
A Systematic Analysis of XSS Sanitization in
Web Application Frameworks

Joel Weinberger, Prateek Saxena, Devdatta Akhawe,
Matthew Finifter, Richard Shin, and Dawn Song

University of California, Berkeley

Abstract. While most research on XSS defense has focused on techniques for
securing existing applications and re-architecting browser mechanisms, sanitiza-
tion remains the industry-standard defense mechanism. By streamlining and au-
tomating XSS sanitization, web application frameworks stand in a good position
to stop XSS but have received little research attention. In order to drive research
on web frameworks, we systematically study the security of the XSS sanitization
abstractions frameworks provide. We develop a novel model of the web browser
and characterize the challenges of XSS sanitization. Based on the model, we sys-
tematically evaluate the XSS abstractions in 14 major commercially-used web
frameworks. We find that frameworks often do not address critical parts of the
XSS conundrum. We perform an empirical analysis of 8 large web applications
to extract the requirements of sanitization primitives from the perspective of real-
world applications. Our study shows that there is a wide gap between the abstrac-
tions provided by frameworks and the requirements of applications.

1 Introduction

Cross-site scripting (XSS) attacks are an unrelenting threat to existing and emerging
web applications. Major web services such as Google Analytics, Facebook and Twitter
have had XSS issues in recent years despite intense research on the subject [34, 52, 61].
Though XSS mitigation and analysis techniques have enjoyed intense focus [6, 7, 12,
13, 33, 36, 37, 39, 41, 43, 44, 47, 49, 50, 59, 64, 66, 68], research has paid little or
no attention to a promising sets of tools for solving the XSS riddle—web application
frameworks—which are gaining wide adoption [18, 21, 22, 28, 35, 42, 48, 55, 58, 69,
71]. Many of these frameworks claim that their sanitization abstractions can be used
to make web applications secure against XSS [24, 69]. Though possible in principle,
this paper investigates the extent to which it is presently true, clarifies the assumptions
that frameworks make, and outlines the fundamental challenges that frameworks need
to address to provide comprehensive XSS defense.

Researchers have proposed defenses ranging from purely server-side to browser-
based or both [6, 13, 37, 43, 47, 64]. However, sanitization or filtering, the practice of
encoding or eliminating dangerous constructs in untrusted data, remains the industry-
standard defense strategy [45]. At present, each web application needs to implement
XSS sanitization manually, which is prone to errors [7, 51]. Web frameworks offer a
platform to automate sanitization in web applications, freeing developers from existing
ad-hoc and error-prone manual analysis. As web applications increasingly rely on web

V. Atluri and C. Diaz (Eds.): ESORICS 2011, LNCS 6879, pp. 150–171, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 151

frameworks, we must understand the assumptions web frameworks build on and the
security of their underlying sanitization mechanisms.

XSS sanitization is deviously complex; it involves understanding how the web
browser parses and interprets web content in non-trivial detail. Though immensely im-
portant, this issue has not been fully explained in prior XSS research. For instance, prior
research does not detail the security ramifications of the complex interactions between
the sub-languages implemented in the browser or the subtle variations in different in-
terfaces for accessing or evaluating data via JavaScript’s DOM API. This has important
implications on the security of XSS sanitization, as we show through multiple exam-
ples in this paper. For instance, we show examples of how sanitization performed on
the server-side can be effectively “undone” by the browser’s parsing of content into the
DOM, which may introduce XSS vulnerabilities in client-side JavaScript code.

A web framework can address XSS using sanitization if it correctly addresses all the
subtleties. Whether existing frameworks achieve this goal is an important question and
a subject of this paper. A systematic study of today’s web frameworks should evaluate
their security and assumptions along the following dimensions to quantify their benefits:

– Context Expressiveness. Untrusted data needs to be sanitized differently based on
its context in the HTML document. For example, the sanitization requirements of a
URI attribute are different from those of an HTML tag. Do web frameworks provide
sanitizers for different contexts that applications commonly use in practice?

– Auto-sanitization and Context-Sensitivity. Applying sanitizers in code automati-
cally, which we term auto-sanitization, shifts the burden of ensuring safety against
XSS from developers to frameworks. However, a sanitizer that may be safe for
use in one context may be unsafe for use in another. Therefore, to achieve security,
auto-sanitization must be context-sensitive; otherwise, as we explain in Section 3.1,
it may provide a false sense of security. To what extent do modern web frameworks
offer context-sensitive auto-sanitization?

