
E. Altman and W. Shi (Eds.): NPC 2011, LNCS 6985, pp. 185–200, 2011.
© IFIP International Federation for Information Processing 2011

An Efficient Checkpointing Scheme Using Price History
of Spot Instances in Cloud Computing Environment

Daeyong Jung1, SungHo Chin1, KwangSik Chung2, HeonChang Yu1,
and JoonMin Gil3,*

1 Dept. of Computer Science and Education, Korea University, Seoul, Korea
2 Dept. of Computer Science, Korea National Open University, Seoul, Korea

3 School of Computer & Information Communications Engineering,
 Catholic University of Daegu, Daegu, Korea

{karat,wingtop,yuhc}@korea.ac.kr,
kchung0825@knou.ac.kr,jmgil@cu.ac.kr

Abstract. The cloud computing is a computing paradigm that users can rent
computing resources from service providers as much as they require. A spot in-
stance in cloud computing helps a user to utilize resources with less expensive
cost, even if it is unreliable. When a user performs tasks with unreliable spot in-
stances, failures inevitably lead to the delay of task completion time and cause a
seriously deterioration in the QoS of users. Therefore, we propose a price histo-
ry based checkpointing scheme to avoid the delay of task completion time. The
proposed checkpointing scheme reduces the number of checkpoint trials and
improves the performance of task execution. The simulation results show that
our scheme outperforms the existing checkpointing schemes in terms of the re-
duction of both the number of checkpoint trials and total costs per spot instance
for user’s bid.

Keywords: Cloud computing, Checkpointing, Spot instances, Price history.

1 Introduction

Cloud computing is a type of parallel and distributed system consisting of a collection
of interconnected and virtualized computers that are dynamically provisioned and
presented as one or more unified computing resources based on service-level agree-
ments established through negotiation between the service provider and consumers
[1]. Typically, cloud computing services provide high level of scalability of IT re-
sources with combined Internet technology to multiple customers [2].

Many definitions of cloud computing have been suggested [3, 4, 5]. Recently,
several commercial cloud systems have been developed, such as Amazon EC2 [6],
GoGrid [7], and FlexiScale [8]. Open-source cloud computing middlewares such as
Eucalyptus [9], OpenNebula [10], and Nimbus [11] have been also provided in this
literature. In the most of these clouds, the concept of an instance unit is used to pro-
vide users with resources in a cost-efficient way. An instance means the VM (Virtual

* Corresponding author.

186 D. Jung et al.

Machine) which is suitable for users' requirements. Generally, instances are classified
into two types: on-demand instances and spot instances. The on-demand instances
have a task execution for compute capacity by the hour with no long-term commit-
ments. This frees users from the costs and complexities of planning, purchasing, and
maintaining hardware and transforms what are commonly large fixed costs into much
smaller variable costs [6]. While, the spot instances allow users to bid on unused
cloud computing capacity and run those instances for as long as their bid exceeds the
current spot price. The spot price changes periodically based on supply and demand,
and users whose bids meet or exceed it gain access to the available spot instances. If
users have flexibility in when applications can run, spot instances can significantly
lower users’ costs [6]. For task completion, therefore, spot instances have lower costs
than on-demand instances. However, there is a problem that task failures can be
incurred by the use of spot instances with higher cost than user suggested bid.

In this paper, we attempt to find a solution for an efficient checkpointing scheme in
unreliable cloud computing environments and propose a price history based check-
pointing scheme, by which users can pay the optimal cost based on SLA (Service
Level Agreement). In the scheme, SLA management is done by the coordinator. The
coordinator supports and manages SLA between users and instances. The failure of
instances results in the delay of task completion time, so we design the cost-efficient
checkpointing algorithm to solve the failure problem. In our proposed scheme, the
checkpoints are taken on two points. One is the checkpoint taken on the rising edge in
an execution bid when spot prices are more than a given threshold. The other is the
checkpoint taken on the point when failure occurrence time is predicted by average
execution time and failure possibility in an execution bid. Moreover, we carry out
simulations to demonstrate the effectiveness of our scheme. Simulation results show
that our scheme outperforms the existing schemes, such as hour-boundary checkpoint-
ing [17] and rising edge-driven checkpointing [14], in term of the reduction of both
the number of checkpoint trials and total costs per spot instance for user' bid.

