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Abstract. The best lattice reduction algorithm known in practice for
high dimension is Schnorr-Euchner’s BKZ: all security estimates of lattice
cryptosystems are based on NTL’s old implementation of BKZ. However,
recent progress on lattice enumeration suggests that BKZ and its NTL
implementation are no longer optimal, but the precise impact on secu-
rity estimates was unclear. We assess this impact thanks to extensive
experiments with BKZ 2.0, the first state-of-the-art implementation of
BKZ incorporating recent improvements, such as Gama-Nguyen-Regev
pruning. We propose an efficient simulation algorithm to model the be-
haviour of BKZ in high dimension with high blocksize ≥ 50, which can
predict approximately both the output quality and the running time,
thereby revising lattice security estimates. For instance, our simulation
suggests that the smallest NTRUSign parameter set, which was claimed
to provide at least 93-bit security against key-recovery lattice attacks,
actually offers at most 65-bit security.

1 Introduction

Lattices are discrete subgroups of R
m. A lattice L is represented by a basis, i.e.

a set of linearly independent vectors b1, . . . ,bn in R
m such that L is equal to

the set L(b1, . . . ,bn) = {∑n
i=1 xibi, xi ∈ Z} of all integer linear combinations

of the bi’s. The integer n is the dimension of L. The goal of lattice reduction
is to find bases consisting of reasonably short and nearly orthogonal vectors.
Lattice reduction algorithms have many applications (see [35]), notably public-
key cryptanalysis where they have been used to break special cases of RSA and
DSA, among others (see [32] and references therein). There are roughly two types
of lattice reduction algorithms:

– Approximation algorithms like the celebrated LLL algorithm [22,35], and its
blockwise generalizations [41,42,7,8]. Such algorithms find relatively short
vectors, but usually not shortest vectors in high dimension.

– Exact algorithms to output shortest or nearly shortest vectors. There are
space-efficient enumeration algorithms [38,20,6,42,43,10] and exponential-
space algorithms [3,36,30,29], the latter being outperformed in practice by
the former despite their better asymptotic running time 2O(n).
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In high dimension, only approximation algorithms can be run, but both types are
complementary: approximation algorithms use exact algorithms as subroutines,
and exact algorithms use approximation algorithms as preprocessing. In theory,
the best approximation algorithm is Gama-Nguyen’s reduction [8]. But experi-
ments (such as that of [9], or the cryptanalyses [31,21] of GGH challenges [12])
suggest that the best approximation algorithm known in practice for high dimen-
sion is BKZ, published by Schnorr and Euchner in 1994 [42], and implemented
in NTL [44]. Like all blockwise algorithms [41,7,8], BKZ has an additional input
parameter – the blocksize β – which impacts both the running time and the
output quality: BKZ calls many times an enumeration subroutine [38,20,6,42],
which looks for nearly-shortest vectors in projected lattices of dimension ≤ β.
As β increases, the output basis becomes more and more reduced, but the cost
increases significantly: the cost of the enumeration subroutine is typically super-
exponential in β, namely 2O(β2) polynomial-time operations (see [10]); and ex-
periments [9] show that the number of calls increases sharply with both β and the
lattice dimension n: for fixed β ≥ 30, the number of calls looks superpolynomial
if not exponential in n. This leads to two typical uses of BKZ:

1. A small blocksize β around 20 in any dimension n, or a medium blocksize β
around 30-40 in medium dimension n (say, around 100 at most). Here, BKZ
terminates in a reasonable time, and is routinely used to improve the quality
of an LLL-reduced basis.

2. A high blocksize β ≥ 40 in high dimension n, to find shorter and shorter
lattice vectors. Here, BKZ does not terminate in a reasonable time, and the
computation is typically aborted after say, a few hours or days, with the
hope that the current basis is good enough for the application: we note that
Hanrot et al. [14] recently proved worst-case bounds for the output quality of
aborted-BKZ, which are only slightly worse than full-BKZ. And one usually
speeds up the enumeration subroutine by a pruning technique [42,43,10]:
for instance, the implementation of BKZ in NTL proposes Schnorr-Hörner
(SH) pruning [43], which adds another input parameter p, whose impact was
only clarified in [10]. The largest GGH cryptographic challenges [12] were
solved [31,21] using an aborted BKZ of blocksize β = 60 and SH factor
p = 14.

One major issue is to assess the output quality of BKZ, especially since lattice al-
gorithms tend to perform better than theoretically expected. The quality is mea-
sured by the so-called Hermite factor, as popularized by Gama and Nguyen [9].
In practice, the Hermite factor of all lattice algorithms known is typically expo-
nential in the dimension, namely cn where c depends on the parameters of the
algorithm. The experiments of [9] show that in practice, the Hermite factor of
BKZ is typically c(β, n)n where c(β, n) quickly converges as n grows to infinity
for fixed β. However, the limit values of c(β, n) are only known for small values of
β (roughly ≤ 30), and theoretical upper bounds [9,14] on c(β, n) are significantly
higher than experimental values.
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All security estimates and proposed parameters (such as recent ones [28,39,23]
and NTRU’s [18]) of lattice cryptosystems are based on benchmarks of NTL’s
old implementation of BKZ, but the significance of these estimates is rather
debatable. First, these benchmarks were all computed with only usage 1: NTRU
[18] “never observed a noticeable improvement from the pruning procedure, so the
pruning procedure was not called” and used β ≤ 25, while [39,23] use β ≤ 30. This
means that such security estimates either assume that BKZ cannot be run with
β ≥ 30, or they extrapolate c(β, n) for high values of β from low values β ≤ 30.
Second, recent progress [10] in enumeration shows that enumeration can now be
performed in much higher dimension (e.g. β ≈ 110) than previously imagined,
but no approximate value of c(β, n) is known for large β ≥ 50. And NTL’s
implementation does not include these recent improvements, and is therefore
suboptimal.