– Security of Dynamic Client-Side Evaluation. AJAX applications have significant
client-side code components, such as in JavaScript. There are numerous subtleties
in XSS sanitization because client-side code may read values from the DOM. Do
frameworks support complete mediation on DOM accesses in client-side code?

Contributions and Approach. We explain the challenges inherent in XSS sanitization.
We present a novel model of the web browser’s parsing internals in sufficient detail to
explain the subtleties of XSS sanitization. Our model is the first to comprehensively
conceptualize the difficulties of sanitization. Our browser model includes details of the
sub-languages supported by HTML5, their internal interactions, and the transductions
browsers introduce on content. We provide examples of XSS scenarios that result.

This paper is a first step towards initiating research on secure web frameworks. It sys-
tematically identifies the features and pitfalls in XSS sanitization abstractions of today’s
web frameworks and the challenges a secure framework must address. We compare ex-
isting abstractions in frameworks to the requirements of web applications, which we de-
rive by an empirical analysis. We study 14 mature, commercially used web frameworks
and 8 popular open-source web applications. We establish whether the applications we
study could be migrated to use the abstractions of today’s web frameworks. We quantify
the security of the abstractions in frameworks and clarify the liability developers will



152 J. Weinberger et al.

continue to take even if they were to migrate their applications to today’s frameworks.
We provide the first in-depth study of the gap between the sanitization abstractions pro-
vided by web frameworks and what web applications require for safety against XSS. We
conclude that though web frameworks have the potential to secure applications against
XSS, most existing frameworks fall short of achieving this goal.

2 A Systematic Browser Model for XSS

We formulate XSS with a comprehensive model of the browser’s parsing behavior in
Section 2.1. We discuss the challenges and subtleties XSS sanitization must address in
Section 2.2, and how web frameworks could offer a potential solution in Section 2.3.
We outline our evaluation objectives and formulate the dimensions along which we
empirically measure the security of web frameworks in Section 2.4.

2.1 Problem Formulation: XSS Explained

Web applications mix control data (code) and content in their output, generated by
server-side code, which is consumed as client-side code by the web browser. When data
controlled by the attacker is interpreted by the web browser as if it was code written by
the web developer, an XSS attack results. A canonical example of an XSS attack is
as follows. Consider a blogging web application that emits untrusted content, such as
anonymous comments, on the web page. If the developer is not careful, an attacker can
input text such as <script>...<script>, which may be output verbatim in the server’s
output HTML page. When a user visits this blog page, her web browser will execute
the attacker controlled text as script code.

XSS sanitization requires removal of such dangerous tags from the untrusted data.
Unfortunately, not all cases are as simple as this <script> tag example. In the rest
of this section, we identify browser features that make preventing XSS much more
complicated. Previous research has indicated that this problem is complex, but we are
not aware of an in-depth, systematic problem formulation.

The Browser Model. We present a comprehensive model of the web browser’s pars-
ing behavior. While the intricacies of browser parsing behavior have been discussed
before [70], a formal model has not been built to fully explore its complexity. We
show this model in Figure 1. Abstractly, the browser can be viewed as a collection
of HTML-related sub-grammars and a collection of transducers. Sub-grammars corre-
spond to parsers for languages such as URI schemes, CSS, HTML, and JavaScript (the
rounded rectangles in Figure 1). Transducers transform or change the representation of
the text, such as in HTML-entity encoding/decoding, URI-encoding, JavaScript Uni-
code encoding and so on (the unshaded rectangles in Figure 1). The web application’s
output, i.e., HTML page, is input into the browser via the network; it can be directly
fed into the HTML parser after some pre-processing or it can be fed into JavaScript’s
HTML evaluation constructs. The browser parses these input fragments in stages—
when a fragment is recognized as a term in another sub-grammar, it is shipped to the
corresponding sub-grammar for reparsing and evaluation (e.g., edge 2). For example,



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 153

HTML parser

HTML page

Document

JavaScript parser

CSS parser

URI parser

1. PCDATA

CDATA

JavaScript
runtime

<style>

2. <script>

4. URI attributes

JS expressions 
url()

