteria for choosing the predicate P .

2 Techniques and Ideas

In this section we give an overview of the proof of Theorem 1. Let f : {0, 1}n →
{0, 1}m be a d-local function where each output bit is computed by applying some
d-local predicate P : {0, 1}d → {0, 1} to a (ordered) subset of the inputs S ⊆ [n].
Any such function can be described by a list of m d-tuples G = (S1, . . . , Sm) and
the predicate P . Under this convention, we let fG,P : {0, 1}n → {0, 1}m denote
the corresponding d-local function.

We view G as a d-regular hypergraph with n nodes (representing inputs) and
m hyperedges (representing outputs) each of size d. (We refer to such a graph
as an (m,n, d)-graph.) Since we are mostly interested in polynomial stretch we
think of m as n1+ε for some fixed ε > 0, e.g., ε = 0.1.

We would like to show that for almost all (m,n, d)-graphsG, the function fG,P

fools all linear tests L, where P is non-degenerate. Following [27], we distinguish
between light linear tests which depend on less than k = Ω(n1−2ε) outputs, and
heavy tests which depend on more than k outputs.

From our definition of non-degenerate predicates, it immediately follows that
such predicates P satisfy two forms of “non-linearity”: (1) (2-resilience) P is
uncorrelated with any linear function in two or fewer inputs; and (2) (algebraic
nonlinearity) P is not linear as a polynomial over F2. Both properties are classical
design criteria which are widely used in practical cryptanalysis (cf. [30]). We use
the fist property to fool light linear tests (tests that depend on a small number
of outputs) and the second one to fool heavy linear tests (tests that depend on
a large number of outputs).

2.1 Fooling Light Tests

Our starting point is a result of [27] which shows that if the predicate is the
parity predicate ⊕ and the graph is a good expander, the output of fG,⊕(Un)
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perfectly fools all light linear tests. In terms of expectation, this can be written
as

E
x
[L(fG,⊕(x)) = 0],

where we think of {0, 1} as {±1}, and let L : {±1}m → {±1} be a light linear
test. Our key insight is that the case of a general predicate P can be reduced to
the case of linear predicates.

More precisely, let ξ denote the outcome of the test L(fG,P (x)). Then, by
looking at the Fourier expansion of the predicate P , we can write ξ as a con-
vex combination over the reals of exponentially many summands of the form
ξi = L(fGi,⊕(x)) where the Gi’s are subgraphs of G in the sense that the j-th
hyperedge of Gi is a subset of the j-th hyperedge of G. (The exact structure of
Gi is determined by the Fourier representation of P .) When x is uniformly cho-
sen, the random variable ξ is a weighted sum (over the reals) of many dependent
random variables ξi’s. However, if all the subgraphs are good expanders, the
expectation of each summand ξi is zero, and so, by the linearity of expectation,
the expectation of ξ is also zero.

It turns out that when the predicate is 2-resilient the size of each hyperedge
of Gi is at least 3, and therefore if every 3-uniform subgraph of G is a good
expander fG,P (perfectly) passes all light linear tests. Fortunately, it turns out
that most graphs G satisfy this property. We emphasize that the argument cru-
cially relies on the perfect bias of XOR predicates, as there are exponentially
many summands. (See Section 3.1 for full details.)

2.2 Fooling Heavy Tests

Consider a heavy test which involves t ≥ k outputs. Switching back to zero-one
notation, assume that the test outputs the value ξ = P (xS1) + . . . + P (xSt)

(mod 2) where x
R← Un. Our goal is to show that ξ is close to a fair coin. For

this it suffices to show that the sum ξ can be rewritten as the sum (over F2) of
� random variables

ξ = ξ1 + . . .+ ξ� (mod 2), (1)

where each random variable ξi is an independent non-constant coin, i.e., Pr[ξi =
1] ∈ [2−d, 1− 2−d]. In this case, the statistical distance between ξ and a fair coin
is exponentially small (in �), and we are done as long as � is large enough.