Our results. We report the first extensive experiments with high-blocksize BKZ
(β ≥ 40) in high dimension. This is made possible by implementing BKZ 2.0, an
updated version of BKZ taking into account recent algorithmic improvements.
The main modification is the incorporation of the sound pruning technique devel-
oped by Gama, Nguyen and Regev [10] at EUROCRYPT ’10. The modifications
significantly decrease the running time of the enumeration subroutine, without
degrading its output quality for appropriate parameters, which allow much big-
ger blocksizes. BKZ 2.0 outperforms NTL’s implementation of BKZ, even with
SH pruning [43], which we checked by breaking lattice records such as Darm-
stadt’s lattice challenges [24] or the SVP-challenges [40]: for instance, we find the
shortest vector in NTRU [18]’s historical 214-dimensional lattices within 242.62

clock cycles, at least 70 times less computation than previously reported [25].
More importantly, our experiments allow us to propose an efficient simulation

algorithm to model the execution of BKZ with (arbitrarily) high blocksize ≥ 50,
to guess the approximate length of the output vector and the time required: in
particular, this algorithm provides the first ever predictions for c(β, n) for arbi-
trarily high values of β ≥ 50. For a given target length, the simulation predicts
what is the approximate blocksize β required to obtain such short lattice vec-
tors, and how many enumeration calls will be required approximately. This can
be converted into an approximate running time, once we know a good approxi-
mation of the cost of enumeration. And we provide such approximations for the
best enumeration subroutines known.

Our simulation refines the Gama-Nguyen security estimates [9] on the con-
crete hardness of lattice problems, which did not take into account pruning,
like the security estimates of NTRU [19,16] and those of [23,39]. We illus-
trate the usefulness of our simulation by revising security estimates. For in-
stance, our simulation suggests that the smallest NTRUSign parameter set,
which was claimed to provide at least 93-bit security against key-recovery lattice
attacks, actually offers at most 65-bit security. And we use our simulation to pro-
vide the first concrete security assessment of the fully-homomorphic encryption
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challenges [11] recently proposed by Gentry and Halevi. It seems that none of
these challenges offers a very high security level, except the largest one, which
seems to offer at most a 100-bit security level.

Roadmap. We start in Sect. 2 with background and notation on lattices. In
Sect. 3, we recall the BKZ algorithm. In Sect. 4, we present BKZ 2.0 by de-
scribing our modifications to BKZ. In Sect. 5, we briefly report on new lattice
records obtained. We present in Sect. 6 a simulation algorithm to predict the
performances of BKZ 2.0 with (arbitrarily) high blocksize, which we apply to
revise security estimates in Sect. 7. More information can be found in the full
version.

2 Preliminaries

We use row representations of matrices (to match lattice software), and use bold
fonts to denote vectors: if B = (b1, . . . ,bn) is a matrix, its row vectors are the
bi’s. The Euclidean norm of a vector v ∈ R

m is ‖v‖. We denote by Balln(R)
the n-dim Euclidean ball of radius R, and by Vn(R) = Rn · πn/2

Γ (n/2+1) its volume.
The n-dim unit sphere is denoted by Sn−1. Let L be an n-dim lattice in R

m. Its
volume vol(L) is the n-dim volume of the parallelepiped generated by any basis
of L.

Orthogonalization. An n×m basis B = (b1, . . . ,bn) can be written uniquely as
B = μ · D · Q where μ = (μi,j) is n × n lower-triangular with unit diagonal, D
is n × n positive diagonal, and Q is n × m with orthonormal row vectors. Then
μD is a lower triangular representation of B (with respect to Q), B∗ = DQ =
(b∗

1, . . . ,b
∗
n) is the Gram-Schmidt orthogonalization of the basis, and D is the

diagonal matrix formed by the ‖b∗
i ‖’s. For 1 ≤ i ≤ n + 1, we denote by πi the

orthogonal projection over (b1, . . . ,bi−1)⊥. For 1 ≤ j ≤ k ≤ n, we denote by
B[j,k] the local projected block (πj(bj), πj(bj+1), . . . , πj(bk)), and by L[j,k] the
lattice spanned by B[j,k], whose dimension is k − j + 1.

Random Lattices. There is a natural notion of random (real) lattices of given
volume, based on Haar measures of classical groups (see [1]). And there is a
simple notion of random integer lattices, used in recent experiments: For any
integer V , a random n-dim integer lattice of volume V is one chosen uniformly
at random among the finitely many n-dim integer lattices of volume V . It was
shown in [13] that, as V grows to infinity, the uniform distribution over integer
lattices of volume V converges towards the distribution of random (real) lattices
of unit volume, once the integer lattice is scaled by V 1/n. In experiments with
random lattices, we mean an n-dim integer lattice chosen uniformly at random
with volume a random prime number of bit-length 10n: for prime volumes, it is
trivial to sample from the uniform distribution, using the Hermite normal form.
A bit-length Θ(n2) would be preferable in theory (in order to apply the result
of [13]), but it significantly increases running times, without affecting noticeably
experimental results.
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Gaussian Heuristic. Given a lattice L and a “nice” set S, the Gaussian Heuristic
predicts that the number of points in S ∩ L is ≈ vol(S)/vol(L). In some cases,
this heuristic can be proved [1] or refuted [27].

Shortest vector. A shortest vector of L has norm λ1(L) = minv∈L,v �=0 ‖v‖, the
first minimum of L. If the Gaussian heuristic was true for any ball S, we would
expect λ1(L) ≈ GH(L) where GH(L) = vol(L)1/n · Vn(1)−1/n. Minkowski’s
theorem shows that λ1(L) ≤ 2GH(L) for any lattice L. For random real lattices,
λ1(L) is asymptotically equivalent to GH(L) with overwhelming probability
(see [1]).

