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Abstract. The temporal segmentation of a video sequence is one of the
most important aspects for video processing, analysis, indexing, and re-
trieval. Most of existing techniques to address the problem of identifying
the boundary between consecutive shots have focused on the uncom-
pressed domain. However, decoding and analyzing of a video sequence
are two extremely time-consuming tasks. Since video data are usually
available in compressed form, it is desirable to directly process video
material without decoding. In this paper, we present a novel approach
for video cut detection that works in the compressed domain. The pro-
posed method is based on both exploiting visual features extracted from
the video stream and on using a simple and fast algorithm to detect the
video transitions. Experiments on a real-world video dataset with sev-
eral genres show that our approach presents high accuracy relative to
the state-of-the-art solutions and in a computational time that makes it
suitable for online usage.

Keywords: video analysis, temporal segmentation, shot boundary, cut
detection, compressed domain.

1 Introduction

Recent advances in technology have increased the availability of video data,
creating a strong requirement for efficient systems to manage those materials.

Making efficient use of video information requires that the data be stored in
an organized way. For this, it must be divided into a set of meaningful and man-
ageable units, so that the video content remains consistent in terms of camera
operations and visual events. This has been the goal of a well-known research
area, called video segmentation [9].

Different techniques have been proposed in the literature to address the tem-
poral segmentation of video sequences [5, 7, 10, 12–16]. Many of those research
works have focused on the uncompressed domain. Although existing methods
provide a high quality, they are extremely time-consuming and require a huge
amount of space.

In this paper, we present a novel approach for temporal segmentation of video
sequences that operates directly in the compressed domain. It relies on exploiting
visual features extracted from the video stream and on a simple and fast algo-
rithm to detect the video transitions. The improvement of the computational
efficiency makes our technique suitable for online tasks.
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We evaluate the proposed algorithm on a real-world video dataset with differ-
ent video genres and compare our technique with the state-of-the-art approaches
for temporal video segmentation. Results from an experimental evaluation over
several types of video transitions show that our method presents high accuracy
and computational speed.

The remainder of this paper is organized as follows. Section 2 describes related
work. Section 3 presents our approach and shows how to apply it to segment a
video sequence. Section 4 reports the results of our experiments and compares our
technique with other methods. Finally, we offer our conclusions and directions
for future work in Section 5.

2 Basic Concepts and Related Work

A video shot is a series of inter-related frames captured from a single camera.
In the editing stage of video production, video shots are joined together to form
the complete sequence. They represent a continuous action in time and space,
where no changes in scene content can be perceived [8].

There are two different types of transitions that can occur between shots:
abrupt (discontinuous) transitions, also referred as cuts; and gradual (continu-
ous) transitions, which include camera movements (e.g., panning, tilting, zoom-
ing) and video editing effects (e.g., fade-in, fade-out, dissolving, wiping) [9].

A comprehensive review of methods to address the problem of identifying the
boundary between consecutive shots can be found in [9, 11]. Most of existing
research works have focused on the uncompressed domain. Although those tech-
niques provide a high quality, they spend lots of time and space for decoding
and analyzing a video sequence. For this reason, such approaches are unsuitable
for online tasks.

The most common approach relies on the definition of similarity metrics be-
tween consecutive frames. Usual metrics are based on pixel-wise differences [16]
and color histograms [13]. Tracking of image features (e.g., edges [14]) can also
be used to detect the shot boundary, since they tend to disappear in a cut. In
a different approach, patterns are detected in a bi-dimensional subsampling of
the video, called video slice or visual rhythm [5, 7].

Since video data are usually available in compressed form, it is desirable to
directly process the compressed video without decoding. It allows us to save high
computational load in full decoding the video stream.

Several methods for video segmentation that directly manipulate compressed
have been proposed for specific domains, such as sports, music, and news [10, 12,
15]. Focusing on a particular domain helps to reduce levels of ambiguity when
analysing the content of a video by applying prior knowledge of the domain
during the analysis process [9].