The rest of this paper is organized as follows: Section 2 briefly describes related
work on checkpoint and SLA in cloud computing. Section 3 presents our system ar-
chitecture and its components. Section 4 presents our SLA and checkpoint algorithms
based on the price history of spot instances. Section 5 presents performance evalua-
tions with simulations. Lastly, Section 6 concludes the paper.

2 Related Work

The unreliable cloud computing environment (spot instances) is less cost than reliable
cloud computing environment (on-demand instances) in task processing environment.
However, in unreliable cloud computing, it is difficult to estimate the total execution
time of tasks and the total cost to be paid by users. Moreover, since task failures
frequently occur according to the supply of instances and the demand of users on
instances in unreliable cloud computing, many systems have used the checkpoint
mechanisms to minimize task loss and reduce the rollback time of tasks.

In [12], authors proposed spot instance scheme that users can decide a minimum
cost according to an SLA agreement between users and instances in Amazon's EC2.
The scheme is based on a probabilistic model for the optimization of cost, perfor-

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 187

mance and reliability and improved the reliability of services by changing dynamical-
ly conditions to satisfy user requirements. To improve the reliability of services, this
paper focuses on user costs rather than the point to be taken a checkpoint.

Due to the dynamic nature of the cloud computing, continuous monitoring on
Quality of Service (QoS) attributes is necessary to enforce SLAs. In [13], authors
proposed a mechanism for managing SLAs in cloud computing environment using the
Web Service Level Agreement (WSLA) framework developed for SLA monitoring
and SLA enforcement in a Service Oriented Architecture (SOA).

In [2], cloud platforms host several independent applications on a shared resource
pool with the ability to allocate computing power to applications on per-demand ba-
sis. This paper proposed an autonomic resource manager to control the virtualized
environment which decouples the provisioning of resources from the dynamic place-
ment of virtual machines. This manager aims to optimize a global utility function
which integrates both the degree of SLA fulfillment and computational costs.

In [13] and [2], authors focuses on cloud resource management in the reliable
cloud computing environment, but this paper focuses on the unreliable cloud compu-
ting environment for the resource management applied to the SLA.

[14] introduced the spot instances of the Amazon Elastic Compute Cloud (EC2) to
offer less resource costs in exchange for reduced reliability. Based on the actual price
history of EC2 spot instances, authors compared several adaptive checkpointing
schemes in terms of monetary costs and the improvement of job completion time.

In this paper, we propose checkpoint scheme based on SLA to satisfy user require-
ments. Moreover, we compare our proposed checkpointing scheme with the existing
checkpointing schemes (hour boundary checkpointing [17] and rising edge check-
pointing [14]).

3 System Architecture

Fig. 1 shows the cloud computing environment assumed in this paper. This cloud
computing environment basically consists of four entities: a cloud server, a storage
server, cluster servers, and cloud users. The cloud server is connected to cluster

Fig. 1. Cloud computing environment

188 D. Jung et al.

servers and storage servers. The cluster server is composed of a lot of nodes. The
cloud users can access the cloud server via the cloud portal to utilize the nodes in the
cluster servers as resources. Therefore, the cloud server takes the responsibility of
finding virtual resources to satisfy the user's requirements, such as SLA requirements
and QoS requirements. The coordinator in the cloud server manages tasks and is re-
sponsible for the SLA management. We focus on the coordinator and the VM, which
play an important role in our checkpointing scheme.

3.1 Layer Structure

Fig. 2 shows the structure of coordinator in the cloud server that is composed of sche-
duler, VM Information Manager, History Manager, SLA Manager, QoS Manager and
VM Information Collector. In the coordinator, the four managers are responsible for
generating and maintaining a list of available VMs, based on the information col-
lected from VM Information Collector. The VM Information Collector collects VM
information and provides it for VM information Manager. The VM Information Man-
ager generates a list of CPU utilization, available memory and storage space, network
bandwidth, and so on. The History Manager manages the history data, in which the
past bid and execution time of spot instances are accumulated. SLA Manager and
QoS Manager manage the SLA requirements and the QoS requirements, respectively.
When a cloud user requests job execution, the Scheduler allocates the requested job to
the selected VM.