HTML entity decoder

5. javascript: URIs

inline styles

3. event handlers

Network

Content type dispatch

Character set encoder/decoder

text/html

da
ta
: 

U
R

Is

text/javascript text/css

JavaScript code

6. innerHTML/document.write

CSS stylesheet

HTML
entity

decoder

7. DOM APIs

Fig. 1. Flow of Data in our Browser Model. Certain contexts such as PCDATA and CDATA directly
refer to parser states in the HTML 5 specification. We refer to the numbered and underlined edges
during our discussion in the text.

while the top-level HTML grammar identifies an anchor (<a>) tag in the HTML doc-
ument, the contents of the href attribute are sent to the URI parser (edge 4). The URI
parser handles a javascript: URI by sending its contents to the JavaScript parser (edge
3), while other URIs are sent to their respective parsers.

2.2 Subtleties and Challenges in XSS Sanitization

The model shows that the interaction between sub-components is complex; burdening
developers with fully understanding their subtleties is impractical. We now describe a
number of such challenges that correct sanitization-based defense needs to address.

Challenge 1: Context Sensitivity. Sanitization for XSS defense requires knowledge
of where untrusted input appears structurally and semantically in the web application.
For example, simple HTML-entity encoding is a sufficient sanitization procedure to
neutralize XSS attacks when is placed inside the body of an HTML tag, or, in the
PCDATA (edge 1) parsing context, as defined by HTML5 [30]. However, when data is
placed in a resource URI, such as the src or href attribute of a tag, HTML-encoding is
insufficient to block attacks such as via a javascript: URI (edge 4 and 5). We term the
intuitive notion of where untrusted data appears as its context. Sanitization requirements
vary by contexts. Frameworks providing sanitization primitives need to be mindful of
such differences from context to context. The list of these differences is large [29].



154 J. Weinberger et al.

Challenge 2: Sanitizing Nested Contexts. We can see in the model that a string in a
web application’s output can be parsed by multiple sub-parsers in the browser. We say
that such a string is placed in nested contexts. That is, its interpretation in the browser
will cause the browser to traverse more than one edge shown in Figure 1.

Sanitizing for nested contexts adds its own complexity. Consider an embed-
ding of an untrusted string inside a script block, such as <script> var x = ‘

UNTRUSTED DATA’...</script>. In this example, when the underlined data is read by
the browser, it is simultaneously placed in two contexts. It is placed in a JavaScript
string literal context by the JavaScript parser (edge 2) due to the single quotes. But, be-
fore that, it is inside a <script> HTML tag (or RCDATA context according to the HTML
5 specification) that is parsed by the HTML parser. Two distinct attack vectors can be
used here: the attacker could use a single quote to break out of the JavaScript string con-
text, or inject </script> to break out of the script tag. In fact, sanitizers commonly fail
to account for the latter because they do not recognize the presence of nested contexts.

Challenge 3: Browser Transductions. If dealing with multiple contexts is not arduous
enough, our model highlights the implicit transductions that browsers perform when
handing data from one sub-parser to another. These are represented by edges from
rounded rectangles to unshaded rectangles in Figure 1. Such transductions and browser-
side modifications can, surprisingly, undo sanitization applied on the server.

Consider a blog page in which comments are hidden by default and displayed only
after a user clicks a button. The code uses an onclick JavaScript event handler:

<div class=‘comment-box’onclick=‘displayComment(" UNTRUSTED",this)’>

... hidden comment ... </div>

The underlined untrusted comment is in two nested contexts: the HTML attribute and
single-quoted JavaScript string contexts. Apart from preventing the data from escaping
out of the two contexts separately (Challenge 2), the sanitization must worry about an
additional problem. The HTML 5 standard mandates that the browser HTML-entity
decode an attribute value (edge 3) before sending it to a sub-grammar. As a result, the
attacker can use additional attack characters even if the sanitization performs HTML-
entity encoding to prevent attacks. The characters &quot; will get converted to " before
being sent to the JavaScript parser. This will allow the untrusted comment to break out
of the string context in the JavaScript parser. We call such implicit conversions browser
transductions. Full details of the transductions are available in Appendix A.