Reduced bases. We recall a few classical reductions. A basis B = (b1, . . . ,bn) is:

– size-reduced if its Gram-Schmidt matrix μ satisfies |μi,j | ≤ 1/2 for 1 ≤ j <
i ≤ n.

– LLL-reduced [22] with factor ε such that 0 < ε < 1 if it is size-reduced and its
Gram-Schmidt orthogonalization satisfies ‖b∗

i+1 +μi+1,ib∗
i ‖2 ≥ (1− ε)‖b∗

i ‖2

for 1 ≤ i < n. If we omit the factor ε, we mean the factor ε = 0.01, which is
the usual choice in practice.

– BKZ-reduced [41] with blocksize β ≥ 2 and factor ε such that 0 < ε < 1 if
it is LLL-reduced with factor ε and for each 1 ≤ j ≤ n: ‖b∗

j‖ = λ1(L[j,k])
where k = min(j + β − 1, n).

One is usually interested in minimizing the Hermite factor ‖b1‖/vol(L)1/n (see
[9]), which is completely determined by the sequence ‖b∗

1‖, . . . , ‖b∗
n‖. This is

because the Hermite factor dictates the performance of the algorithm at solving
the most useful lattice problems: see [9] for approx-SVP and unique-SVP, and
[28,39,23] for SIS and LWE. It turns out that the Gram-Schmidt coefficients of
bases produced by the main reduction algorithms (such as LLL or BKZ) have
a certain “typical shape” [9,34], provided that the input basis is sufficiently
randomized. To give an idea, the shape is roughly such that ‖b∗

i ‖/‖b∗
i+1‖ ≈ q

where q depends on the reduction algorithm, except for the first indexes i. This
means that the Hermite factor will typically be of the form cn where c ≈ √

q.

3 The Blockwise Korkine-Zolotarev (BKZ) Algorithm

3.1 Description

The Blockwise-Korkine-Zolotarev (BKZ) algorithm [42] outputs a BKZ-reduced
basis with blocksize β ≥ 2 and reduction factor ε > 0, from an input basis
B = (b1, . . . ,bn) of a lattice L. It starts by LLL-reducing the basis B, then
iteratively reduces each local block B[j,min(j+β−1,n)] for j = 1 to n, to make sure
that the first vector of each such block is the shortest in the projected lattice.
This gives rise to Algorithm 1, which proceeds in such a way that each block
is already LLL-reduced before being enumerated: there is an index j, initially
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set to 1. At each iteration, BKZ performs an enumeration of the local projected
lattice L[j,k] where k = min(j +β− 1, n) to find v = (v1, . . . , vn) ∈ Z

n such that
‖πj(

∑k
i=j vibi)‖ = λ1(L[j,k]). We let h = min(k + 1, n) be the ending index of

the new block in the next iteration:

– If ‖b∗
j‖ > λ1(L[j,k]), then bnew =

∑k
i=j vibi is inserted between bj−1 and bj .

This means that we no longer have a basis, so LLL is called on the generating
set (b1, . . . ,bj−1,bnew,bj , . . . ,bh), to give rise to a new LLL-reduced basis
(b1, . . . ,bh).

– Otherwise, LLL is called on the truncated basis (b1, . . . ,bh).

Thus, at the end of each iteration, the basis B = (b1, . . . ,bn) is such that
(b1, . . . ,bh) is LLL-reduced. When j reaches n, it is reset to 1, unless no enu-
meration was successful, in which case the algorithm terminates: the goal of z
in Alg. 1 is to count the number of consecutive failed enumerations, to check
termination.

Algorithm 1. The Block Korkin-Zolotarev (BKZ) algorithm
Input: A basis B = (b1, . . . ,bn), a blocksize β ∈ {2, . . . , n}, the Gram-Schmidt tri-

angular matrix μ and ‖b∗
1‖2, . . . , ‖b∗

n‖2.
Output: The basis (b1, . . . ,bn) is BKZ-β reduced
1. z ← 0; j ← 0; LLL(b1, . . . ,bn, μ);// LLL-reduce the basis, and update μ
2. while z < n− 1 do
3. j ← (j mod (n− 1)) + 1; k ← min(j + β − 1, n); h ← min(k + 1, n); // define

the local block
4. v ←Enum(μ[j,k], ‖b∗

j‖2, . . . , ‖b∗
k‖2); // find v = (vj , . . . , vk) ∈ Z

k−j+1 − 0 s.t.

‖πj(
∑k

i=j vibi)‖ = λ1(L[j,k])
5. if v �= (1, 0, . . . , 0) then
6. z ← 0; LLL(b1, . . . ,

∑k
i=j vibi,bj , . . . ,bh, μ) at stage j; //insert the new vec-

tor in the lattice at the start of the current block, then remove the dependency
in the current block, update μ.

7. else
8. z ← z + 1; LLL(b1, . . . ,bh, μ) at stage h − 1; // LLL-reduce the next block

before enumeration.
9. end if

10. end while

3.2 Enumeration Subroutine

BKZ requires a subroutine to find a shortest vector in a local projected lattice
L[j,k]: given as input two integers j and k such that 1 ≤ j ≤ k ≤ n, output
v = (vj , . . . , vk) ∈ Z

k−j+1 such that ‖πj(
∑k

i=j vibi)‖ = λ1(L[j,k]). In prac-
tice, as well as in the BKZ article [42], this is implemented by enumeration.
One sets R = ‖b∗

j‖ as an initial upper bound of λ1(L[j,k]). Enumeration goes
through the enumeration tree formed by ”half” of the vectors in the local pro-
jected lattices L[k,k], L[k−1,k], . . . , L[j,k] of norm at most R. The tree has depth
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k − j + 1, and for each d ∈ {0, . . . , k − j + 1}, the nodes at depth d are 0 and
all πk−d+1(u) ∈ L[k−d+1,k] where u =

