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Abstract. In this paper we study the problem of approximately releasing the
cut function of a graph while preserving differential privacy, and give new algo-
rithms (and new analyses of existing algorithms) in both the interactive and non-
interactive settings.

Our algorithms in the interactive setting are achieved by revisiting the prob-
lem of releasing differentially private, approximate answers to a large number of
queries on a database. We show that several algorithms for this problem fall into
the same basic framework, and are based on the existence of objects which we
call iterative database construction algorithms. We give a new generic framework
in which new (efficient) IDC algorithms give rise to new (efficient) interactive
private query release mechanisms. Our modular analysis simplifies and tightens
the analysis of previous algorithms, leading to improved bounds. We then give a
new IDC algorithm (and therefore a new private, interactive query release mech-
anism) based on the Frieze/Kannan low-rank matrix decomposition. This new re-
lease mechanism gives an improvement on prior work in a range of parameters
where the size of the database is comparable to the size of the data universe (such
as releasing all cut queries on dense graphs).

We also give a non-interactive algorithm for efficiently releasing private
synthetic data for graph cuts with error O(|V |1.5). Our algorithm is based on ran-
domized response and a non-private implementation of the SDP-based, constant-
factor approximation algorithm for cut-norm due to Alon and Naor. Finally, we
give a reduction based on the IDC framework showing that an efficient, private al-
gorithm for computing sufficiently accurate rank-1 matrix approximations would
lead to an improved efficient algorithm for releasing private synthetic data for
graph cuts. We leave finding such an algorithm as our main open problem.

1 Introduction

Consider a graph representing the online communications between a set of individuals;
each vertex represents a user, and an edge between two users indicates that they have
corresponded by email. It might be useful to allow data analysts to mine this graph for
statistical information. However, the graph is also composed of sensitive information,
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and we cannot release information that reveals much about the existence of specific
edges. Thus we would like a way to analyze the structure of this graph while protect-
ing the privacy of individual edges. Specifically we would like to guarantee differential
privacy [7] (defined in Section 2), which, roughly, requires that our algorithms be ran-
domized, and induce nearly the same distribution over outcomes when given two data
sets (e.g. graphs) which differ in only a single point (e.g. an edge).

Table 1. Comparison of accuracy bounds for linear queries. The bounds in the first column are
prior to this work, the second column are what we achieve in this work, and the last column are the
new bounds instantiated for releasing all cut queries. The bounds listed here are approximate and
hide the dependence on certain parameters, such as δ and β. n denotes database size, k denotes the
total number of queries answered, and X represents the data universe. For a graph G = (V,E),
n = n2 = |E|, |X | = (|V |

2

)
, and for all cut queries, k = 22|V |. Previous efficient results do not

achieve non-trivial (≤ |E|) error, while all of the new bounds do for sufficiently dense graphs.

Previous Bounds
This Paper

General Bounds All Cut Queries

Median Mech.a [19] n2/3(log k)(log |X|)1/3
ε1/3

n1/2(log k)3/4(log |X|)1/4
ε1/2

|E|1/2|V |3/4(log |V |)1/4
ε1/2

Online MW [15] n1/2(log k)(log |X|)1/4
ε

n1/2(log k)1/2(log |X|)1/4
ε1/2

|E|1/2|V |1/2(log |V |)1/4
ε1/2

Frieze/Kannan IDC New in this paper
n
1/4
2 (log k)1/2|X|1/4

ε1/2
b |E|1/4|V |

ε1/2

K-Norm Mech.[16]
√

k
ε

(
log

(
|X|
k

))1/2
c Not in IDC Framework Not Applicable

a The bounds listed here are for linear queries. The Median Mechanism more generally works
for any set of low sensitivity queries Q that have an α-net of size Nα(Q). We improve the

bound from the solution to α = log(Nα(Q)) log2 k
ε

to the solution to α =

√
logNα(Q) log k

ε
.

b Here we use n2 = ‖D‖22, in contrast to other known IDCs, whose error is in terms of n =
‖D‖1. Note that n ≤ n2 ≤ n2.

c For k ≤ |X |/2. This is an approximate bound on average per-query error. All other algorithms
listed bound worst-case per-query error.

One natural objective is to provide private access to the cut function of this graph.
That is, to provide a privacy preserving way for a data analyst to specify any two (of
the exponentially many) subsets of individuals, and to discover (up to some error) the
number of email correspondences that have passed between these two groups. There are
two ways we might try to achieve this goal: We could give an interactive solution where
we give the analyst private oracle access to the cut function. Here the user can write
down any sequence of cut queries and the oracle will respond with private, approximate
answers. We may also try for a stronger, non-interactive solution, in which we release
a private synthetic dataset; a new, private graph that approximately preserves the cut
function of the original graph.
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The case of answering cut queries on a graph is just one instance of the more general
problem of query release for exponentially sized families of linear queries on a data set.
Although this problem has been extensively studied in the differential privacy literature,
we observe that no previously known efficient solution is suitable for the case of releas-
ing all cut queries on graphs. In the setting of cut queries on a graph, we use “efficient
solution” roughly to mean one in which each query is answered in time poly(|V |), in
the interactive setting, or one in which the whole construction runs in time poly(|V |), in
the non-interactive setting. In this paper we provide both efficient interactive and non-
interactive solutions for this problem.

We give a generic framework that converts objects we call iterative database con-
struction (IDC) algorithms into private query release mechanisms in both the interactive
and non-interactive settings. This framework generalizes the median mechanism [19],
the online multiplicative weights mechanism [15], and the offline multiplicative weights
mechanism [12, 14]. Our framework gives a simple, modular analysis of all of these
mechanisms, which lead to tighter bounds in the interactive setting than those given in
[19] and [15]. These improved bounds are crucial to our objective of giving non-trivial
approximations to all possible cut queries. We also instantiate this framework with a
new IDC algorithm for arbitrary linear queries that is based on the Frieze/Kannan low-
rank matrix decomposition [10] and is tailored to releasing cut queries. This algorithm
leads to a new online query release mechanism for linear queries that gives a better ap-
proximation in settings (such as we would encounter trying to answer all cut queries on
a dense graph) where the database size is comparable to the size of the data universe.
We summarize our bounds in Table 1.