Different from all of the previous techniques which operate directly in the
compressed domain, our approach is designed to segment generic videos and,
hence, it does not use any specific information beyond the video content.
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3 Our Approach

Video data have a lot of redundant information. For saving computational time,
the video stream is divided into a set of meaningful and manageable units. Most
video codecs (e.g., MPEG-1/2/4) are based on GOPs as basic units. The I-frame
contains enough information to characterize the content of the whole GOP.

The compression of the I-frames of a MPEG video is carried out by dividing
the original image into 8x8 pixel blocks and transforming the pixels values of
each block into 64 DCT coefficients. The DC term c(0, 0) is related to the pixel
values f(i, j) via the following equation [15]:

c(0, 0) =
1
8

7∑

x=0

7∑

y=0

f(x, y).

In other words, the value of the DC term is 8 times the average intensity of
the pixel block. If we extract the DC term of all the pixel blocks, we can use
those values to form a reduced version of the original image. This smaller image
is known as the DC image [15]. Fig. 1 illustrates an original image of size 384 ×
288 and its DC image with 48 × 36.

Fig. 1. Original image at 384 × 288 and its DC image at 48 × 36. Frame extracted
from the video I of the test set.

Initially, we discard a lot of GOPs by computing the pairwise dissimilarity of
consecutive I-frames. For this, we convert each DC image to a 256-dimensional
feature vector by computing a color histogram. It is extracted as follows: the
YCbCr color space is divided into 256 subspaces (colors), using 16 ranges of Y,
4 ranges of Cb, and 4 ranges of Cr. The value for each dimension of the feature
vector is the density of each color in the entire DC image.

Let Hi be the i-th bin of the color histogram H. We measure the dissimilarity
between the I-frames by using the well-known histogram intersection, which is
define as

d(Ht1 ,Ht2) =
∑

i min(Hi
t1 ,Hi

t2)∑
i Hi

t1

,

where Ht1 and Ht2 are the color histograms extracted from the I-frames taken
at the times t1 and t2, respectively. This function returns a real value ranging
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Fig. 2. Pairwise dissimilarities of between frames of the video I of the test set

from 0 for situations in which those histograms are not similar at all, to 1 for
situations in which they are identical.

Fig. 2 shows an example of how those values are distributed along time. It
can be observed that there are instants of time in which the dissimilarity value
varies considerably (corresponding to peaks), while there are longer periods in
which the variance is small (corresponding to very dense regions). Usually, peaks
correspond to sudden movements in the video or to shot boundaries.

We analyze only the GOPs for which the histogram intersection is below
0.85. If they are completely intra-coded (i.e., only I-frames), we compute the
normalized pixel-wise difference of the luminance (Y) between the DC-images.
Then, an abrupt cut is declared every time the dissimilarity value is greater than
0.3 and the normalized pixel-wise difference is greater than 0.1. The choice of
those values is detailed in Section 4.

Otherwise, we exploit the motion compensation algorithm to detect shot
boundaries. For this, we examine the number of inter-coded macroblocks inside
each P or B-frame. The main idea is that the motion compensation algorithm
cannot find a good match in the nearest past and/or future I and/or P-frames
if the GOP are in the shot boundary.

This causes most of the macroblocks of the P-frames to be intra-coded instead
of inter-coded. If the ratio of the number of intra-coded macroblocks to the total
number of macroblocks is greater than 0.1, there is a high probability to exist a
cut in the neighborhood of this P-frame. In this case, we analyze its precedent
B-frames to detect both type and location of this video transition. For GOPs
that do not contain B-frames, an abrupt cut is declared if the percentage of
intra-coded macroblocks in this P-frame is greater than 60%.

Three possible behaviours for the macroblocks of the B-frames are shown in
Fig. 3. The width of the arrows indicate the dominant direction for the motion
compensation. In this work, a B-frame has a dominant direction if the number
of macroblocks with motion compensation in a given direction is the double of
that in the opposite direction.