∑k′

i=j uibi with j ≤ k′ ≤ k, uk′ > 0 and
‖πk−d+1(u)‖ ≤ R. The parent of a node u ∈ L[k−d+1,k] at depth d is πk+2−d(u)
at depth d − 1. Child nodes are ordered by increasing Euclidean norm. The
Schnorr-Euchner algorithm [42] performs a Depth First Search of the tree to
output a nonzero leaf of minimal norm, with the following modification: ev-
erytime a new (nonzero) leaf is found, one updates the enumeration radius R
as the norm of the leaf. The more reduced the basis is, the less nodes in the
tree, and the cheaper the enumeration. The running time of the enumeration
algorithm is N polynomial-time operations where N is the total number of tree
nodes. If the algorithm did not update R, Hanrot and Stehlé [15] noticed that
the number of nodes at depth d could be estimated from the Gaussian heuristic
as:

Hd(R) =
1
2
· Vd(R)
∏k

i=k−d+1 ‖b∗
i ‖

=
1
2
· RdVd(1)
∏k

i=k−d+1 ‖b∗
i ‖

. (1)

Gama et al. [10] showed that this heuristic estimate is experimentally very ac-
curate, at least for sufficiently large k − j + 1 and typical reduced bases. We
can therefore heuristically bound the number of nodes at depth d in the actual
Schnorr-Euchner algorithm (with update of R) by setting R = λ1(L[j,k]) and
R = ‖b∗

j‖ in Eq. (1). It is shown in [10] that for typical reduced bases, Hd(R)
is maximal around the middle depth d ≈ (k − j)/2, and the remaining Hd(R)’s
are significantly smaller.

3.3 Analysis

No good upper bound on the complexity of BKZ is known. The best upper bound
known for the number of calls (to the enumeration subroutine) is exponential
(see [14]). In practice (see [9]), BKZ with β = 20 is very practical, but the running
time significantly increases for β ≥ 25, making any β ≥ 40 too expensive for high-
dimensional lattices. In practice, the quality of bases output by BKZ is better
than the best theoretical worst-case bounds: according to [9], the Hermite factor
for high-dimensional lattices is typically c(β, n)n where c(β, n) seems to quickly
converge as n grows to infinity, whereas theoretical upper bounds are c′(β)n with
c′(β) significantly larger than c(β, n). For instance, c(20, n) ≈ 1.0128 for large
n. Furthermore, [14] recently showed that if one aborts BKZ after a suitable
polynomial number of calls, one can obtain theoretical upper bounds which are
only slightly worse than c′(β)n.

4 BKZ 2.0

When the blocksize is sufficiently high, namely ≥ 30, it is known [9] that the
overall running time of BKZ is dominated by the enumeration subroutine, which
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finds a shortest vector in the m-dimensional local projected lattice L[j,k], using
a radius R initially set to ‖b∗

j‖, where 1 ≤ j ≤ k ≤ n and m = k − j + 1.
In this section, we describe BKZ 2.0, an updated version of BKZ with four

improvements, which we implemented by modifying NTL [44]’s implementation
of BKZ [42]. The first improvement is simply an early-abort, which is common
practice in cryptanalysis, and is partially supported by the recent theoretical
result of [14]: we add a parameter that specifies how many iterations should be
performed, i.e. we choose the number of oracle calls; this already provides an
exponential speedup over BKZ, because the number of calls seems to grow ex-
ponentially for fixed β ≥ 30 according to the experiments of [9]. The other three
improvements aim at decreasing the running time of the enumeration subrou-
tine: sound pruning [10], preprocessing of local bases, and shorter enumeration
radius. Though these improvements may be considered as folklore, we stress that
none had been incorporated in BKZ (except that a weaker form of pruning had
been designed by Schnorr and Hörner [43], and implemented in NTL [44]), and
that implementing them is not trivial.

4.1 Sound Pruning

Pruning speedups enumeration by discarding certain branches, but may not re-
turn any vector, or maybe not the shortest one. The idea of pruned enumeration
goes back to Schnorr and Euchner [42], and was first analyzed by Schnorr and
Hörner [43] in 1995. It was recently revisited by Gama et al. [10], who noticed
that the analysis of [43] was flawed and that the pruning was not optimal. They
showed that a well-chosen high-probability pruning leads to an asymptotical
speedup of 2m/4 over full enumeration, and introduced an extreme pruning tech-
nique which gives an asymptotical speedup of 2m/2 over full enumeration. We
incorporated both pruning with non-negligible probability, and extreme pruning
using randomization. Formally, pruning replaces each of the k − j + 1 inequal-
ities ‖πk+1−d(u)‖ ≤ R for 1 ≤ d ≤ k − j + 1 by ‖πk+1−d(u)‖ ≤ Rd · R where
0 ≤ R1 ≤ · · · ≤ Rk−j+1 = 1 are k − j + 1 real numbers defined by the prun-
ing strategy. For any bounding function (R1, . . . , Rk−j+1), [10] consider the
quantities N ′ and psucc defined by:

– N ′ =
∑k−j+1

d=1 H ′
d is a heuristic estimate of the total number of nodes in the

pruned enumeration tree, where H ′
d = 1

2

RdVR1,...,Rd∏k
i=k+1−d‖b∗

i ‖ and VR1,...,Rd
denotes

the volume of CR1,...,Rd
=

{
(x1, . . . , xd) ∈ R

d, ∀1 ≤ i ≤ d,
∑i

l=1 x2
l ≤ R2

i

}
.