In order to partition ξ, let us look at the hyperedges S1, . . . , St which are
involved in the test. As a first attempt, let us collect � distinct “independent”
hyperedges that do not share a single common variable. Renaming the edges, we
can write ξ as

(P (xT1 ) + . . .+ P (xT�
)) +

(
P (xS�+1

) + . . .+ P (xSt)
)

(mod 2),

where the first � random variables are indeed statistically independent. However,
the last t− � hyperedges violate statistical-independence as they may be corre-
lated with more than one of the first � hyperdges. This is the case, for example,
if Sj has a non-empty intersection with both Ti and Tr.
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This problem is fixed by collecting � “strongly-independent” hyperedges T1,
. . . , T� for which every Sj intersects at most a single Ti. (Such a large collection
is likely to exist since t is sufficiently large.) In this case, for any fixing of the
variables outside the Ti’s, the random variable ξ can be partitioned into � inde-
pendent random variables of the form ξi = P (xTi) +

∑
P (xSj ), where the sum

ranges over the Sj ’s which intersects Ti. This property (which is a relaxation of
Eq. 1) still suffices to achieve our goal, as long as the ξi’s are non-constant.

To prove the latter, we rely on the fact that P has algebraic degree 2. Specif-
ically, let us assume that Si and Tj have no more than a single common input
node. (This condition can be typically met at the expense of throwing a small
number of the Ti’s.) In this case, the random variable ξi = P (xTi) +

∑
P (xSj )

cannot be constant, as the first summand is a degree 2 polynomial in xTi and
each of the last summands contain at most a single variable from Ti. Hence, ξi
is a non-trivial polynomial whose degree is lower-bounded by 2. This completes
the argument. Interestingly, non-linearity is used only to prove that the ξi’s are
non-constant. Indeed, linear predicates fail exactly for large tests for which the
ξi’s become fixed due to local cancelations. (See Section 3.2 for details.)

2.3 Proving Theorem 2

When P is a degenerate predicate and G is random, the existence of a linear
distinguisher follows by standard arguments. The cases of linear or biased P
are trivial, and the case of bias towards one input was analyzed by Cryan and
Miltersen. When P is biased towards a pair of inputs, say the first two, we think
of P as an “approximation” of the parity x1 ⊕ x2 of its first two inputs. If P
happened to be the predicate x1 ⊕ x2, one could find a short “cycle” of output
bits that, when XORed together, causes the corresponding input bits to cancel
out. In general, as long as the outputs along the cycle do not share any additional
input bits, the output of the test will be biased, with bias exponential in the
length of the cycle. In Section 4 we show that a random G is likely to have such
short cycles, and so the corresponding linear test will be biased.

3 Non-degenerate Predicates Are Hard

In this section we prove Theorem 1. We follow the outline described in Section 2
and handle light linear tests and heavy linear tests separately.

3.1 Fooling Light Tests

In this section we show that if the predicate P is 2-resilient (see definition below)
and the graph G is a good expander, the function fG,P is k-wise independent,
and in particular fools linear tests of weight smaller than k. We will need the
following definitions.
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Super expansion. Let G be an (m,n, d)-graph. A graph H is (k, a) subgraph of
G if it can be constructed by choosing � ≤ k distinct hyperedges of G and for
each selected hyperedge Sj removing some of the nodes while leaving bj ≥ a
nodes. We say that G is (k, a) super-expander if the hyperedges T = T1, . . . , T�

of every (k, a)-subgraph H of G touch more than b�/2 nodes where b =
∑
|Tj | /�

is the average cardinality of the hyperedges of H . We say that G is (k, a)-linear
if the hyperedges of every (k, a)-subgraph of G are linearly independent viewed
as vectors in F

n
2 .

Fourier coefficients. For a set T ⊆ [d], let χT : {±1}d → {±1} be the Parity
function defined by (x1, . . . , xd) 
→ (−1)

∑
t∈T xt . It is well known that every

predicate P : {±1}d → {±1} can be expressed as a convex combination of
parities, i.e., P (x) =

∑
T⊆[d] αTχT (x) where αT ∈ R. The predicate is a-resilient

if αT is zero for every set T of size smaller or equal to a.

The following lemma shows that resiliency combined with (k, a)-linearity leads
to k-wise independence.