Challenge 4: Dynamic Code Evaluation. In principle, the chain of edges traversed
by the browser while parsing a text can be arbitrarily long because the browser can
dynamically evaluate code. Untrusted content can keep cycling through HTML and
JavaScript contexts. For example, consider the following JavaScript code fragment:
function foo(untrusted) {

document.write("<input onclick=’foo(" + untrusted + ")’ >");

}

Since untrusted text is repeatedly pumped through the JavaScript string and HTML
contexts (edges 3 and 6 of Figure 1), statically determining the context traversal chain
on the server is infeasible. In principle, purely server-side sanitization is not sufficient
for context determination because of dynamic code evaluation. Client-side sanitization



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 155

is needed in these cases to fully mitigate potential attacks. Failure to properly sanitize
such dynamic evaluation leads to the general class of attacks called DOM-based XSS or
client-side code injection [60]. In contrast to Challenges 2 and 3, such vulnerabilities are
caused not by a lack of understanding the browser, but of frameworks not understanding
application behavior.

Another key observation is that browser transductions along the edges of Figure 1
vary from one edge to another, as detailed in Appendix A. This mismatch can cause
XSS vulnerabilities. During our evaluation, we found one such bug (Section 3.2). We
speculate that JavaScript-heavy web applications are likely to have such vulnerabilities.

Challenge 5: Character-Set Issues. Successfully sanitizing a string at the server side
implicitly requires that the sanitizer and the browser are using the same character set
while working with the string. A common source of XSS vulnerabilities is a mismatch
in the charset assumed by the sanitizer and the charset used by the browser. For example,
the ASCII string +ADw- does not have any suspicious characters. But when interpreted
by the browser as UTF-7 character-set, it maps to the dangerous < character: this mis-
match between the server-side sanitization and browser character set selection has led
to multiple XSS vulnerabilities [62].

Challenge 6: MIME-Based XSS, Universal XSS, and Mashup Confinement.
Browser quirks, especially in interpreting content or MIME types [10], contribute their
own share of XSS vulnerabilities. Similarly, bugs in browser implementations, such as
capability leaks [26] and parsing inconsistencies [9], or in browser extensions [11] are
important components of the XSS landscape. However, these do not pertain to sanitiza-
tion defenses in web frameworks. Therefore, we consider them to be out-of-scope for
this study.

2.3 The Role of Web Frameworks

Web application development frameworks provide components to enable typical work
flows in web application development. These frameworks can abstract away repetitive
and complex tasks, freeing the developer to concentrate on his particular scenario. Con-
sider session management, a common feature that is non-trivial to implement securely.
Most web application frameworks automate session management, hiding this complex-
ity from the developer. Similarly, web application frameworks can streamline and hide
the complexity of XSS sanitization from the developer. In fact, increased security is
often touted as a major benefit of switching to web application frameworks [24, 69].

Frameworks can either provide XSS sanitization routines in a library or they can
automatically add appropriate sanitization code to a web application. We term the latter
approach auto-sanitization. In the absence of auto-sanitization, the burden of calling
the sanitizers is on the developer, which we have seen is an error-prone requirement.
On the other hand, auto-sanitization, if incorrectly implemented, can give a false sense
of security because a developer may defer all sanitization to this mechanism.

2.4 Analysis Objectives

In theory, use of a web application framework should free the developer from the com-
plexities of XSS sanitization as discussed earlier and illustrated in Figure 1. If true, this



156 J. Weinberger et al.

requires the framework to grapple with all these complexities instead. We abstract the
most important challenges into the following three dimensions:

– Context Expressiveness and Sanitizer Correctness. As we detailed in Challenge
1, sanitization requirements change based on the context of the untrusted data. We
are interested in investigating the set of contexts in which untrusted data is used
by web applications, and whether web frameworks support those contexts. In the
absence of such support, a developer will have to revert to manually writing saniti-
zation functions. The challenges outlined in Section 2.1 make manually developing
correct sanitizers a non-starter. Instead, we ask, do web frameworks provide correct
sanitizers for different contexts that web applications commonly use in practice?