– psucc = psucc(R1, . . . , Rm) = Pr
u∼Sm−1

(
∀i ∈ [1, m],

∑i
l=1 u2

l ≤ R2
i

)
. Let t ∈

L[j,k] be a target vector such that ‖πj(t)‖ = R. If the local basis B[j,k]

is assumed to be randomized, then psucc is the probability that πj(t) is a
leaf of the pruned enumeration tree, under the (idealized) assumption that
the distribution of the coordinates of πj(t), when written in the normalized
Gram-Schmidt basis (b∗

j/‖b∗
j‖, . . . ,b∗

k/‖b∗
k‖) of the local basis B[j,k], look

like those of a uniformly distributed vector of norm ‖πj(t)‖.
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We stress that the assumption is only an idealization: in practice, when m is
small, for a non-negligible fraction of the local blocks B[j,k], one of the vectors of
B[j,k] is a shortest vector of L[j,k], which should have had zero probability. For
the application to BKZ, it makes sense to consider various bounding functions
of various psucc, say ranging from 1% to 95%, but with a cost N ′ as small as
possible. Based on the methodology of [10], we performed an automated search
to generate such bounding functions, for blocksizes β ranging from 35 to 90 by
steps of 5, and psucc ranging from 1% to 95%.

It should be noted that BKZ calls the enumeration subroutine on lattices
L[j,k] whose dimension m = k − j + 1 is not necessarily equal to β. When
j ≤ n− β + 1, the dimension m of the block is equal to β, but when j ≥ n − β,
the dimension m of the block is strictly less than β. To avoid generating bounding
functions for every dimension, we decided in this case to interpolate the bounding
function found for β, and checked that interpolating does not affect much psucc.
Finally, in order to boost psucc, we added an optional parameter ν, so that
BKZ actually performs ν pruned enumerations, each starting with a different
random basis of the same local block. This corresponds to the extreme pruning
of [10].

4.2 Preprocessing of Local Blocks

The cost of enumeration is strongly influenced by the quality of the local basis,
especially as the blocksize increases: the more reduced the local basis, the bigger
the volumes of the local projected lattices L[k−d+1,k], and therefore the less nodes
in the most populated depths of the enumeration tree. This is folklore, but since
BKZ improves regularly the quality of the basis, one might think there is no
need to change the local basis before enumeration. However:

– For each enumeration, the local basis is only guaranteed to be LLL
-reduced, even though the whole basis may be more than LLL-reduced.

– In high blocksizes, most enumerations are successful: they find a shorter
vector than the first block vector. This implies that a local LLL-reduction
will be performed to get a basis from a generating set: see Line 1 in Alg. 1. At
the next iteration, the enumeration will proceed on a typical LLL-reduced
basis, and not something likely to be better reduced.

This suggests that for most enumerations, the local basis is only LLL-reduced,
and nothing more, even though other local bases may be better reduced: this
was confirmed by experiments.

Hence, we implemented a simple speedup: ensure that the local basis is signif-
icantly more reduced than LLL-reduced before each enumeration, but without
spending too much time. We used a recursive aborted-BKZ preprocessing to
the local basis before enumeration: we performed an automated search to find
good parameters depending on β.
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4.3 Optimizing the Enumeration Radius

It is folklore that the enumeration cost is also influenced by the choice of the
initial radius R, even though this radius is updated during enumeration. Ini-
tially, the radius is R = ‖b∗

j‖, but if we knew before hand how short would be
the output vector, we would choose a lower initial radius R, decreasing the enu-
meration time. Indeed, the number of nodes at depth d of the enumeration tree
(pruned or not) is proportional to Rd. Unfortunately, not much is known (from
a theoretical point of view) on how small should be λ1(L[j,k]), except general
bounds. So we performed experiments to see what was the final norm found by
enumeration in practice: Fig. 1 compares the final norm (found by enumeration)
to GH(L[j,k]), depending on the starting index j of the local block, for one round
of BKZ. For the lowest indices j, one sees that the final norm is significantly lower
than GH(L[j,k]), whereas for the largest indices, it is significantly larger. In the
middle, which accounts for most of the enumerations, the ratio between the fi-
nal norm and the Gaussian heuristic prediction is mostly within 0.95 and 1.05,
whereas the ratio between the norm of the first local basis vector and GH(L[j,k])
is typically slightly below 1.1. We therefore used the following optimization: for
all indexes j except the last 30 ones, we let R = min(

√
γGH(L[j,k]), ‖b∗

j‖) in-
stead of R = ‖b∗

j‖, where γ is a radius parameter. In practice, we selected√
γ =

√
1.1 ≈ 1.05.

Fig. 1. Comparing ‖b∗
j‖, λ1(L[j,k]) and GH(L[j,k]), for each local block B[j,k]

5 New Lattice Records

Here, we briefly report on experiments using 64-bit Xeon processors to break
some lattice records, which suggest that BKZ 2.0 is currently the best lattice
reduction algorithm in practice.

5.1 Darmstadt’s Lattice Challenge

Darmstadt’s lattice challenge [24] started in 2008. For each dimension, the chal-
lenge is to find a vector of norm < q in an Ajtai lattice [2], where q depends
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on the dimension; and try to minimize the norm. Until now, the highest chal-
lenge solved was 725: the first solutions to all challenges in dimension 575 to 725
were found by Gama and Nguyen in 2008, using NTL’s implementation of BKZ
with SH pruning. Shorter solutions have been found since (see the full list [24]),
but no challenge of higher dimension had been solved. All solutions were found
by reducing appropriate sublattices of much smaller dimension (typically around
150-200), whose existence follows from the structure of Ajtai lattices: we followed
the same strategy.

BKZ 2.0 with blocksize 90 (18 pruned-enumerations at 5%) found the first
ever solution to challenges 750, 775 and 800, and significantly shorter vectors
in all challenges 525 to 725, using in total about 3 core-years, as summarized
in Table 1: the first column is the dimension of the challenge, the second one
is the dimension of the sublattice we used to find the solution, the third one
is the best norm found by BKZ 2.0, the fourth one is the previous best norm
found by former algorithms, the fifth one is the ratio between norms, and the
sixth one is the Hermite factor of the reduced basis of the sublattice, which
turns out to be slightly below 1.01dim. The factor 1.01dim was considered to be
the state-of-the-art limit in 2008 by Gama and Nguyen [9], which shows the
improvement.