If most of the B-frames are encoded with forward motion compensation, an
abrupt transition is detected between the last B-frame and its subsequent anchor
frame (I or P). On the other hand, if most of the B-frames are encoded with
backward motion compensation an abrupt transition is detected between the
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Fig. 3. The possible behaviours for the macroblocks of the B-frames

first B-frame and its precedent anchor frame (I or P). Finally, if the forward
direction is dominant in the first half of the B-frames and the backward direction
is dominant the last half of the B-frames, then an abrupt cut is detected in the
middle of those sequence. In order to avoid false alarms, a video transition is
declared only if the percentage of intra-coded macroblocks in such B-frames is
greater than 50%.

If none of the above conditions is satisfied, we check if there exists a possi-
ble gradual transition. For this, we examine the variation of the percentage of
inter-coded macroblocks with forward motion compensation along the frames of
the GOP. In the case of gradual transitions, those values form a plateau (i.e.,
an isosceles trapezoid), as first observed by Yeo and Liu [15]. Since a gradual
transition has a certain duration, at least 7 frames should be involved to declare
a shot boundary.

4 Experiments and Results

Experiments were carried out on a real-world video dataset with known ground-
truth data. For benchmarking purposes, we used the test set1 presented in [14].
This benchmark contains 10 video sequences, including a variety of genres and
quality levels, as shown in Table 1.

For selecting the threshold values used to detect video transitions, we com-
puted the pairwise similarities of consecutive frames. Remember that the simi-
larity value between the I-frames is measured using the histogram intersection,
whereas for P- or B-frames the similarity value relies on the ratio of the number
of inter-coded macroblocks to the total number of macroblocks.

Fig. 4 presents the probability density function (PDF) for the distribution of
the similarity value of sequential and transitional frames. Notice that the PDF
curves for the different types of video frames are well-separated, evidencing the
high discriminating capability of our strategy.
1 All the video sequences and the ground-truth data are available at
http://www.site.uottawa.ca/~laganier/videoseg/

(last accessed on 20 July 2011).

http://www.site.uottawa.ca/~laganier/videoseg/
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Table 1. The main characteristics of each video sequence in test set

Video Genre Dur. (s) Dim. GOP size # Frames
A cartoon (low quality) 21 192 × 144 6 650
B action (motion) 38 320 × 142 6 959
C horror (black/white) 53 384 × 288 2 1619
D drama (high quality) 105 336 × 272 15 2632
E science-fiction 17 384 × 288 2 536
F commercial (effects) 7 160 × 112 15 236
G commercial 16 384 × 288 1 500
H comedy 205 352 × 240 12 5133
I news 15 384 × 288 1 479
J action 36 240 × 180 12 873
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Fig. 4. The probability density function (PDF) for the distribution of the similarity
value of different types of video frame

We assess the effectiveness of the proposed method using the metrics of pre-
cision and recall. Precision (P ) is the ratio of the number of temporal positions
correctly identified as cuts to the total number of temporal positions identified as
cuts. Recall (R) is the ratio of the number of temporal positions correctly iden-
tified as cuts to the total number of cuts in the video sequence. However, there
is a trade-off between precision and recall. Greater precision decreases recall and
greater recall leads to decreased precision. So, we also employ the F-measure for
assessing the quality of the temporal segmentation. The F-measure (F ) combines
both precision and recall into a single measure by a harmonic mean:

F =
2 × P × R

P + R
.

The experiments were performed on a machine equipped with an Intel Core 2
Quad Q6600 processor (four cores running at 2.4 GHz) and 2 GBytes of DDR3-
memory. The machine run Ubuntu Linux (2.6.31 kernel) and the ext3 file system.

Table 2 compares our technique with four different approaches: (1) histogram-
based method [13], (2) feature-based method with automatic threshold selec-
tion [14], (3) visual rhythm with longest common subsequence (LCS) [5], and
(4) visual rhythm with clustering by k-means [7]. The average rates of each qual-
ity measure correspond to the weighted mean of individual results, whose weights
are the total number of cuts in each video. In addition, the weighted standard
deviations reveal the amount of dispersion with respect to those values.