Lemma 1. If P is (a−1)-resilient and the (m,n, d)-graph G is (k, a)-linear then
fG,P is k-wise independent generator, i.e., the m r.v.’s (y1, . . . , ym) = fG,P (Un)
are k-wise independent.

Proof. Fix an � ≤ k outputs of fG,P , and let S1, . . . , S� be the corresponding
hyperedges. We should show that Ex[

∏
i P (xSi)] = 0. For every x ∈ {0, 1}n we

have:

�∏

i=1

P (xSi) =

�∏

i=1

∑

T⊆[d],|T |≥a

αTχT (xSi) =
∑

T=(T1,...,T�),|Ti|≥a

∏

i

αTiχSi,Ti
(x),

where Si,{K1,...,Kb} denotes the set {Si,K1 , . . . , Si,Kb
} and Si,j denotes the j-th

entry of the tuple Si. Hence, by the linearity of expectation, it suffices to show
that

E
x

[
∏

i

χSi,Ti
(x)

]

= 0,

for every (T1, . . . , T�) where Ti ⊆ [d], |Ti| ≥ a. (Recall that the αTi ’s are constants
and thus can be ignored.) Observe that

∏
i χSi,Ti

(x) is just a parity function,
which, by (k, a)-linearity, is non-constant. Since every non-constant parity func-
tion is balanced (guaranteed to have zero expectation value), the claim follows.

��
Next, we show that (k, a)-linearity is implied by super-expansion, and that a
random graph is likely to be super-expanding.

Lemma 2. Let d ≥ 3 be a constant. Let Δ ≤
√
n/ logn and 3 ≤ a ≤ d.

1. Every (Δn, n, d)-graph which is (k, a)-super-expander is also (k, a)-linear.
2. A random (Δn, n, d)-graph is whp an (αn/Δ2, a)-super-expander where α is

a constant that depends on a, d.3

3 With high probability (whp) means with probability 1− o(1) as n gets large.
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Proof. The proof of the first item parallels the standard relation between lossless-
expansion and unique/odd-expansion. Let G be a (k, a)-super-expander. Observe
that if G is not (k, a)-linear then there must be (k, a)-subgraph H whose edges
sum-up to zero (over F

n
2 ). We argue that G cannot have such a subgraph. In-

deed, by counting edges, in each (k, a)-subgraph H the average degree of the
participating nodes is smaller than 2, and so there exists at least one node which
participates in a single hyperedge. Hence, the sum of the hyperedges (over Fn

2 )
is non-zero.

To prove the second item, we calculate the probability that a random (Δn, n, d)-
graph fails to be (k, a)-super-expander. First we bound the probability that there
exists a subgraph H with � hyperedges and average degree b ≥ a that violates
expansion. This probability is bounded by

(
Δn

�

)
· 2d� ·

(
n

b�/2

)
·
(
b�

2n

)b�

<

(
eΔn

�
· 2d ·

(
2en

b�

)b/2 (
b�

2n

)b
)�

=

(

e2d
(
be

2

)b/2

Δ

(
�

n

)b/2−1
)�

≤
(

cd,aΔ

(
�

n

)a/2−1
)�

where cd,a is a constant which depends on d and a, and the second inequal-
ity is due to a ≤ b ≤ d. Let us denote the above quantity by p�,n,Δ,a,d. By
a union-bound G fails to be (k, a)-super-expander with probability at most∑

2≤�≤k p�,n,Δ,a,d.

Let us fix a ≥ 3, and assume that Δ ≤ n
1
2 / logn and k = αn/Δ2 where

α = 1/(2cd,a)
2 is a constant. Indeed, in this case

p� ≤
(

cd,a
Δ
√
�√

n

)�

≤
(

cd,a

√
�

logn

)�

.

Observe that for � = 1, 2, 3, the quantity p� is o(1), for 4 ≤ � ≤ 10 logn the
quantity p� ≤ O(1/ log2 n) and for 10 logn ≤ � ≤ αn/Δ2 the quantity p� is at
most O(1/n10). It follows that each of these three intervals contributes o(1) to
the overall failure probability. ��

By combining the lemmas, we obtain the following corollary.