Fig. 2. The structure of Coordinator

Fig. 3. The structure of Virtual Machine

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 189

Fig. 3 shows the structure of the VM. In this figure, VM Status Collector collects
the status information of the VM, such as CPU utilization and memory space. VM
Information Provider extracts resource information needed for job execution using the
VM status Collector and delivers the resource information to VM Manager. Job ex-
ecution Manager executes a requested job from the coordinator and returns a job re-
sult to VM Manager, and then VM Manager delivers the result to the coordinator.
Checkpoint Manager manages checkpointing status and the data checkpointed by the
Checkpoint Manager is stored to Checkpoint Storage.

3.2 Instances Types

An instance means the VM that a cloud user uses. The instances are classified into
two types: on-demand instances and spot instances. In on-demand instances, users can
use VM resources after paying a fixed cost to lend instances per hour. On the other
hand, using the spot instances, users can use VM resources only when the price of
instances is smaller than other users' bid. The difference between the two instance
types is as follows: in on-demand instances, a failure does not occur during task ex-
ecution, but the cost is comparatively high. On the contrary, the cost of spot instances
for task completion is lower than that of on-demand instances. However, task failures
are inevitably encountered when there exist the instances with higher price than a
user's bid.

Fig. 4. Price history of EC2's spot instances

Amazon allows users to bid on unused EC2 capacity provided as 42 types of spot
instances [15]. Their prices that are called spot prices are changed dynamically based
on supply and demand. Fig. 4 shows examples of fluctuations of spot price for c1-
xlarge (Standard Spot Instances - Extra Large) and m1-xlarge (High-Memory Spot
Instances - Extra Large) during 7 days on November 2010 [16]. Our proposed system
model is based on the characteristics of Amazon EC2's spot instances.

• The system provides a spot instance when user's bid is greater than the current
price.

• The system stops immediately without any notice when user's bid is less than or
equal to the current price. We call this an out-if-bid event or a failure.

• The system does not charge the latest partial hour when the system stops an in-
stance.

190 D. Jung et al.

• The system charges the latest partial hour when the user terminates an instance.
• The system provides the history of spot price.

4 The SLA Based Checkpointing Scheme

In this section, we propose the SLA (Service Level Agreement) based checkpointing
scheme in the spot instances.

4.1 SLA Based on Price History Using Spot Instances

Fig. 5 shows the process of SLA between a user and an instance. A user determines
an instance type and the user's bid to begin tasks in the instance. The coordinator
calculates a task execution time based on user configurations, such as the user's bid
and the instance type. Then, the coordinator sends a request message to the selected
instance to investigate the performance of the instance and calculates the expected
execution time, the expected failure time and the expected cost. In addition, the coor-
dinator sends a user the expected execution time and cost. When a task is completed
in the selected instance, the coordinator receives task results from the instance and
sends them to the user. In Fig. 5, the prediction function plays an important role in our
SLA processing because it performs the estimation process of the expected failure
time, the expected execution time, and the expected cost using price history. The
following shows a detailed description for the prediction function.

Fig. 5. SLA processing

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 191

Fig. 6. Extraction of expected execution time from price history

Fig. 6 shows an illustrative example for task execution time, past available time,
expected execution time, and expected failure time. The detailed definition for them is
as follows:

• Task execution time: the total time needed to execute a task in the selected instance
without failures.

• Past available time: the average execution time performed on the selected instance
in the past time, excluding failure time. It is extracted from price history.

• Expected failure time: the time period when the spot price extracted from the price
history exceeds a user's bid; i.e., a total sum of failure time in the past time.

• Expected execution time: the sum of the past available time and the expected fail-
ure time.

• Total expected cost: the sum of costs that is charged for task execution.