Table 1. New Solutions for Darmstadt’s lattice challenge [24]

Dim(lattice) Dim(sublattice) New norm Previous norm Ratio Hermite factor

800 230 120.054 Unsolved 1.00978230

775 230 112.539 Unsolved 1.00994230

750 220 95.995 Unsolved 1.0976220

725 210 85.726 100.90 0.85 1.00978210

700 200 78.537 86.02 0.91 1.00993200

675 190 72.243 74.78 0.97 1.00997190

650 190 61.935 66.72 0.93 1.00993190

625 180 53.953 59.41 0.91 1.00987180

600 180 45.420 52.01 0.87 1.00976180

575 180 39.153 42.71 0.92 1.00977180

550 180 32.481 38.29 0.85 1.00955180

525 180 29.866 30.74 0.97 1.00990180

5.2 SVP Challenges

The SVP challenge [40] opened in May 2010. The lattices L are random integer
lattices of large volume, so that λ1(L) ≈ GH(L) with high probability. The
challenge is to find a nearly-shortest vector, namely a nonzero lattice vector of
norm ≤ 1.05GH(L). Using BKZ 2.0 with blocksize 75, 20%-pruning, we were
able to solve all challenges from dimension 90 to 112.

6 Predicting BKZ 2.0 by Simulation

We now present an efficient simulation algorithm to predict the performances of
BKZ 2.0 with high blocksize β ≥ 50 in high dimension, in terms of running time
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and output quality. Our simulation is fairly consistent with experiments using
several core-years on 64-bit Xeon processors, on random lattices and Darmstadt’s
lattice challenges. Accordingly, we believe that our simulation can be used to
predict approximately what can be achieved using much larger computational
power than used in our experiments, thereby leading to more convincing security
estimates.

6.1 Description

The goal of our simulation algorithm is to predict the Gram-Schmidt sequence
(‖b∗

1‖, ‖b∗
2‖, . . . , ‖b∗

n‖) during the execution of BKZ, more precisely at the be-
ginning of every round: a round occurs whenever j = 0 in Step 1 of Alg. 1, so
one round of BKZ costs essentially n− 1 enumeration calls. We assume that the
input basis is a “random” reduced basis, without special property.

The starting point of our simulation is the intuition, based on Sect. 4.3, that
the first minimum of most local blocks looks like that of a random lattice of
dimension the blocksize: this phenomenon does not hold in small blocksize ≤ 30
(as noted by Gama and Nguyen [9]), but it becomes more and more true as
the blocksize increases, as shown in Fig. 2, where we see that the expectation
and the standard deviation of λ1(L)

GH(L) seem to converge to that of a random
lattice. Intuitively, this may be explained by a concentration phenomenon: as

1/
G

H

Blocksize

Average value for local block during BKZ 
Standard deviation

1

1.02

1.04

1.06

1.08

1.1

1.12

20 25 30 35 40 45 50

Average value for random lattices

Standard deviation for random lattices

Fig. 2. Comparing λ1(L)
GH(L)

for a non-extreme local block during BKZ-β reduction, with
a random lattice of dimension β. Expectations with and without standard deviation
are given.

the dimension increases, random lattices dominate in the set of lattices, so unless
there is a strong reason why a given lattice cannot be random, we may assume
that it behaves like a random lattice.

Once we can predict the value of λ1(L[j,k]) for each local block, we know that
this will be the new value of ‖b∗

j‖ by definition of the enumeration subroutine,
which allows to deduce the volume of the next local block, and therefore iterate
the process until the end of the round. This gives rise to our simulation algorithm
(see Alg. 2).
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Algorithm 2. Simulation of BKZ reduction
Input: The Gram-Schmidt norms, given as �i = log(‖b∗

i ‖), for i = 1, . . . , n,
a blocksize β ∈ {45, . . . , n}, and a number N of rounds.

Output: A prediction for the Gram-Schmidt norms �′i = log(‖b∗
i ‖), i = 1, . . . , n, after

N rounds of BKZ reduction.
1. for k = 1, . . . , 45 do
2. rk ← average log(‖b∗

k‖) of an HKZ-reduced random unit-volume 45-dim lattice
3. end for
4. for d = 46, . . . , β, do cd ← log(GH(Zd)) = log(Γ (d/2+1)1/d

π1/2 ) end for
5. for j = 1, . . . , N do
6. φ← true //flag to store whether L[k,n] has changed
7. for k = 1 to n− 45 do
8. d← min(β, n− k + 1) // Dimension of local block
9. f ← min(k + β, n) //End index of local block

10. log V ←∑f
i=1 �i −

∑k−1
i=1 �′i

11. if φ = true then
12. if log V/d + cd < �k then
13. �′k ← log V/d + cd;
14. φ← false
15. end if
16. else
17. �′k ← log V/d + cd

18. end if
19. end for
20. log V ←∑n

i=1 �i −∑n−45
i=1 �′i

21. for k = n− 44 to n do
22. �′k ← log V

45
+ rk+45−n

23. end for
24. �1,...,n ← �′1,...,n

25. end for

We predict this first minimum λ1(L[j,k]) as follows:

– For most indexes j, we choose GH(L[j,k]), unless ‖b∗
j‖ was already better.