Corollary 1. If P is 2-resilient and m = Δn for constant Δ, then whp over
the choice of an (m,n, d)-graph G, the function fG,P is k-wise independent for
k = Ω(n). If Δ = nε, the above holds with k = Ω(n1−2ε).

By taking ε < 1/4, 2-resiliency suffices for ω(
√
n)-wise independence whp.
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3.2 Fooling Heavy Tests

In this section we show that if the predicate P is non-linear and the graph G has
large sets of “independent” hyperedges, the function fG,P fools linear tests of
weight larger than k. Formally, we will need the following notion of independence.

(k, �, b)-independence. Let S be a collection of k distinct hyperedges. A subset
T ⊆ S of � distinct hyperedges is an (�, b)-independent set of S if the following
two properties hold: (1) Every pair of hyperedges (T, T ′) ∈ T are of distance at
least 2, namely, for every pair Ti �= Tj ∈ T and S ∈ S,

Ti ∩ S = ∅ or Tj ∩ S = ∅;

and (2) For every Ti ∈ T and S �= Ti in S we have

|Ti ∩ S| < b.

A graph is (k, �, b)-independent if every set of hyperedges of size larger than k
has an (�, b)-independent set.

Our key lemma shows that good independence and large algebraic degree
guarantee resistance against heavy linear tests.

Lemma 3. If G is (k, �, b)-independent and P has an algebraic degree of at least

b, then every linear test of size at least k has bias of at most 1
2e

−2�/2d .

Proof. Fix some test S = (S1, . . . , Sk) of size k, and let T = (T1, . . . , T�) be an
(�, b)-independence set of S. Fix an arbitrary assignment σ for all the input vari-
ables which do not participate in any of the Ti’s and choose the other variables
uniformly at random. In this case, we can partition the output of the test y to
� summands over � disjoint blocks of variables, namely

y =
∑

i∈[k]

P (xSi) =
∑

i∈[�]

zi(xTi),

where the sum is over F2 and

zi(xTi ) = P (xTi) +
∑

S:Ti 	=S,S∩Ti 	=∅
P (xS∩Ti , σS\Ti

).

We need two observations: (1) the random variables zi’s are statistically inde-
pendent (as each of them depends on a disjoint block of inputs); and (2) the
r.v. zi is non-constant and, in fact, it takes each of the two possible values with
probability at least 2−d. To prove the latter fact it suffices to show that zi(x) is
a non-zero polynomial (over F2) of degree at most d. Indeed, recall that zi is the
sum of the polynomial P (xTi) whose degree is in [b, d], and polynomials of the
form P (xS∩Ti , σS\Ti

) whose degree is smaller than b (as |S ∩ Ti| < b). Therefore
the degree of zi is in [b, d].

To conclude the proof, we note that the parity of � independent coins, each
with expectation in (δ, 1− δ), has bias of at most 1

2 (1− 2δ)�. (See, e.g., [27]). ��
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We want to show that a random graph is likely to be (k, �, 2)-independent.

Lemma 4. For every positive ε and δ. A random (n1+ε, n, d)-graph is, whp,
(n2ε+δ, nδ/2, 2) independent.

Proof. We will need the following claim. Call a hyperedge S b-intersecting if
there exists another hyperedge S′ in the graph for which |S′ ∩ S| ≥ b. We first
bound the number of b-intersecting hyperedges.

Claim. Let b be a constant. Then, in a random (m = n1+ε, n, d)-graph, whp,
the number of b-intersecting hyperedges is at most n2(1+ε)−b logn.

Hence, whp, at most O(n2ε logn) of the hyperedges are 2-intersecting, and for
ε < 1/4 there are at most o(

√
n) such hyperedges.