– Auto-sanitization and Context-Sensitivity. Providing sanitizers is only a small
part of the overall solution necessary to defend against XSS attacks. Applying
sanitizers in code automatically, which we term auto-sanitization, shifts the bur-
den of ensuring safety against XSS from developers to frameworks. The benefit
of this is self-evident: performing correct sanitization in framework code spares
each and every developer from having to implement correct sanitization himself,
and from having to remember to perform that sanitization everywhere it should be
performed. Furthermore, correct auto-sanitization needs to be context-sensitive—
context-insensitive auto-sanitization can lead to a false sense of security. Do web
frameworks offer auto-sanitization, and if so, is it context-sensitive?

– Security of Client-Side Code Evaluation. Much of the research on XSS has
focused on the subtleties of parsing in HTML contexts across browsers. But
AJAX web applications have significant client-side code components, such as in
JavaScript. There are numerous subtleties in XSS sanitization because client-side
code may read values from the DOM. Sanitization performed on the server-side
may be “undone” during the browser’s parsing of content into the DOM (Chal-
lenge 3 and Challenge 4). Do frameworks support complete mediation on DOM
accesses in client-side code?

In this study, we focus solely on XSS sanitization features in web frameworks and ig-
nore all other framework features. We also do not include purely client-side frameworks
such as jQuery [1] because these do not provide XSS protection mechanisms. Addition-
ally, untrusted data used in these libraries also needs server-side sanitization.

3 Analysis of Web Frameworks and Applications

In this section, we empirically analyze web frameworks and the sanitization abstrac-
tions they provide. We show that there is a mismatch in the abstractions provided by
frameworks and the requirements of applications.

We begin by analyzing the “auto-sanitization” feature—a security primitive in which
web frameworks sanitize untrusted data automatically—in Section 3.1. We identify the
extent to which it is available, the pitfalls of its implementation, and whether developers
can blindly trust this mechanism if they migrate to or develop applications on existing
auto-sanitizing frameworks. We then evaluate the support for dynamic code evaluation



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 157

via JavaScript in frameworks in Section 3.2. In the previous section, we identified sub-
tleties in the browser’s DOM interface. In Section 3.2, we discuss whether applications
adequately understand it to prevent XSS bugs.

Frameworks may not provide auto-sanitization, but instead may provide sanitizers
that developers can manually invoke. Arguably, the sanitizers implemented by frame-
works would be more robust than the ones implemented by the application developer.
We evaluate the breadth of contexts for which each framework provides sanitizers, or
the context expressiveness of each framework, in Section 3.3. We also compare it to the
requirements of the applications we study today to evaluate whether this expressiveness
is enough for real-world applications.

Finally, we evaluate frameworks’ assumptions regarding correctness of sanitization
and compare these to the sanitization practices in security-conscious applications.

Methodology and Analysis Subjects. We examine 14 popular web application frame-
works in commercial use for different programming languages and 8 popular PHP web
applications ranging from 19 KLOC to 532 KLOC in size. We used a mixture of manual
and automated exploration to identify sanitizers in the web application running on an
instrumented PHP interpreter. We then executed the application again along paths that
use these sanitization functions and parsed the outputs using an HTML 5-compliant
browser to determine the contexts for which they sanitize. Due to space constraints, this
paper focuses solely on the results of our empirical analysis. A technical report provides
the full details of the techniques employed [65].

3.1 Auto-Sanitization: Features and Pitfalls

Auto-sanitization is a feature that shifts the burden of ensuring safety against XSS from
the developer to the framework. In a framework that includes auto-sanitization, the ap-
plication developer is responsible for indicating which variables will require sanitiza-
tion. When the page is output, the web application framework can then apply the correct
sanitizer to these variables. Our findings, summarized in Table 1, are as follows:

– Of the 14 frameworks evaluated, only 7 support some form of auto-sanitization.
– 4 out of the 7 auto-sanitization framework apply a “one-size-fits-all” strategy to

sanitization. That is, they apply the same sanitizer to all flows of untrusted data
irrespective of the context into which the data flows. We call this context-insensitive
sanitization, which is fundamentally unsafe, as explained later.

– We measure the fraction of application output sinks actually protected by context-
insensitive auto-sanitization mechanism in 10 applications built on Django, a popu-
lar web framework. Table 2 presents our findings. The mechanism fails to correctly
protect between 14.8% and 33.6% of an application’s output sinks.

– Only 3 frameworks perform context-sensitive sanitization.