– However, for the last indexes j, namely those inside the last β-dimensional
block L[n−β+1,n], we do something different: since this last block will be HKZ-
reduced at the end of the round, we assume that it behaves like an HKZ-
reduced basis of a random lattice of the same volume. Since these averages
may be expensive to compute for large β, we apply a simplified rule: we
determine the last 45 Gram-Schmidt norms from the average Gram-Schmidt
norms (computed experimentally) of an HKZ-reduced basis of a random 45-
dim lattice of unit volume, and we compute the first β − 45 Gram-Schmidt
norms using the Gaussian heuristic. But this model may not work with bases
of special structure such as partial reductions of the NTRU Hermite normal
form, which is why we only consider random reduced bases as input.
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This simulation algorithms allows us to guess the approximate Hermite factor
achieved by BKZ 2.0, given an arbitrary blocksize, as summarized in Table 2:
for a given dimension n, one should run the simulation algorithm, because the
actual blocksize also depends on the dimension. As mentioned in Sect. 2, the

Table 2. Approximate required blocksize for high-dimensional BKZ, as predicted by
the simulation

Target Hermite Factor 1.01n 1.009n 1.008n 1.007n 1.006n 1.005n

Approximate Blocksize 85 106 133 168 216 286

Hermite factor dictates the performances at solving lattice problems relevant to
cryptography: see [9] for approx-SVP and unique-SVP, and [28,39,23] for SIS
and LWE. Obviously, we can only hope for an approximation, since there are
well-known variations in the Hermite factor when the input basis is randomized.

The simulation algorithm also gives us an approximate running time, using the
number of rounds, provided that we know the cost of the enumeration subroutine:
we will discuss these points more precisely later on.

6.2 Consistency with Experiments

It turns out that our simulation matches well with experiments using random
lattices and Darmstadt’s lattice challenges. First, the prediction of the Gram-
Schmidt sequence (‖b∗

1‖, ‖b∗
2‖, . . . , ‖b∗

n‖) by our simulation algorithm is fairly
accurate for random reduced bases, as shown in Fig. 3 This implies that our
simulation algorithm can give a good prediction of the Hermite factor of BKZ at
any given number of rounds, which is confirmed by Fig. 4. Furthermore, Fig. 4
suggests that a polynomial number of calls seems sufficient to obtain a Hermite
factor not very far from that of a full reduction: the main progress seems to
occur in the early rounds of BKZ, which justifies the use of aborted-BKZ, which
complements the theoretical results of [14].

Fig. 3. Predicted vs. actual values of Gram-Schmidt norms during BKZ-50 reduction
of a 200-dim random lattice
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Fig. 4. Evolution and prediction of (‖b1‖/vol(L)1/n)1/n during BKZ-90 reduction in
dim 180 for Darmstadt’s lattice challenges 500–625

6.3 Enumeration Subroutine

It remains to estimate the cost of the enumeration subroutine, with a radius
equal to the Gaussian heuristic. First, we computed upper bounds, by applying
extreme pruning on bases reduced with BKZ 2.0, following the search method
of [10]: Table 3 gives the approximate cost (in terms of logarithmic number of
nodes) of extreme pruning for blocksizes 100-250, using BKZ-75-20% as pre-
processing, and radius equal to the Gaussian heuristic. Numbers of nodes can

Table 3. Upper bound on the cost of the enumeration subroutine, using extreme
pruning with aborted-BKZ preprocessing. Cost is given as log2(number of nodes).

Blocksize 100 110 120 130 140 150 160 170 180 190 200 250
BKZ-75-20% 41.4 47.1 53.1 59.8 66.8 75.2 84.7 94.7 105.8 117.6 129.4 204.1

Simulation of BKZ-90/100/110/120 40.8 45.3 50.3 56.3 63.3 69.4 79.9 89.1 99.1 103.3 111.1 175.2

be approximately converted into clock cycles as follows: in the implementation
of [10], one node requires about 200 clock cycles for double-precision enumera-
tion, but this figure depends on the dimension, and for high blocksize, we may
need higher precision than double precision. For instance, Table 3 says that ap-
plying extreme pruning in blocksize 120 would cost at most approximately 253

nodes, which is less than 30 core-years on a 1.86-GHz Xeon, assuming double
precision. This is useful to determine parameters for feasible attacks. However,
these upper bounds should not be considered as tight: the performances of enu-
meration techniques depend on preprocessing, and it is likely that better figures
(than Table 3) can be obtained with better preprocessing, including BKZ 2.0
with different parameters. In fact, Table 3 also provides a better upper bound,
based on our simulation of BKZ with higher blocksizes 90–120 as a preprocess-
ing. In order to provide security estimates with a good security margin, we need
to estimate how much progress can be made. Interestingly, there are limits to
enumeration techniques. Nguyen [33] established a lower bound on the number
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of nodes at each depth of the enumeration tree, assuming that the Gaussian
heuristic estimates well the number of nodes (as is usual in analyzing the com-
plexity of enumeration techniques). The lower bounds are based on the Rankin
invariants γn,m(L) of a lattice:

γn,m(L) = min
S sublattice of L

dim S = m

(
vol(S)

vol(L)m/n

)2

.

In particular, [33] shows that the number of nodes in the middle depth
of a full enumeration of a d-dim lattice L with radius GH(L) is ≥ Vd/2(1)
√

γd,d/2(L)/Vd(1). For typical lattices L, the Rankin invariant γn,m(L) is heuris-
tically close to the following lower bound on Rankin’s constant γn,m (see [7]):

γn,m ≥
(

n

∏n
j=n−m+1 Z(j)
∏m

j=2 Z(j)

) 2
n

(2)

where Z(j) = ζ(j)Γ ( j
2 )/π

j
2 and ζ is Riemann’s zeta function: ζ(j) =

∑∞
p=1 p−j .

These lower bounds are for full enumeration, but they can be adapted to pruning
by taking into account the actual speedup of pruning (as analyzed in [10]), which
is asymptotically 2n/4 for high-probability pruning and 2n/2 for extreme pruning.
Table 4 gives the figures obtained with respectively the actual speedup of the
so-called linear pruning, and the asymptotical speedup 2n/2 of extreme pruning.
Compared to the upper bounds of Table 3, there is a significant gap: the lower

Table 4. Lower bounds on the cost (in log-nodes) of the enumeration subroutine using
linear pruning or extreme pruning, following [33,10]

Blocksize 100 120 140 160 180 200 220 240 280 380
Linear pruning 33.6 44.5 56.1 68.2 80.7 93.7 107.0 120.6 148.8 223.5

Extreme pruning 9 15 21.7 28.8 36.4 44.4 52.8 61.5 79.8 129.9

bound of linear pruning tells us how much progress could be made if a stronger
preprocessing was found for enumeration.