Proof (of Claim). Let X be the random variable which counts the number of
b-intersecting hyperedges. First, we bound the expectation of X by m2d2b/nb =
d2b · n2(1+ε)−b. To prove this, it suffices to bound the expected number of pairs
Si, Sj which b-intersects. Each such pair b-intersects with probability at most
d2b/nb, and so, by linearity of expectation, the expected number of of intersect-
ing pairs is at most m2d2b/nb. Now, by applying Markov’s inequality, we have
that Pr[X > logn

d2b E[X ]] < d2b/ logn = o(1), and the claim follows. (A stronger
concentration can be obtained via a martingale argument.) ��
We can now prove Lemma 4. Assume, without loss of generality, that ε > 1
(as if the claim holds for some value of ε it also holds for smaller values). First
observe that, whp, all the input nodes in G have degree at most 2nε. As by
a multiplicative Chernoff bound, the probability that a single node has larger
degree is exponentially small in nε. We condition on this event and the event
that there are no more than r = n2ε logn 2-intersecting edges. Fix a set of
k = n2ε+δ hyperedges. We extract an (�, 2)-independent set by throwing away
the 2-expanding edges, and then by iteratively inserting an hyperedge T into the
independent set and removing all the hyperedges S that share with T a common
node, and the hyperedges which share a node with an edge, that shares a node
with T . At the beginning we removed at most r edges, and in each iteration
we remove at most (d2nε)2 edges, hence there are at least � ≥ k−r

4d2n2ε > nδ/2

hyperedges in the independent set. ��
Combining the lemmas together we get:

Corollary 2. Fix some positive ε and δ. If P has an algebraic degree of at
least 2 and m = n1+ε, then, whp over the choice of a random (m,n, d)-graph,
the function fG,P has at most sub-exponential bias (i.e., exp(−Ω(nδ))) against
linear tests of size at least n2ε+2δ.

By combining Corollaries 1 and 2, we obtain Theorem 1.

4 Linear Tests Break Degenerate Predicates

In this section we prove Theorem 2; That is, we show that the assumptions that
P is non-linear and 2-resilient are necessary for P to be a hard predicate. Clearly
the assumption that P is non-linear is necessary even when m = n+ 1.
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When m ≥ Kn for a sufficiently large constant K (depending on d), it follows
from work of Cryan and Miltersen [17] that if P is not 1-resilient, then for
any f : {±1}n → {±1}m, the output of f is distinguishable from uniform with
constant advantage by some linear test. When P is 1-resilient but not 2-resilient,
Mossel, Shpilka, and Trevisan show that f is distinguishable from uniform by a
polynomial-time algorithm, but not by one that implements a linear test.

Here we show that if P is not 2-resilient, then the output of fG,P is distin-
guishable by linear tests with non-negligible advantage with high probability
over the choice of G.

Claim. Assume P is unbiased and 1-resilient but |E[P (z)z1z2]| = α > 0. Then
for every � = o(log n), with probability 1 − (2−Ω(�) + d�/n) over the choice of
G, there exists a linear test that distinguishes the output of fG,P from random
with advantage α�.

Proof. Let H be the directed graph with vertices {1, . . . , n} where every hyper-
edge (i1, i2, . . . , id) in G induces the edge (i1, i2) in H .

Let � be the length of the shortest directed cycle in H and without loss of
generality assume that this cycle consists of the inputs 1, 2, . . . , � in that order.
Let zi be the name of the output that involves inputs i and i+1 for i ranging from
1 to � (where i is taken modulo �) and Si the corresponding hyperedge. With
probability at least 1−d�/n, input i does not participate in any hyperedge besides
Si and Si+1 and all other inputs participate in at most one of the hyperedges
S1, . . . , S�.

We now calculate the bias of the linear test that computes z1 ⊕ . . . ⊕ z�.
For simplicity, we will assume that d = 3; larger values of d can be handled
analogously but the notation is more cumbersome. We will denote the entries in
Si by i, i+ 1 and i′. Then the fourier expansion of zi(xSi) has the form

zi(xSi) = αxixi+1 + βxixi′ + γxi+1xi′ + δxixi+1xi′

The Fourier expansion of the expression E[z1(xS1) . . . z�(xS�
)] can be written as

a sum of 4� products of different monomials participating in the above terms.
The only monomial that does not vanish is the one containing all the α-terms,
namely

E
[∏n

i=1
αxixi+1

]
= α�.

All the other products of monomials contain at least one unique term of the
form xi′ , and this causes the expectation to vanish.