We also give a new algorithm (building on techniques for constructing private syn-
thetic data in [2, 8]) in the non-interactive setting that efficiently generates private syn-
thetic graphs that approximately preserve the cut function. Finally, we use our IDC
framework to show that an efficient, private algorithm for privately computing good
rank-1 approximations to matrices would automatically yield efficient private algo-
rithms for releasing synthetic graphs with improved approximation guarantees.

1.1 Our Results and Techniques

Our main conceptual contribution is to define the abstraction of iterative database con-
struction (IDC) algorithms (Section 3) and to show that an efficient IDC for any class of
queries Q automatically yields an efficient private data release mechanism for Q in both
the interactive and non-interactive settings. Informally, IDCs construct a data structure
that can be used to answer all the queries in Q by iteratively improving a hypothesis data
structure. Moreover, they update the hypothesis when given a query witnessing a sig-
nificant difference between the hypothesis data structure and the underlying database.

In hindsight, this framework generalizes the median mechanism [19] and the online
multiplicative weights mechanism [15]. It also generalizes the offline multiplicative
weights mechanism [12, 14]. All of these mechanisms can be seen to use IDCs of the
sort we define in this work. (In Appendix A we show how these algorithms fall into the
IDC framework.)
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Our generalization and abstraction also allows for a simple, modular analysis of
mechanisms based on IDCs. Using this analysis, we are able to show improved bounds
on the accuracy of both the median mechanism and multiplicative weights mechanism.
These improved bounds are significant in our application of using an interactive mech-
anism to release a large number of cut queries and crucial if we want to answer all cut
queries. When answering all cut queries, the previous bounds would not guarantee er-
ror that is ≤ |E|, meaning that the error may be larger than the largest cut in the graph.
Of course, we can privately guarantee error ≤ |E| simply by releasing the answer 0 for
every cut query. Our new analysis shows that these mechanisms are capable of answer-
ing all 22|V | cut queries with error o(|E|) on sufficiently dense graphs; e.g., multiplica-
tive weights gives sublinear error for graphs with |E| = ω(|V |√log |V |).

Although it may seem unrealistic to answer all cut queries using an interactive mech-
anism, our new analysis allows us to give a best-of-both-worlds guarantee that we can
answer each query efficiently with non-trivial accuracy without ever having to “shut
off” the algorithm for answering too many queries. In practice it may be preferable to
limit the number of queries the interactive mechanism will have to answer, in order to
improve the accuracy of the responses. In this case our new bounds still offer signifi-
cant improvements in accuracy.

We also define a new IDC based on the Frieze/Kannan low-rank matrix decompo-
sition [10], which yields a private interactive mechanism for releasing linear queries.
Our new mechanism outperforms previously known techniques when the size of the
database is comparable to the size of the data universe, as is the case on a dense graph.
The error for the Frieze/Kannan IDC is smaller than that for multiplicative weights for
extremely dense graphs, where |E| = Ω(|V |2/ log |V |).

We then consider the problem of efficiently releasing private synthetic data for the
class of cut queries. We show that a technique based on randomized response efficiently
yields a private data structure (but not a synthetic database) capable of answering any
cut query on a graph with |V | vertices up to maximum error O(|V |1.5). (Note this er-
ror is independent of the density of the graph and the Frieze/Kannan and multiplicative
weights IDCs introduce smaller error for sparser graphs.) We then show how to use this
data structure to efficiently construct a synthetic database with only a small constant fac-
tor blowup in our error. Our algorithm is based on a technique for constructing synthetic
data in [2, 8]. Their observation is that, for linear queries, the set of accurate synthetic
databases is described by a (large) set of linear constraints. In the case of cut queries, we
are able to use a constant-factor approximation to the cut-norm due to Alon and Naor
[1] as the separation oracle to find a feasible solution (and thus a synthetic database) ef-
ficiently. Finally, we show how the existence of an efficient private algorithm for finding
good low-rank approximations to matrices would imply the existence of an improved al-
gorithm for privately releasing synthetic data for cut queries, using our IDC framework.

To summarize the results for cut queries: between the multiplicative weights IDC,
the Frieze/Kannan IDC, and randomized response, the best mechanism depends on |E|.
When |E| is below O(|V |2/ log |V |), the multiplicative weights IDC introduces the
least error. For |E| lying between O(|V |2/ log |V |) and O(|V |2), the Frieze/Kannan
IDC introduces the least error. Both IDC mechanisms have error increasing with |E|, fi-
nally matching the error for randomized response when |E| = Θ(|V |2). When
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answering k queries, the error for all three mechanisms depends on
√
log k, so these

thresholds are independent of the number of queries.

1.2 Related Work

Differential privacy, introduced in a series of papers [4, 6, 7] in the last decade, has
become a standard solution concept for statistical database privacy. The first mecha-
nism for simultaneously releasing the answers to exponentially large classes of statisti-
cal queries was given in [5]. They showed that the existence of small nets for a class of
queries Q automatically yields a (computationally inefficient) non-interactive, private
algorithm for releasing answers to all the queries in Q with low error. Subsequent im-
provements were given by Dwork et al. [8, 9].

Roth and Roughgarden [19] showed that large classes of queries could also be re-
leased with low error in the interactive setting, in which queries may arrive online, and
the mechanism must provide answers before knowing which queries will arrive in the
future. Subsequently, Hardt and Rothblum [15] gave improved bounds for the online
query release problem based on the multiplicative weights algorithm. In hindsight, both
of these algorithms follow the same basic framework, which is to use an IDC.