4.2 Fault Tolerance Mechanisms Using Checkpoints

In the spot instance environment, a task fails when the cost exceeds the user's bid.
Typically, this problem has been solved by using the checkpointing scheme, one of
fault tolerance mechanisms [14]. In this section, we explain the existing checkpoint-
ing schemes and our proposed checkpointing scheme.

4.2.1 Hour-Boundary Checkpointing Scheme
Fig. 7 illustrates the hour-boundary checkpointing scheme. This scheme takes a
checkpoint in time boundaries, and a user pays the cost per hour without the user's
bid. If the failure of a task is occurs, the running task is stopped. The task is restarted
at the position of the last checkpoint.

Fig. 7. Hour-boundary checkpointing

192 D. Jung et al.

4.2.2 Rising Edge-Driven Checkpointing Scheme
Fig. 8 shows the rising edge-driven checkpointing scheme. This scheme takes a
checkpoint when the cost is less than user's bid and the cost of spot instances is raised.
It will increase the number of checkpoints significantly when cost is frequently fluc-
tuated. The critical problem associated with this scheme is that the rollback time be-
comes long in case that the rising edge is not appeared in spot price for a long period
after a checkpoint is taken. This leads to longer task completion time.

Fig. 8. Rising edge-driven checkpointing

4.2.3 Our Proposed Checkpointing Scheme
Fig. 9 illustrates our proposed checkpointing scheme. This scheme basically performs
checkpointing operation using two kinds of thresholds, price threshold and time thre-
shold, based on the expected execution time of the price history. Now, let at and bt

denote, respectively, a start point and an end point in the expected execution time.
Based on at and bt , we obtain the price threshold (PriceTh) and the time threshold

(
ipTimeTh), which are used as thresholds in our proposed checkpoint scheme.

Fig. 9. Our proposed checkpointing scheme

The price threshold, PriceTh , can be calculated by

min

2
bidP User

PriceTh
+

=

where bidUser represents the bid suggested by the user. minP represents an availa-

ble minimum price in a period between at and bt as follows:

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 193

min (,)a bP PriceMin t t=

The time threshold of price iP ,
ipTimeTh , can be calculated by

(,) (1)
i i ip P a b pTimeTh AvgTime t t F= × −

where
ipF is the failure probability of price iP and (,)

iP a bAvgTime t t

represents the

average execution time of iP in a period between at and bt .

Fig. 10. Checkpointing and recovery algorithms

Using these two thresholds, our proposed checkpointing scheme performs check-
point operations according to two cases: first case is that a checkpoint is performed
when there is a rising edge between the user’s bid and the price threshold. Second
case is based on the failure probability and average execution time of each price. A
checkpoint is performed when the time threshold exceeds the execution time of cur-
rent price.

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Boolean flag = false // a flag representing occurrence of a task failure
while (!task execution finishes) do
 if (spot prices < User's bid) then
 if (flag) then
 Recovery ();
 flag = false;
 end if
 if (!flag) then
 if (rising edge && Price Threshold ≤ spot prices) then
 Checkpoint ();
 end if
 if (Time Threshold < execution time in current price) then
 Checkpoint ();
 end if
 end if
 end if
 if (failure is occurred) then
 flag = true;
 end if
end while
Function Checkpoint ()
 take a checkpoint on the spot instance;
 send the checkpoint to the storage;
end Function
Function Recovery ()
 rollback the checkpoint to the storage;
 restart the job execution;
end Function

194 D. Jung et al.

Fig. 10 shows the checkpointing and recovery algorithms used in our proposed
scheme. In the algorithms, the flag representing the occurrence of a task failure is
initially set to false. The checkpointing process repeats until all tasks are completed.
When task execution is normal (i.e., the flag is false), the scheduler performs check-
point process to provide against job failure (lines 2-20). Recovery process is per-
formed when the flag is true (lines 4-7). Two cases of checkpoints are performed
(lines 8-15). If the rising spot price is between user’s bid and price threshold, the
scheduler performs checkpointing operation (lines 9-11). If the execution time is
greater than the time threshold, the scheduler also performs checkpointing operation
(lines 12-14). When task failure event occurs, the flag is set to true to invoke the re-
covery function (lines 17-19). Lines 21-24 and 25-28 show a detail process of the
checkpointing and recovery, respectively.