Finally, we note that asymptotically, heuristic variants [36,30,45] of sieve al-
gorithms [3] are faster than pruned enumeration. However, it is unclear how
meaningful it is for security estimates, since these variants require exponential
space and are outperformed in practice. And more experiments than [36,30]
would be required to evaluate precisely their practical running time. But our
model can easily adapt to new progress in the enumeration subroutine, due to
Table 2.

7 Revising Security Estimates

Here, we illustrate how our simulation algorithm can be used to obtain arguably
better security estimates than previously known.
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7.1 NTRU Lattices

In the NTRU cryptosystem [18], recovering the secret key from the public key
amounts to finding a shortest vector in high-dimensional lattices of special struc-
ture. Because NTRU security estimates are based on benchmarks with BKZ, it
is interesting to see the limits of this methodology.

In the original article [18], the smallest parameter set NTRU-107 corresponds
to lattices of dimension 214, and it was estimated that key recovery would cost
at least 250 elementary operations. The best experimental result to recover the
secret key for NTRU-107 by direct lattice reduction (without ad-hoc techniques
like [25,26,9] which exploit the special structure of NTRU lattices) is due to
May in 1999 [25], who reported one successful experiment using BKZ with SH
pruning [43], after 663 hours on a 200-MHz processor, that is 248.76 clock cycles.
We performed experiments with BKZ 2.0 on 10 random NTRU-107 lattices: We
applied LLL and BKZ-20, which takes a few minutes at most; We applied BKZ
-65 with 5%-pruning, and checked every 5 minutes if the first basis vector was
the shortest vector corresponding to the secret key, in which case we aborted.
BKZ 2.0 was successful for each lattice, and the aborted BKZ-65 reduction took
less than 2000s on the average, on a 2.83Mhz single core. So the overall running
time is less than 40 minutes, that is 242.62 clock cycles, which gives a speedup of
at least 70, compared to May’s experiment, and is significantly lower than 250

elementary operations. Hence, there is an order of magnitude between the initial
security estimate of 250 and the actual security level, which is approximately at
most 40-bit.

Now, we revisit recent parameters for NTRUSign. In the recent article by
Hoffstein et al. [17], a summary of the latest parameters for NTRU encryption
and signature is given. In particular, the smallest parameter for NTRUsign is
(N, q) = (157, 256), which is claimed to provide 80-bit security against all at-
tacks knowns, and 93-bit security against key-recovery lattice attacks. Similarly
to [9], we estimate that finding the secret key is essentially as hard as recovering
a vector of norm < q in a lattice of dimension 2N = 314 and volume qN , which
corresponds to a Hermite factor of 1.008862N . We ran our simulation algorithm
for these parameters to guess how many rounds would be required, depending
on the blocksize, starting from a BKZ-20 reduced basis (whose cost is negligible
here): about six rounds of BKZ-110 should be sufficient to break NTRUSign-
157, which corresponds to roughly 211 enumerations. And according to Table 3,
extreme pruning enumeration in blocksize 110 can be done by searching through
at most 247 nodes, which corresponds to roughly 254 clock cycles on a typical
processor. This suggests that the security level of the smallest NTRUSign pa-
rameter against state-of-the-art lattice attacks is at most 65-bit, rather than
93-bit, which is a significant gap.

7.2 Gentry-Halevi’s Fully-Homomorphic Encryption Challenges

We now turn to Gentry-Halevi’s main Fully-Homomorphic Encryption Chal-
lenges [11], for which no concrete security estimate was given. Decrypting a
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ciphertext amounts to solve a BDD instance, which can be done up to the dis-
tance mini ‖bi‖∗/2 using Babai’s nearest plane algorithm. Targetting a given
value of mini ‖bi‖∗ can be transformed into a target Hermite factor in the dual
lattice. This allows us to estimate the required Hermite factor to solve the BDD
instance, based on the approximate distance of the BDD instance and the lattice
volume, which is summarized in Table 5.

Table 5. Security Assessment of Gentry-Halevi’s main challenges [11]

Dimension n 512 2048 8192 32768
Name Toy Small Medium Large

Target Hermite factor [9] 1.67n 1.14n 1.03n 1.0081n

Algorithm expected LLL LLL LLL BKZ with blocksize ≈ 130
to decrypt a fresh ciphertext

Time estimate 30 core-days ≤ 45 core-years ≤ 68582 core-years ≈ 2100 clock-cycles

Accordingly, we speculate that decryption for the toy, small and medium
challenge can be solved by LLL reduction, which is not straightforward due to
the lattice dimension and the gigantic bit-size of the basis (note that there is
new theoretical progress [37] on LLL-reduction for large entries). We checked
that this was indeed the case for the toy challenge, by performing an actual
reduction using a modification of fplll [4]. For the small and medium challenges,
we extrapolated running times from truncated challenges, using the fact that our
modification of fplll has heuristic running time O(n3d2) where d is the bit-size of
the lattice volume, where the O constant depends on the floating-point precision
(which increases with the dimension). According to our simulation, breaking the
large challenge would require a blocksize ≈ 130 and approximately 60000 rounds
(starting from an LLL basis), that is, 231 enumeration calls. Based on Table 3,
this enumeration routine would cost at most 260 nodes, so the security offered
by the large challenge is at most roughly 100-bit. On the other hand, if ever
a stronger preprocessing for enumeration is found, Table 4 suggests that the
security level could potentially drop by a factor in the range 210 − 240.
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