Gupta et al. [12] gave a non-interactive data release mechanism based on the multi-
plicative weights algorithm and an arbitrary agnostic learner for a class of queries. An
instantiation of this algorithm (the offline multiplicative weights algorithm) using the
generic agnostic learner of Kasiviswanathan et al. [17] (who use the exponential mech-
anism of [18]) was implemented and experimentally evaluated on the task of releasing
small conjunctions to low error on real data by Hardt, Ligett, and McSherry [14]. This
algorithm gives bounds comparable to those given in this paper, but it does not work
in the interactive setting, and is not computationally efficient for settings in which the
number of queries is exponentially larger than the database size (as is the case with
graph cuts). We note in Section 7 that this generic algorithm can also be instantiated
with any iterative database construction algorithm.

Hardt and Talwar [16] consider the setting where the number of queries is smaller
than the universe size and introduced the K-Norm mechanism. Subsequent improve-
ments were given by [3]. When the number of queries and the database size are com-
parable to the universe size (i.e. |Q| = Ω(|X |), n ≥ Ω (|X |/ log |X |)), the K-Norm
mechanism gives average error that is smaller than the worst-case error promised by the
online multiplicative weights mechanism. In this range of parameters the Frieze/Kannan
IDC and the K-Norm mechanism both improve on the online multiplicative weights,
and give roughly the same error. However, the Frieze/Kannan IDC has bounded worse-
case error, as opposed to average-case error. In general the two mechanisms are in-
comparable, as the error of the Frieze/Kannan IDC has bounded worse-case error and
applies even when |Q| > |X |, but its error has polynomial, rather than logarithmic de-
pendence on |X |.

The Frieze-Kannan low-rank approximation (or the weak regularity lemma) shows
that every matrix can be approximated by a sum of a small number of cut matrices [10,
11], and this fact has many important algorithmic applications. We also use the fact that
the proof extends to more general settings, as was noted by [20].
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2 Preliminaries

In this paper, we study datasets D that consist of collections of n elements from some
universe X . We can also write D ∈ N

|X | when it is convenient to represent D as a
histogram over X . We say that two databases D, D′ are adjacent if they differ in only
a single element. As histograms, they are adjacent if ‖D − D′‖1 ≤ 1. We will require
that our algorithms satisfy differential privacy:

Definition 1 (Differential Privacy). A randomized algorithm M : N|X | → R (for any
abstract range R) satisfies (ε, δ)-differential privacy if for all adjacent databasesD and
D′, and for all events S ⊆ R, Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ

We will generally think of ε as being a small constant, and δ as being negligibly small
– i.e. smaller than any inverse polynomial function of n.

We note that when we will discuss interactive mechanisms, we must view the output
of a mechanism as the transcript of an interaction between an adaptive adversary who
supplies questions about the database based on previous outcomes of the mechanism,
and the mechanism itself. For clarity, in this paper we will elide specifics about the
model of adaptive private composition. For a detailed treatment of this issue, see [9].

A useful distribution is the Laplace distribution.

Definition 2 (The Laplace Distribution). The Laplace Distribution with mean 0 and
scale b is the distribution with probability density function: Lap(x|b) = 1

2b exp(− |x|
b ).

We will sometimes write Lap(b) to denote the Laplace distribution with scale b, and
will sometimes abuse notation and write Lap(b) simply to denote a random variable
X ∼ Lap(b).

A fundamental result in data privacy is that perturbing low sensitivity queries with
Laplace noise preserves (ε, 0)-differential privacy.

Theorem 1 ([7]). Suppose Q : N
|X | → R

k is a function such that for all adjacent
databases D and D′, ‖Q(D) − Q(D′)‖1 ≤ 1. Then the procedure which on input D
releases Q(D)+(X1, . . . , Xk), where each Xi is an independent draw from a Lap(1/ε)
distribution, preserves (ε, 0)-differential privacy.

It will be useful to understand how privacy parameters for individual steps of an algo-
rithm compose into privacy guarantees for the entire algorithm. The following useful
theorem is due to Dwork, Rothblum, and Vadhan:

Theorem 2 ([9]). Let 0 ≤ ε ≤ 1 be a parameter. Let P,Q be probability measures
supported on a set S such that maxs∈S |log (P (s)/Q(s))| ≤ ε. Then

EP [log (P (s)/Q(s))] ≤ 2ε2.

We are interested in privately releasing accurate answers to large collections of queries.
Queries are functions Q : N|X | → R, and we denote collections of queries by Q. We
write k = |Q| to denote the cardinality of the set of queries.

A common type of queries are linear queries. A linear query Q has a representation
as a vector [0, 1]|X |, and can be evaluated on a database by taking the dot product
between the query and the histogram representation of the database: Q(D) = Q · D.
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Definition 3 (Accuracy). Let Q be a set of queries. A mechanism M : N
|X | → R

is (α, β)-accurate for Q if there exists a function Eval : Q × R → R s.t. for every
database D ∈ N

|X |, with probability at least 1− β over the coins of M , M(D) outputs
r ∈ R such that maxQ∈Q |Q(D)− Eval(Q, r)| ≤ α. We will abuse notation and write
Q(r) = Eval(Q, r).

We say that an algorithm M releases synthetic data (as is the case for our new IDC,
as well as the multiplicative weights IDC [15]) if R = N

|X | In this case, M(D) =

D̂ ∈ N
|X | and Eval(D̂, Q) = Q(D̂). We say that a synthetic data release algorithm is

efficient if it runs in time polynomial in n = ‖D‖1, the size of the data set. Note that if
n 
 |X|, efficient algorithms will have to input and output concise representations of
the dataset (i.e., as collections of items from the universe) instead of using the histogram
representation. Nevertheless, it will be convenient to think of datasets as histograms.