Our proposed scheme can reduce checkpointing overhead because the number of
checkpoints is less than that of the existing checkpointing schemes (hour-boundary
checkpointing and rising edge-driven checkpointing). In our proposed scheme, the
two thresholds and expected failure time are calculated based on price history. The
thresholds are dynamically changed according to the price behavior of instances in the
price history.

5 Performance Evaluation

In this section, we evaluate the performance of our checkpointing scheme using simu-
lations and compare it with that of the other checkpointing schemes.

5.1 Simulation Environments

Our simulations are conducted using the history data obtained from the Amazon
EC2's spot instances [16], which is accumulated during a period from 11-15-2010 to
11-22-2010 as shown in Fig. 4. The history data before 11-18-2010 are used to extract
the expected execution time and failure occurrence probability for our checkpointing
scheme. The applicability of our checkpointing scheme is tested using the history data
after 11-18-2010, which are also used for hour-boundary checkpointing and rising
edge-driven checkpointing schemes.

In the simulations, two types of spot instances are applied to show the effect of two
different resource types on the performance of three checkpointing schemes; one
resource type is a computing-type instance and another type is a memory-type in-
stance. Table 1 shows the resource types used in our simulation. In this table,
c1.xlarge offers more compute units than other resources and can be used for com-
pute-intensive applications. On the other hand, m1.xlarge offers much memory capac-
ity than other resources and can be used for high-throughput applications, including
database and memory caching applications. Under the simulation environments, we
compare the performance of our checkpointing scheme with that of the two check-
pointing schemes in terms of the task execution time, the failure time, the number of
failures, and the number of checkpoints.

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 195

Table 1. Resource types

Instance type name Compute
unit

Virtual
cores

Memory Storage Platform

c1.xlarge
(computing Instance)

8 EC2 4core
(2 EC2)

15GB 1690GB 64-bit

m1.xlarge
(high-memory Instance)

6.5 EC2 2core
(3.25 EC2)

17.1GB 420GB 64-bit

5.2 The Analysis of Computing-Type Instances

Before analyzing the performance of our checkpointing scheme, we firstly extract
parameter values from the spot history presented in Fig. 4(a). Table 2 shows the simu-
lation parameters and values used for the analysis of computing-type instances.

Table 2. Simulation parameters and values for c1.xlarge instance

Simulation
parameter

Task
time

Max
Bid

Average
bid

Min
bid

Checkpoint
time

Recovery
time

Value 259200(s) 0.336($) 0.319($) 0.304($) 300(s) 300(s)

We also extract the failure occurrence probability for each price from the spot his-

tory (11-15-2010 ~ 11-18-2010) presented in Fig. 4(a). The extracted failure occur-
rence probability is used to determine the time threshold in our checkpointing scheme.
Fig. 11 shows the failure occurrence probability for c1.xlarge instance. In this figure,
X and Y-axis mean spot price and failure occurrence probability per spot price for a
given user’s bid, respectively.

Fig. 11. Failure occurrence probability for c1.xlarge instance

Fig. 12 shows the performance comparison of our checkpointing scheme with hour-
boundary checkpointing and rising edge-driven checkpointing schemes when tasks in
c1.xlarge instance are used. Fig. 12(a) shows the effect of total task execution time
and total failure time on the performance of three checkpointing schemes. Fig. 12(b)
shows the effect of the number of failures and checkpoints in each user's bid on the
performance of three checkpointing schemes.

0.305 0.310 0.315 0.320 0.325 0.330 0.335
0

5

10

15

20

25

30 Usr's Bid ($)
 0.31
 0.315
 0.32
 0.325
 0.33
 0.335

P
ro

ba
bi

lit
y

(%
)

Spot price ($)

196 D. Jung et al.

Fig. 12. Performance comparison of checkpointing schemes in c1.xlarge

From this figure, we can find that our checkpointing scheme achieves performance
improvements in an average task execution time of 7.9% over the hour-boundary
checkpointing scheme and in an average task execution time of 14.3% over the rising
edge-driven checkpointing scheme. We can also find that our scheme reduces the
number of checkpoints by average of 17 times over the hour-boundary checkpointing
scheme and by average of 18 times over the rising edge-driven checkpointing scheme.