It remains to argue that with high probability � is not too large. We show
that with probability 1−O((4/K)�), H has a directed cycle of length �, as long
as � < log2K(n/4). Let X denote the number of directed cycles of length � in H .
The number of potential directed cycles of length in H is n(n−1) . . . (n−�+1) ≥
(n− �)�. Each of these occurs uniquely in H with probability

(Kn)(Kn− 1) . . . (Kn− �+ 1)
( 1

n(n− 1)

)�(
1− 1

n(n− 1)

)Kn−�

≥
(Kn− �

n2

)�

.
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Therefore E[X ] ≥ (K/4)�. The variance can be upper bounded as follows. The
number of pairs of cycles of length � that intersect in i edges is at most

(
�
i

)
n2�−i−1,

and the covariance of the indicators for these cycles is at most (K/n)2�−i. Adding
all the covariances up as i ranges from 1 to �, it follows that

Var[X ] ≤ E[X ] +

�∑

i=1

(
�

i

)
n2�−i−1

(K
n

)2�−i

≤ E[X ] +
2�K2�

n
.

By Chebyshev’s inequality,

Pr[X = 0] ≤ Var[X ]

E[X ]2
<

2

E[X ]

as long as � < log2K(n/4). ��

5 Small Bias vs. Cryptographic Security for Local
Functions

It is not difficult to come up with examples of generators that have (expo-
nentially) small bias against linear distinguishers but are not cryptographically
secure. However, we do not know of any such examples of generators that are
local and have at least linear stretch: To the best of our knowledge, all local
functions of linear stretch that are known to implement small-biased generators
could be pseudorandom generators against all polynomial-time adversaries.

Therefore it may be plausible to conjecture that if P is almost always hard
against linear adversaries, then P is almost always hard against polynomial-
time adversaries. While this conjecture cannot be proven without resolving the
existence of pseudorandom generators, we give evidence in support of it: We
show that if P is almost always hard against linear adversaries, then fG,P is not
only small-biased but (1) it is k-wise independent and (2) it cannot be inverted
by myopic backtracking algorithms.

First, we observe that for local functions the small-bias property immediately
implies k-wise independence. (This is in general false for non-local functions.)

Lemma 5. Let f : {0, 1}n → {0, 1}m be a d-local function which is 2−kd-biased.
Then it is also k-wise independent.

Proof. Assume towards a contradiction that f is not k-wise independent. Then,
there exists a set of k outputs T and a linear distinguisher L for which ε =
|Pr[L(yT ) = 1]− Pr[L(u) = 1]| > 0, where y = f(x) for a uniformly random x
and u is a uniformly random string of length k. Since f is d-local, yT is sampled
by using fewer than kd bits of randomness and therefore ε ≥ 2−kd. ��

Recall that the proof of our main theorem, Theorem 1, establishes k-wise inde-
pendence as an intermediate step (Section 3.1). However, the above lemma is
stronger in the sense that it holds for every fixed graph and every output length
including ones that are not covered by the main theorem.
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By plugging in known results about k-wise independent distributions, it im-
mediately follows that if a local function is sufficiently small-biased, then it is
pseudorandom against AC0 circuits [15], linear threshold functions over the re-
als [18], and degree-2 threshold functions over the reals [19].

Attacks on local functions, which are actively studied at the context of algo-
rithms for constraint-satisfaction problems, appear to be based mainly on “local”
heuristics (DPLL, message-passing algorithms, random-walk based algorithms)
or linearization [9]. Hence, it appears that in the context of local functions, the
small-bias property already covers all “standard” attacks. We support this intu-
ition by showing that if P is non-degenerate, then the outputs of fG,P are not
merely min-wise independent, but have a stronger property: Even after reading
an arbitrary set of t-outputs, the posterior distribution on every set of � inputs,
while not uniform, still has large min-entropy. We call this property robustness.

The notion of robustness was used by Cook et al. [16] to prove that myopic
backtracking algorithms cannot invert fG,P in polynomial time when m = n. We
now argue that for fG,P , robustness is almost always a consequence of small bias,
and conclude that fG,P cannot be inverted by myopic backtracking algorithms
even when m = n1+ε, ε < 1/4, as long as P is non-degenerate. (The analysis
of [16] also applies to some degenerate predicates.)