We say an algorithm efficiently releases k queries from a class Q in the interactive
setting if on an arbitrary, adaptively chosen stream of queries Q1, . . . , Qk, it outputs
answers a1, . . . , ak. The algorithm must output each ai after receiving query Qi but be-
fore receiving Qi+1, and is only allowed poly(n) run time per query. We are typically
interested in the case when k can be exponentially large in n. Note that as far as com-
putational efficiency is concerned, releasing synthetic data for a class of queries k is at
least as difficult as releasing queries from k in the interactive setting, since we can use
the synthetic data to answer queries interactively.

Graphs and Cuts. When we consider datasets that represent graphs G = (V,E), we
think of the database as being the edge set DG = E, and the data-universe being the
collection of all possible edges in the complete graph: |X | = (|V |

2

)
. That is, we consider

the vertex set to be common among all graphs, which differ only in their edge sets. One
example we care about is approximating the cut function of a sensitive graph G.

For any real-valued matrix A ∈ R
m×m′

, for S ⊆ [m] and T ⊆ [m′], we define
A(S, T ) :=

∑
s∈S,t∈T Ast. The cut norm of the matrix A is now defined as ‖A‖C :=

maxS⊆[m],T⊆[m′] |A(S, T )|. A graph G can be represented as its adjacency matrix
AG ∈ {0, 1}|V |×|V |. In this paper, a cut in a graph G is defined by any two subsets of
vertices S, T ⊆ V . We write the value of an S, T cut in G as G(S, T ) := AG(S, T ),
where AG is the adjacency matrix of G. Similarly, we extend the definition of cut norm
to n vertex graphs naturally by defining ‖G‖C := ‖AG‖C = maxS,T⊆V |G(S, T )| and
‖G − H‖C := ‖AG − AH‖C . The class of cut queries QCut = {QS,T : S, T ⊆ V },
where QS,T (G) = AG(S, T ). Note that cut queries are an example of a class of lin-
ear queries, because we can represent them as a vector in which QS,T [i, j] = 1 if
i ∈ S, j ∈ T and 0 otherwise, and evaluate QS,T (G) =

∑
i,j∈V QS,T [i, j] ·AG[i, j].

Note that as linear queries, we can write cut queries as the outer product of two
vectors: QS,T = χS · χT

T , where χS , χT ∈ {0, 1}|V | are the characteristic vectors of
the sets S and T respectively. Let us define a more general class of rank-1 queries on
graphs to be a subset of all linear queries: Qr1 = {Q ∈ [0, 1]|V |×|V | such that Q =
u · vT for some vectors u, v ∈ [0, 1]|V |} . Of course the set of rank-1 queries includes
the set of cut queries, and any mechanism that is accurate with respect to rank-1 queries
is also accurate with respect to cut queries.
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Proofs. Because of space constraints, many of the proofs in this paper have been omit-
ted. The interested reader can see full proofs in the full version of this paper: [13].

3 Iterative Database Constructions

In this section we define the abstraction of iterative database constructions that in-
cludes our new Frieze/Kannan construction and several existing algorithm [19, 15] as a
special case. Roughly, each of these mechanisms works by maintaining a sequence of
data structures D(1),D(2), . . . that give increasingly good approximations to the input
database D (in a sense that depends on the IDC). Moreover, these mechanisms produce
the next data structure in the sequence by considering only one query Q that distin-
guishes the real database in the sense that Q(D(t)) differs significantly from Q(D).

Syntactically, we will consider functions of the form U : RU ×Q×R → RU. The
inputs to U are a data structure in RU, which represents the current data structure D(t);
a query Q, which represents the distinguishing query, and may be restricted to a certain
set Q; and also a real number. which estimates Q(D). Formally, we define a database
update sequence , to capture the sequence of inputs to U used to generate the database
sequence D(1),D(2), . . . .

Definition 4 (Database Update Sequence). Let D ∈ N
|X | be any database and let{

(D(t), Q(t), Â(t))
}

t=1,...,C
∈ (RU × Q × R)C be a sequence of tuples. We say the

sequence is an (U,D,Q, α, C)-database update sequence if it satisfies the following
properties:

1. D(1) = D(∅, ·, ·),
2. for every t = 1, 2, . . . , C,

∣
∣Q(t)(D) −Q(t)(D(t))

∣
∣ ≥ α,

3. for every t = 1, 2, . . . , C,
∣
∣
∣Q(t)(D) − Â(t)

∣
∣
∣ < α,

4. and for every t = 1, 2, . . . , C − 1, D(t+1) = U(D(t), Q(t), Â(t)).

We note that for all of the iterative database constructions we consider, the approximate
answer Â(t) is used only to determine the sign ofQ(t)(D)−Q(t)(D(t)), which is the mo-
tivation for requiring that Â(t) have error smaller thanα. The main measure of efficiency
we’re interested in from an iterative database construction is the maximum number of
updates we need to perform before the database D(t) approximates D well with respect
to the queries in Q. To this end we define an iterative database construction as follows:

Definition 5 (Iterative Database Construction). Let U : RU ×Q×R → RU be an
update rule and let B : R → R be a function. We say U is a B(α)-iterative database
construction for query class Q if for every database D ∈ N

|X |, every (U,D,Q, α, C)-
database update sequence satisfies C ≤ B(α).

Note that, by definition, if U is a B(α)-iterative database construction, then given any
maximal (U,D,Q, α, C)-database update sequence, the final database D(C) must sat-
isfy maxQ∈Q

∣
∣Q(D)−Q(D(C))

∣
∣ ≤ α or else there would exist another query satisfy-

ing property 2 of Definition 4, and thus there would exist a (U,D,Q, α, C+1)-database
update sequence, contradicting maximality.
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4 Query Release from Iterative Database Construction

In this section we describe an interactive algorithm for releasing linear queries using an
arbitrary iterative database construction.