Fig. 13. Comparison of total costs in c1.xlarge

Fig. 13 shows the total costs in each user's bid. From this figure, we can see
that our checkpointing scheme reduces the costs by average of $2.08 over the

0.310 0.315 0.320 0.325 0.330 0.335
0

5

10

15

20

25

30

35

C
os

ts
 (

$)

User's bid ($)

 TotalPrice(Hour) TotalPrice(Edge) TotalPrice(Our)

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 197

hour-boundary checkpointing scheme and by average of $2.42 over the rising edge-
driven checkpointing scheme.

5.3 The Analysis of Memory-Type Instances

Now, we present the performance evaluation of our checkpointing scheme when
memory-type instances are used. As the analysis presented in previous subsection, we
firstly extract parameter values from the spot history presented in Fig. 4(b). Table 3
shows the simulation parameters and values used for the analysis of memory-type
instances.

Table 3. Simulation value of m1.xlarge instance

Simulation
parameter

Task
time

Max
bid

Average
bid

Min
bid

Checkpoint
time

Recovery
time

Value 259200(s) 0.76($) 0.32($) 0.304($) 300(s) 300(s)

We also extract the failure occurrence probability for each price from the spot his-
tory (11-15-2010 ~ 11-18-2010) in Fig. 4(b). Fig. 14 shows the failure occurrence
probability for m1.xlarge instance. In this figure, X and Y-axis mean spot price and
failure occurrence probability per spot price for a given user’s bid, respectively.

Fig. 14. Comparison of fault occurrence probability in m1.xlarge

Fig. 15 shows the performance comparison of our checkpointing scheme with hour-
boundary checkpointing and rising edge-driven checkpointing schemes when tasks in
the m1.xlarge instance are used. Fig. 15(a) shows the effect of total task execution
time and total failure time on the performance of three checkpointing schemes. Fig.
15(b) shows the effect of the number of failures and checkpoints in each user's bid on
the performance of three checkpointing schemes.

From this figure, we can find that our checkpointing scheme achieves performance
improvements in an average task execution time of 14.35% over the hour-boundary
checkpointing scheme and in an average task execution time of 23.83% over the ris-
ing edge-driven checkpointing scheme. We can also find that our scheme reduces the
number of checkpoints by average of 28 times over the hour-boundary checkpointing
scheme and by average of 31 times over the rising edge-driven checkpointing scheme.

0.305 0.310 0.315 0.320 0.325 0.330 0.335
0

5

10

15

20

25

30
User's Bid ($)

 0.31
 0.315
 0.32
 0.325
 0.33
 0.335

P
ro

ba
bi

lit
y

(%
)

Spot price ($)

198 D. Jung et al.

Fig. 15. Performance comparison of checkpointing schemes in m1.xlarge

Fig. 16. Comparison of total costs in m1.xlarge

Fig. 16 shows the total costs in each user's bid. From this figure, we can see that
our checkpointing scheme reduces the costs by average of $5.15 over the hour-
boundary checkpointing scheme, and by average of $5.93 over the rising edge-driven
checkpointing scheme.

6 Conclusion

In this paper, we proposed an efficient checkpointing scheme using the price history
of spot instances to improve the stability of task processing in unreliable cloud

0.310 0.315 0.320 0.325 0.330 0.335
0

5

10

15

20

25

30

35

C
os

ts
 (

$)

User's Bid ($)

 TotalPrice(Hour) TotalPrice(Edge) TotalPrice(Our)