Rapid Cut Detection on Compressed Video 77

Table 2. Comparison of precision (P ), recall (R), and F-measure (F ) achieved by
different approaches for each video of the test set

Our proposal Visual rhythm Visual rhythm Feature tracking Histogram
(compressed) with k-means [7] with LCS [5] method [14] (MOCA) [13]Video
P R F P R F P R F P R F P R F

A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.857 0.923 1.000 1.000 1.000 1.000 1.000 1.000
B 1.000 1.000 1.000 0.500 1.000 0.667 0.096 1.000 0.176 1.000 1.000 1.000 1.000 0.375 0.545
C 0.891 0.907 0.899 0.662 0.907 0.766 0.635 0.870 0.734 0.595 0.870 0.707 0.936 0.536 0.682
D 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.971 0.985 1.000 1.000 1.000 1.000 0.941 0.969
E 0.815 0.786 0.800 0.828 0.857 0.842 0.676 0.821 0.742 0.938 1.000 0.968 0.955 0.700 0.808
F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G 0.938 0.833 0.882 0.950 1.000 0.974 1.000 0.842 0.914 0.810 0.944 0.872 1.000 0.667 0.800
H 0.974 0.949 0.961 0.949 0.974 0.961 0.943 0.868 0.904 0.895 0.895 0.895 0.971 0.895 0.932
I 1.000 1.000 1.000 1.000 1.000 1.000 0.667 0.500 0.571 1.000 1.000 1.000 1.000 0.500 0.667
J 0.776 0.506 0.612 0.683 0.869 0.765 0.639 0.885 0.742 0.497 0.897 0.637 0.850 0.395 0.540

Avg. 0.882 0.786 0.825 0.793 0.923 0.848 0.745 0.878 0.789 0.730 0.924 0.803 0.932 0.621 0.730
Dev. 0.095 0.213 0.164 0.156 0.061 0.111 0.205 0.067 0.153 0.220 0.054 0.157 0.063 0.229 0.178

The results indicate that the proposed method is robust to several conditions
(e.g., frame rate, frame size, total duration, etc.), showing high accuracy com-
pared to the state-of-the-art solutions. Notice that our approach provides the
best achievable F-measure for the majority of the video sequences (7 of 10).

The key advantage of our technique is its computational efficiency. Since the
time required to segment video sequences is hardware dependent (with faster
hardware the computational speed increases and the production time decreases)
and the source codes of all the compared methods are not available, it is impos-
sible to perform a fair comparison of performance in relation to our technique.

In order to evaluate the efficiency of our approach, we analyze the time per
frame spent for processing all the steps of our algorithm, excluding the time for
the partial decoding of each frame. We performed 10 replications for each video
in order to guarantee statistically sound results.

According to those experiments, all the steps of our technique takes a mean
time equals to 112 ± 38 microseconds per frame (confidence higher than 99.9%).
For online usage, by considering a maximum waiting time of 39 seconds [6], the
proposed method can be used for videos up to 349515 frames (about 194 minutes
at 29.97 frames per second). It is important to recall that those values depend
on the computational power of the employed hardware.

5 Conclusions

In this paper, we have presented a novel approach for video cut detection that
works in the compressed domain. Our technique relies on exploiting visual fea-
tures extracted from the video stream and on using a simple and fast algorithm
to detect the video transitions. Such combination makes our technique suitable
for online usage.

We have validated our technique using a real-world video dataset with dif-
ferent video genres and compared our technique with the state-of-the-art ap-
proaches for temporal video segmentation. Results from an experimental evalu-
ation over several types of video transitions show that our method presents high
accuracy and computational speed.
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Future work includes the evaluation of other visual features and similarity
metrics. In addition, the proposed method can be augmented to consider local
features [4] and/or motion analysis [2, 3]. Finally, we want to investigate the ef-
fects of integrating our technique into a complete system for search-and-retrieval
of video sequences [1].
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