Algorithm 1. Online Query Release Mechanism

MU(D, ε, δ, α, β, k):
Input: A database D ∈ N

|X|, a parameter α ∈ R, parameters ε, δ, β ∈ [0, 1], and the number
of queries k ∈ N. Oracle access to U, a B = B(α)-iterative database construction for Q.
Parameters:

σ = σ(α) :=
1000

√
B(α) · log(4/δ)

ε
T = T (α) := 4σ(α) · log(2k/β).

Set D(1) := U(∅, ·, ·), C = 0.
For: t = 1, 2, . . . , k

1. Receive a query Q(t) ∈ Q and compute

Z(t) ∼ Lap(σ) A(t) = Q(t)(D) Â(t) = Q(t)(D)+Z(t) Λ(t) = Q(t)(D(t))

2. If: |Â(t) − Λ(t)| ≤ T then: output Λ(t) and set D(t+1) = D(t)

Else: output Â(t), set D(t+1) = U
(
D(t), Q(t), Â(t)

)
, and set C = C + 1.

3. If: C = B(α) then: terminate.

4.1 Privacy Analysis

Theorem 3. Algorithm 1 is (ε, δ)-differentially private.

Proof (Proof Sketch). Our privacy analysis follows the approach of [15] straightfor-
wardly. The details appear in the full version of the paper. Intuitively, we will try to
classify the answers to the queries by the amount of “information leaked about the
database.” This classification will lead to a bound on the total amount of information
leaked, and a tighter bound can be deduced using Theorem 2.

At a very high level, the argument can be thought of in two steps. The first is to argue
that the noise we add has large enough magnitude that the information leaked in the
(small number of) “update rounds” is small. This step is simple and follows from the
bound on the number of update rounds and the well-known properties of the Laplace
distribution. The second step is to argue that the location of the update rounds also leaks
little information. This second step is more difficult, and requires reasoning carefully
about rounds that are “close to update rounds.”

More specifically, though still informally we will consider three possible ranges for
the value of the noise Z(t) in each round t = 1, 2, . . . , k.. Intuitively the three cases
are as follows: 1) The noise is sufficiently small that there would never be an update,
even if the input database were exchanged with an adjacent one. Here we argue no
information is leaked. 2) The noise is sufficiently large that there would always be an
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update, even if the database were exchanged with an adjacent one. In these rounds there
is information leaked, but we also increment C, and thus there cannot be too many of
these before terminating. 3) The noise is intermediate, such that we do not do an update
and increment C, but might if we switched to an adjacent database. In principle there
may be as many as k such rounds, however it will turn out with high probability the
number of such rounds is not much bigger than B.

We then complete the proof by applying Theorem 2 to bound the expected privacy
loss over the course of all the rounds, and apply Azuma’s inequality to argue that except
with probability δ, the total privacy loss does not exceed ε.

4.2 Utility Analysis

Theorem 4. Let D ∈ N
|X | be any database. And U be a B(α)-iterative database

construction for query class Q. Then for any β, ε, δ > 0, Algorithm 1 is
(

5T (α)
4 , β

)
-

accurate for Q, as long as T (α) ∈ [4α/3, 2α].

Proof (Proof sketch). Roughly, the argument is as follows: Assume we did not add any
noise to the queries. Then we would answer each query with the exactly-correct answer
A(t) or with Λ(t) so long as Λ(t) is sufficiently close to A(t). Essentially, all we do in
the proof is show that this intuition remains correct when noise is added.

When adding noise we answer with either A(t) + Z(t) or Λ(t), so long as Λ(t) is
sufficiently close to A(t) +Z(t). It is not hard to argue that Z(t) remains small in every
round, and thus the answers in the latter case are not much less accurate than the answers
in the former case.

What remains to be shown is that the mechanism does not terminate early due to
the condition C = B. In order to do this, we show that the sequence of updates forms
a database update sequence, and thus cannot be too long if U is an efficient iterative
database construction. In order to do this, we argue that Z(t) is sufficiently small that
the condition for performing an update (|A(t)+Z(t)−Λ(t)| ≥ T ) is sufficient to ensure
that the query is a good distinguisher (|A(t) − Λ(t)| ≥ α).

In order to get the best accuracy parameters, one can just solve for the equation
α = 3T (α)/4; substituting for T (·), this is the same as solving the following equation

for α: α =
96
√

B(α) log(4/δ) log(k/β)

ε . Using this method we obtain bounds on the error
for various IDCs, which are summarized both in Table 1 and in the full version.

5 An Iterative Database Construction Based on Frieze/Kannan

In this section we describe and analyze an iterative database construction based on the
Frieze/Kannan “cut decomposition” [10]. Although the style of analysis we use was
originally applied specifically to cuts in [10], their argument generalizes to arbitrary
linear queries. To our knowledge, such a generalization was first observed in [20].

Note that the sum in Algorithm 2 denotes entrywise vector addition.

Theorem 5. Let D ∈ N
|X | be a dataset. For any α > 0, UFK

α is a B(α)-iterative

database construction for a class of linear queries Q, where B(α) =
‖D‖2

2|X |
α2 .
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Algorithm 2. The Frieze/Kannan-based IDC

UFK
α (D, Q, Â):
If: D = ∅ then: output D′ = ∅
Else if: Q(D)− Â > 0 then: output D′ = D − α

|X| ·Q
Else if: Q(D)− Â < 0 then: output D′ = D + α

|X| ·Q

Proof (Proof sketch). Let D ∈ N
|X | be any database and let

{
(D(t), Q(t), Â(t))

}

t=1,...,C

be (UFK
α ,D,Q, α,B)-database update sequence (Definition 4). We want to show that

C ≤ ‖D‖22|X |/α2. Specifically, after ‖D‖22|X |/α2 invocations of UFK
α , the database

D(‖D‖2
2|X |/α2) is (α,Q)-accurate for D, and thus there cannot be a sequence of longer

than ‖D‖22|X |/α2 queries that satisfy property 2 of Definition 4.
In order to formalize this intuition, we use a potential argument as in [10] to show

that for every t = 1, 2, . . . , B, D(t+1) is significantly closer to D thanD(t). Specifically,
our potential function is the L2

2 norm of the database D − D(t), defined as ‖D‖22 =∑
i∈X D(i)2. Observe that ‖D − D(1)‖22 = ‖D‖22, and ‖D‖22 ≥ 0. Thus it will suffices

to show, as we do in the full proof, that in every step, the potential decreases by α2/|X |.