 An Efficient Checkpointing Scheme Using Price History of Spot Instances 199

computing environment. Our proposed scheme basically performs checkpointing
operation based on two kinds of thresholds, price threshold and time threshold. These
two thresholds were extracted from the price history of spot instances and used to
determine checkpointing position in cost-efficient way in the presence of the failures
of spot instances arisen from price fluctuation. As a result, our scheme can
significantly reduce the number of checkpoint trials compared to the existing
checkpointing schemes. Furthermore, the rollback time of our scheme can be much
lesser than that of the existing checkpointing schemes because our scheme can
adaptively perform checkpointing operation according to the time and price of spot
instances. Simulation results showed that our scheme can achieve cost efficiency by
reducing rollback time per instance for a given user's bid regardless of the resource
types of spot instaces. In the future, we have a plan to expand our environment into a
combination of spot instances and on-demand instances for various cloud computing
services.

Acknowledgments. This research was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Education, Science and Technology (No. 2010-0015637).

References

[1] Buyya, R., Chee Shin, Y., Venugopal, S.: Market-Oriented Cloud Computing: Vision,
Hype, and Reality for Delivering IT Services as Computing Utilities. In: Proceeding of
the 10th IEEE International Conference on High Performance Computing and Communi-
cations, pp. 5–13 (2008)

[2] Van, H.N., Tran, F.D., Menaud, J.-M.: SLA-Aware Virtual Resource Management for
Cloud Infrastructures. In: Proceedings of the 2009 Ninth IEEE International Conference
on Computer and Information Technology, vol. 2, pp. 357–362. IEEE Computer Society,
Los Alamitos (2009)

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berkeley View
of Cloud Computing. EECS Department, University of Californi, Berkeley (2009)

[4] Youseff, L., Butrico, M., Da Silva, D.: Toward a Unified Ontology of Cloud Computing.
In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (2008)

[5] Foster, I., Yong, Z., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Grid Computing Environments Workshop, GCE 2008, pp. 1–10 (2008)

[6] Elastic Compute Cloud, EC2 (2011), http://aws.amazon.com/ec2
[7] GoGrid (2011), http://www.gogrid.com
[8] FlexiScale (2011), http://www.flexiscale.com
[9] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorod-

nov, D.: The Eucalyptus Open-Source Cloud-Computing System. In: Proceedings of the
2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, pp.
124–131. IEEE Computer Society, Los Alamitos (2009)

[10] OpenNebula (2011), http://www.opennebula.org
[11] Nimbus (2011), http://workspace.globus.org

200 D. Jung et al.

[12] Andrzejak, A., Kondo, D., Yi, S.: Decision Model for Cloud Computing under SLA Con-
straints. In: Proceedings of the 2010 IEEE International Symposium on Modeling, Analy-
sis and Simulation of Computer and Telecommunication Systems, pp. 257–266. IEEE
Computer Society, Los Alamitos (2010)

[13] Patel, P., Ranabahu, A., Sheth, A.: Service Level Agreement in Cloud Computing. In:
Proceedings of Conference on Object Oriented Programming Systems Languages and
Applications, pp. 212–217 (2009)

[14] Yi, S., Kondo, D., Andrzejak, A.: Reducing Costs of Spot Instances via Checkpointing in
the Amazon Elastic Compute Cloud. In: Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing, pp. 236–243. IEEE Computer Society, Los Alamitos
(2010)

[15] Amazon EC2 spot Instances (2010), http://aws.amazon.com/ec2/spot-
instances/

[16] Cloud exchange (2011), http://cloudexchange.org
[17] Yi, S., Heo, J., Cho, Y., Hong, J.: Taking point decision mechanism for page-level incre-

mental checkpointing based on cost analysis of process execution time. Journal of Infor-
mation Science and Engineering 23(5), 1325–1337 (2007)

	An Efficient Checkpointing Scheme Using Price History of Spot Instances in Cloud Computing Environment

	Introduction
	Related Work
	System Architecture
	Layer Structure
	Instances Types

	The SLA Based Checkpointing Scheme
	SLA Based on Price History Using Spot Instances
	Fault Tolerance Mechanisms Using Checkpoints

	Performance Evaluation
	Simulation Environments
	The Analysis of Computing-Type Instances
	The Analysis of Memory-Type Instances

	Conclusion
	References