5.1 Robustness and Myopic Backtracking Algorithms

Robustness. Let f : {0, 1}n → {0, 1}m. Let L ⊂ [n] be a set of inputs, and
t, h ∈ [m]. We say that f is (t, L, h)-robust if for every set of outputs T ⊂ [m]
of size t and every string z ∈ {0, 1}t the following holds. Let x ∈ {0, 1}n be a
uniformly chosen string conditioned on the event f(x)T = z, i.e., the outputs
which are indexed by T equal to z. Then the random variable xL = (xi)i∈L has
min-entropy of h, namely, for every fixed w ∈ {0, 1}|L|, Pr[xL = w] ≤ 2−h. The
function is (t, �, h)-robust if it is (t, L, h)-robust for every �-size input set L.

In the full version of this work, we prove that if fG,P is k-wise independent
with respect to random graph, then it is also robust for shorter output length.

Lemma 6. Suppose that P is a predicate for which fG,P : {0, 1}n → {0, 1}m is
k-wise independent, whp over the choice of a random (m,n, d) graph G. Then,
whp over the choice of a random (m − r, n, d) graph H, the function fH,P :
{0, 1}n → {0, 1}m−r is (t, �, h)-robust, where h = min

(
�, r · (�/n)d/2, k − t

)
.

In the case of linear stretch, m = n + O(n), where k is linear as well (Corol-
lary 1), one can get (t, �, h)-robustness with linear parameters at the expense of
linear decrease in the output length (e.g., r = m/2). When the output is polyno-
mial m = n1+ε (for ε < 1/4), we get (t, �, h)-robustness for inverse-polynomial
parameters, again at the expense of a linear decrease in the output length (e.g.,
r = m/2).

Robustness is especially useful if the actual number of preimages of y =
fG,P (x) is relatively small compared to 2h. In this case, an algorithm which
attempts to guess � bits of a preimage x based on t outputs is likely to be wrong
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(obtain a partial assignment that does not correspond to any preimage of y.) We
show that in our setting of parameters (when the output length is large) most
inputs have a small number of siblings under fG,P (where G is random). The
proof of the following lemma is given in the full version.

Lemma 7. Let P be any nonconstant predicate. For every η > 0 there exists a
constant M such that when m > 2Mdn logn,

Pr
G,x

[
|{x′ | x′ is a preimage of fG,P (x)}| < M

]
> 1− η.

Myopic DPLL algorithms. We now show how the simple statistical properties
proved in the above lemmas yield lower-bounds for DPLL algorithms who attack
fG,P . The high-level argument is similar to the one used in [3,16] and it is only
sketched here. Consider the following myopic backtracking DPLL algorithm,
whose input consists of y = fG,P (x) where x is uniformly chosen. The algorithm
is allowed to read the entire graphG, but it reads the values of y in an incremental
way. Specifically, in each iteration the algorithm adaptively chooses an input
variable xi and asks to reveal r new output bits of y. Then it guesses the value
of xi based on its current state and on the output bits that were already revealed
(including the ones that were revealed in previous iterations). If the algorithm
reaches a contradiction, i.e., its partial assignment to x is consistent with some
output it backtracks.

Suppose that fG,P satisfies Lemmas 6 and 7. Since fG,P is k-wise indepen-
dent the algorithm does not backtrack in the first k/r steps (as some patrial
assignment is consistent with every value of k outputs). Since f is (r · �, �, h)-
robust and the number of siblings of a random x is at most M whp, the partial
assignment chosen by the algorithm after � < k steps is likely to be globally
inconsistent (there are 2h locally consistent assignments while there are only
M � 2h globally consistent assignments). Hence, with all but negligible proba-
bility, the algorithm will err during the first � steps, and therefore will backtrack
at some point after more than k steps. It can be shown (by standard lower-
bound on resolution [10,2]) that, for a random graph, the backtracking phase
takes super-polynomial time. (By plugging in the exact parameters the lower-
bound is exponential 2Ω(n) when m = O(n) or sub-exponential exp(nδ) when
m = n1+ε.)
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