Corollary 1. Let γ = O
(
ε−1/2n

1/4
2 |X |1/4√log(k/β)

)
. Then Algorithm 1, instanti-

ated with UFK
γ is (ε, δ)-differentially private and an (α, β)-accurate interactive re-

lease mechanism for query set Q with α = O

(
n
1/4
2 |X |1/4

√
log(k/β) log(1/δ)√

ε

)
where

n2 = ‖D‖22. Note that for databases that are subsets of the data universe (rather than
multisets), n2 = n.

Remark 1. For the setting in which the database represents a graph and the queryset
contains all cut queries, this bounds is O(|V ||E|1/4/√ε). This improves on the accu-
racy of the multiplicative weights IDC for dense graphs with |E| ≥ Ω(|V |2/ log |V |).

6 Results for Synthetic Data

In this section, we consider the more demanding task of efficiently releasing synthetic
data for the class of cut queries on graphs. Our algorithm is simple, and is based on
releasing a noisy histogram. Note that for a graph, |X | = (|V |

2

)
, and D = E, so as long

as |E| = Ω(|V |), the universe is at most a polynomial in the database size. (Moreover,
it is easy to show that there does not exist any (ε, 0)-private mechanism that has error
o(|V |), so the only interesting cases are when |E| = Ω(|V |).)

Consider a database whose elements are drawn from X ; we represent this as a vec-
tor (histogram) D ∈ N

|X |. Let D̂ = D + (Y1, . . . , Y|X |) be a “noisy” database, where
each Yi ∼ Lap(1/ε) is an independent draw from the Laplace distribution. Note that
by Theorem 1, the procedure which on input D releases the noisy database D̂ preserves
(ε, 0)-differential privacy. This follows because the histogram vector can be viewed as
simply the evaluation of the identity query Q : N|X | → N

|X |, which can be easily seen
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to be 1-sensitive. At this stage, we could release D̂ and be satisfied that we have de-
signed a private algorithm. There are two issues: first, we must analyze the utility guar-
antees that D̂ has with respect to our query set Q. Second, D̂ is not quite synthetic data.
It will be a vector with possibly negative entries, and so does not represent a histogram.
Interpreted as a graph, it will be a weighted graph with negative edge weights. Such
an answer may be insufficient for some applications, so in Section 6.1 we show how to
convert such an answer into [0, 1] weighted graph with similar accuracy guarantees.

The utility guarantee of this procedure over the collections Q of linear queries is
also not difficult; i.e., each query Q ∈ Q is a vector in [0, 1]|X |, and on any database D
evaluates to Q(D) = 〈Q,D〉.

Lemma 1. Suppose that Q ⊆ [0, 1]|X | is some collection of linear queries. For the
case |Q| ≤ (β/2) 2|X |/6, it holds that with probability at least 1 − β, for every query
Q ∈ Q, |Q(D) − Q(D̂)| ≤ ε−1

√
6|X | log(|Q|/β). For general Q, the error bound is

O(ε−1
√|X | log(|X |/β) log(|Q|/β)).

The proof of this lemma uses standard moment-generating function techniques and is
deferred to the full version.

In summary, the bounds on the error are ≈ ε−1
√|X | log |Q|, with some correction

terms depending on whether the size of the query set is at most 2O(|X |) or larger.

6.1 Randomized Response and Synthetic Data for Cut Queries

For the case of cuts in graph on a vertex set V , the database is a vector in {0, 1}(|V |
2 ),

and the noisy database just adds independent Lap(1/ε) noise to each bit value. Since
the query set Qcuts has size 22|V |, (namely it consists of all (S, T ) pairs), we have
|Qcuts| 
 (β/2)2|X |/6 for all reasonable β and |V |, we can use the randomized re-
sponse analysis above to get accuracy

O

(((|V |
2

)
log(|Qcuts|/β)

)1/2
/ε

)
= O((|V |3/2 + |V | log 1/β)/ε)

with probability at least 1−β. In fact, one can give a slightly tighter analysis where the
accuracy depends on the size of the sets S, T—by observing that the number of random
variables participating in a cut query (S, T ) is exactly |S||T |, one can show that the
accuracy for all cuts is whp O(ε−1

√|V ||S||T |).
Viewing the noisy database D̂ as a weighted graph Ĝ, where the weight of (u, v)

is 1(u,v)∈E(G) + Lap(1/ε), note that Ĝ has negative weight edges and hence cannot
be considered synthetic data. We can remedy the situation (using the idea of solving a
suitable linear program [2, 8]):

Lemma 2 (Synthetic Data for Cuts). There is a computationally efficient (ε, 0)-diff-
erentially private randomized algorithm that takes a unweighted graph G and outputs
a synthetic graph G′ such that, with high probability, ‖G−G′‖C ≤ O(|V |3/2/ε)—all
cuts in G and G′ are within O(|V |3/2/ε) additive error.
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The proof is deferred to the full version, but the idea is straightforward: we write a
linear program with exponentially many constraints to solve for a synthetic database,
and use an SDP-based approximation algorithm of [1] for the cut-norm problem as an
approximate separation oracle to solve the LP.

7 Towards Improving on Randomized Response for Synthetic Data

In this section, we consider one possible avenue towards giving an efficient algorithm
for privately generating synthetic data for graph cuts that improves over randomized
response. We first show how generically, any efficient Iterative Database Construction
algorithm can be used to give an efficient offline algorithm for privately releasing syn-
thetic data when paired with an efficient distinguisher. The analysis here follows the
analysis of [12], who analyzed the corresponding algorithm when instantiated with the
multiplicative weights algorithm, rather than a generic Iterative Database Construction
algorithm.

We will pair an Iterative Database Construction algorithm for a class of queries C
with a corresponding distinguisher.

Definition 6 ((F (ε), γ)-Private Distinguisher). Let Q be a set of queries, let γ ≥ 0
and let F (ε) : R+ → Z be a function. An algorithm Distinguishε : N

|X |×N
|X | → Q is

an (F (ε), γ)-Private Distinguisher for Q if for every setting of the privacy parameter
ε, it is ε-differentially private with respect to D and if for every D,D′ ∈ N

|X | it outputs
a Q∗ ∈ Q such that |Q∗(D) − Q∗(D′)| ≥ maxQ∈Q |Q(D) − Q(D′)| − F (ε) with
probability at least 1− γ.

We present the algorithm in the full version, but the idea is very simple. Rather than
waiting for a query to arrive online that induces an update step, we find queries which
will induce update steps using the distinguisher. The IDC algorithm will guarantee that
there will not be too many update steps, and so an efficient distinguisher will yield an
efficient algorithm for releasing synthetic data.

Theorem 6. There is an (ε, δ)-differentially private mechanism for releasing synthetic
data such that given an (F (ε), γ)-private distinguisher and a B(α)-IDC, it is (α, β)-
accurate for:

α ≥ max

[
16
√
B(α) log(1/δ) log(2B(α)/β)

ε
, 2F

(
ε

4
√
B(α) log(1/δ)

)]

as long as γ ≤ β/(2B(α))

We defer the proof until the full version. Note that the running time of the algorithm
is dominated by the running time of the IDC algorithm and of the distinguishing al-
gorithm: efficient IDC algorithms paired with efficient distinguishing algorithms for a
class of queries Q automatically correspond to efficient algorithms for privately releas-
ing synthetic data useful for Q. For the class of graph cut queries, both the multiplica-
tive weights IDC and the Frieze/Kannan IDC are computationally efficient. Therefore,
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one approach to finding a computationally efficient algorithm for releasing synthetic
data useful for cut queries is to find an efficient private distinguisher for cut queries.

One curious aspect of this approach is that it might in fact be computationally easier
to release a larger class of queries than cut queries, even though this is a strictly more
difficult task from an information theoretic perspective. For example, solving the distin-
guishing problem for cut queries on graphs D and D′ is equivalent to finding a pair of
sets (S, T ) which witness the cut-norm on the graph D − D′. On the other hand, solv-
ing the distinguishing problem for rank-1 queries (which include cut queries, and are a
larger class) is equivalent to finding the best rank-1 approximation to the adjacency ma-
trix D−D′. The former problem is NP-hard, whereas the latter problem can be quickly
solved non-privately using the singular value decomposition.

Corollary 2. An efficient (F (ε), γ)-distinguisher for the class of rank-1 queries for
F (ε) = T/ε would yield an (α, β)-accurate mechanism for releasing synthetic data
for graph cuts (and all rank-1 queries) for any β ≥ Ω(exp(−εT )) and: αMW =

2 4
√
2ε−1/2

√
Tm (log |V | log(1/δ))1/4 using the multiplicative weights IDC, or: αFK ≥

2ε−1/2(m log(1/δ))1/4
√|V |T using the Frieze/Kannan IDC

The proof, deferred to the full version, only requires plugging in the parameters for
these two IDC algorithms. We remark that for the class of rank-1 queries, an efficient

(F (ε), γ)-distinguisher with F (ε) = Õ
(

|V |
ε

)
would be sufficient to yield an efficient

algorithm for releasing synthetic data useful for cut queries, with guarantees matching
those of the best known algorithms for the interactive case, as listed in Table 1. For
graphs for which the size of the edge set m ≤ Ω(n2), this would yield an improvement
over our randomized response mechanism, which is the best mechanism currently for
privately releasing synthetic data for graph cuts. We observe that such a distinguisher
is information-theoretically possible, and the only question is whether such a private
distinguisher exists that is also computationally efficient. To see this, observe that an
O(|V |)-net for the set of all rank-1 queries can be constructed by considering all pairs
of vectors x, y ∈ {0, 1/|V |, 2/|V |, . . . , 1}|V | and their associated outer-products x ·yT .
Since there are at most |V |2|V | such pairs, the exponential mechanism serves as an
inefficient F (ε) distinguisher for F (ε) = O(|V | log |V |/ε).

We note that a distinguisher for rank-1 queries must simply give a good rank-1 ap-
proximation to the matrix D −D′, which will always be symmetric in this setting (be-
cause both the hypothesis is at every step simply the adjacency matrix for an undirected
graph, as of course is the private database), and hence an algorithm for finding accurate
rank-1 approximations merely for symmetric matrices would already yield an algorithm
for releasing synthetic data for cuts! Unlike classes of queries like conjunctions, for
which their are imposing barriers to privately outputting useful synthetic data [21, 12],
there are as far as we know no such barriers to improving our randomized-response
based results for synthetic data for graph cuts. We leave finding such an algorithm, for
privately giving low rank approximations to matrices, as an intriguing open problem.
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A Other Iterative Database Construction Algorithms

In this section, we demonstrate how the median mechanism and the multiplicative
weights mechanism fit into the IDC framework. These mechanisms apply to general
classes of linear queries Q.

A.1 The Median Mechanism

In this section, we show how to use the median database subroutine as an Iterative
Database Construction.

Definition 7 (Median Datastructure). A median datastructure D is a collection of
databasesD ⊂ N

|X |. Any query can be evaluated on a median datastructure as follows:
Q(D) = Median({Q(D′) : D′ ∈ D}).

Algorithm 3. The Median Mechanism (MM) Algorithm

UMM
k,α (Dt, Q(t), Â(t))

If: Dt = ∅ then: output D0 = {D ∈ N
|X| : |D| = n2 log k/α2}

Else if: Q(t)(Dt)− Â(t) > 0 then: output D′ = D′ \ {D ∈ D : Q(t)(D) ≥ Q(t)(D)}
Else if: Q(t)(Dt)− Â(t) < 0 then: output D′ = D′ \ {D ∈ D : Q(t)(D) ≤ Q(t)(D)}

Theorem 7. The Median Mechanism algorithm is a B(α) = n2 log |X | log k/α2 iter-
ative database construction algorithm for every class of k linear queries Q.

Proof. Let D ∈ N
|X | be any database and consider a (UMM

k ,D∗,Q, α,B)-database

update sequence,
{
(Dt, Q(t), Â(t))

}

t=1,...,B
. It will be sufficient if we can show that

B(α) ≤ n2 log |X | log k/α2. Specifically, that after n2 log |X | log k/α2 invocations
of UMM

k,α , the median datastructure Dn2 log |X | log k/α2

is (α,Q)-accurate for D. The
argument is simple. First, we have a simple fact from [5]:

Claim. For any set of k linear queries Q and any database D of size n, there is a
database D′ of size |D′| = n2 log k/α2 so that D′ is α-accurate for D with respect to Q.

From this claim, we have that |Dt| ≥ 1 for all t, and so can always be used to evaluate
queries. On the other hand, each update step eliminates half of the databases in the
median datastructure: |Dt| = |Dt−1|/2. This is because the update step eliminates
every database either above or below the median with respect to the last query. Initially
|D0| = |X |n2 log k/α2

, and so there can be at most B(α) ≤ log n2|X | log k/α2 update
steps before we would have |DB | < 1, a contradiction.

A.2 The Multiplicative Weights Mechanism

In this section we show how to use the multiplicative weights subroutine as an Itera-
tive Database Construction. The analysis of the multiplicative weights algorithm is not
new, and follows [15]. It will be convenient to think of our databases in this section as
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probability distributions, i.e. normalized so that ||D||1 = 1. Note that if we are α/n
accurate for the normalized database, we are α-accurate for the un-normalized database
with respect to any set of linear queries.

Algorithm 4. The Multiplicative Weights (MW) Algorithm

UMW
α (Dt, Q(t), Â(t)):

Let η ← α/(2n).
If: Dt = ∅ then: output D′ = D ∈ R

|X| such that D0
i = 1/|X | for all i.

if Â(t) < Q(t)(Dt) then
Let rt = Q(t)

else
Let rt = 1−Q(t)

end if
Update: For all i ∈ [|X |] Let

D̂t+1
i = exp(−ηrt(Dt

i)) · Dt
i

Dt+1
i =

D̂t+1
i∑|X|

j=1 D̂t+1
j

OutputDt+1.

Theorem 8. The Multiplicative Weights algorithm is a B(α) = 4n2 log |X |/α2 itera-
tive database construction algorithm for every class of linear queries Q.

Proof. Let D ∈ N
|X | be any database and consider a (UMW ,D∗,Q, α,B)-database

update sequence,
{
(D(t), Q(t), Â(t))

}

t=1,...,B
. It will be sufficient if we can show that

B(α) ≤ 4n2 log |X |/α2. Specifically, that after 4n2 log |X |/α2 invocations of UMW ,
the database D(4n2 log |X |/α2) is (α,Q)-accurate for D. First let D̂ ∈ R

|X| be a nor-
malization of the database D: D̂i = Di/‖D‖1. Note that for any linear query, Q(D) =
n ·Q(D̂). We define:

Ψt
def
= D(D̂||Dt) =

|X |∑

i=1

D̂i log

(
D̂i

Dt
i

)

We begin with a simple fact:

Claim ([15]). For all t: Ψt ≥ 0, and Ψ0 ≤ log |X |.
We will argue that in every step for which |Q(t)(D) − Q(t)(Dt)| ≥ α/n the potential
drops by at least α2/4n. Because the potential begins at log |X |, and must always be
non-negative, we know that there can be at most B(α) ≤ 4n2 log |X |/α2 steps before
the algorithm outputs a database Dt such that maxQ∈Q |Q(D)−Q(Dt)| < α/n, which
is exactly the condition that we want.
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Lemma 3 ([15])
Ψt − Ψt+1 ≥ η

(
rt(Dt)− rt(D)

)− η2

Proof

Ψt − Ψt+1 =

|X |∑

i=1

D̂i log

(
Dt+1

i

Dt
i

)

= −ηrt(D)− log

⎛

⎝
|X |∑

i=1

exp(−ηrt(xi))D
t
i

⎞

⎠

≥ −ηrt(D)− log

⎛

⎝
|X |∑

i=1

Dt
i(1 + η2 − ηrt(xi))

⎞

⎠

≥ η
(
rt(Dt)− rt(D)

)− η2

The rest of the proof now follows easily. By the conditions of an iterative database con-
struction algorithm, |Â(t)−Q(t)(D)| ≤ α/(2n). Hence, for each t such that |Q(t)(D)−
Q(t)(Dt)| ≥ α/n, we also have that Q(t)(D) > Q(t)(Dt) if and only if Â(t) >
Q(t)(Dt). In particular, rt = Q(t) if Q(t)(Dt)−Q(t)(D) ≥ α/n, and rt = 1 −Q(t) if
Q(t)(D)−Q(t)(Dt) ≥ α/n. Therefore, by Lemma 3 and the fact that η = α/2n:

Ψt − Ψt+1 ≥ α

2n

(
rt(Dt)− rt(D)

)− α2

4n2
≥ α

2n

(α
n

)
− α2

4n2
=

α2

4n2
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