No Auto-Sanitization. Only half of the studied frameworks provide any auto-
sanitization support. In those that don’t, developers must deal with the challenges of
selecting where to apply built-in or custom sanitizers. Recent studies have shown that
this manual process is prone to errors, even in security-audited applications [25, 51].



158 J. Weinberger et al.

Table 1. Extent of automatic sanitization support in the frameworks we study and the pointcut
(set of points in the control flow) where the automatic sanitization is applied

Language Framework, Plugin, or Feature Automatically
Sanitizes in HTML
Context

Performs Context-
Aware Sanitization

Pointcut

PHP CodeIgniter • Request Reception
VB, C#, C++, F# ASP.NET Request Validation [5] • Request Reception
Ruby xss terminate Rails plugin [67] • Database Insertion
Python Django • Template Processing
Java GWT SafeHtml • • Template Processing
C++ Ctemplate • • Template Processing
Language-neutral ClearSilver • • Template Processing

We also observed instances of this phenomenon in our analysis. The following example
is from a Django application called GRAMPS.

Example 1
{% if header.sortable %}

<a href="{{header.url|escape}}">
{% endif %}

The developer sanitizes a data variable placed in the href attribute but uses the
HTML-entity encoder (escape) to sanitize the data variable header.url. This is an
instance of Challenge 2 outlined in Section 2. In particular, this sanitizer fails to prevent
XSS attack vectors such as javascript: URIs.

Insecurity of Context-Insensitive Auto-Sanitization. Another interesting fact about
the above example is that even if the developer relied on Django’s default auto-
sanitization, the code would be vulnerable to XSS attacks. Django employs context-
insensitive auto-sanitization, i.e., it applies the same sanitizer (escape) irrespective of
the output context. escape, which does an HTML entity encode, is safe for use in HTML
tag context but unsafe for other contexts. In the above example, applying escape, auto-
matically or otherwise, fails to protect against XSS attacks. Auto-sanitization support
in Rails [67], .NET (request validation [5]) and CodeIgniter are all context-insensitive
and have similar problems.

Context-insensitive auto-sanitization provides a false sense of security. On the other
hand, relying on developers to pick a sanitizer consistent with the context is error-prone,
and one XSS hole is sufficient to subvert the web application’s integrity. Thus, because
it covers some limited cases, context-insensitive auto-sanitization is better protection
than no auto-sanitization.

We measure the percentage of output sinks protected by context-insensitive
auto-sanitization in 10 Django-based applications that we randomly selected for fur-
ther investigation [23]. We statically correlated the automatically applied sanitizer to
the context of the data; the results are in Table 2. The mechanism protects between
66.4% and 85.2% of the output sinks, but conversely permits XSS vectors in 14.8% to
33.6% of the contexts, subject to whether attackers control the sanitized data or not.
We did not determine the exploitability of these incorrectly auto-sanitized cases, but we
observed that in most of these cases, developers resorted to custom manual sanitization.



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 159

Table 2. Usage of auto-sanitization in Django applications. The first 2 columns are the number of
sinks in the templates and the percentage of these sinks for which auto-sanitization has not been
disabled. Each remaining column shows the percentage of sinks that appear in the given context.

Web Application No.
Sinks

% Auto-
sanitized
Sinks

% Sinks
not san-
itized
(marked
safe)

% Sinks
manually
sanitized

%
Sinks in
HTML
Context

% Sinks
in URI
Attr.
(excl.
scheme)

% Sinks
in URI
Attr.
(incl.
scheme)

% Sinks
in JS
Attr.
Context

% Sinks
in JS
Number
or String
Context

% Sinks
in Style
Attr.
Context

GRAMPS Ge-
nealogy Man-
agement

286 77.9 0.0 22.0 66.4 3.4 30.0 0.0 0.0 0.0

HicroKee’s
Blog

92 83.6 7.6 8.6 83.6 6.5 7.6 1.0 0.0 1.0

FabioSouto.eu 55 90.9 9.0 0.0 67.2 7.2 23.6 0.0 1.8 0.0
Phillip Jones’
Eportfolio

94 92.5 7.4 0.0 73.4 11.7 12.7 0.0 2.1 0.0

EAG cms 19 94.7 5.2 0.0 84.2 0.0 5.2 0.0 0.0 10.5
Boycott
Toolkit

347 96.2 3.4 0.2 71.7 1.1 25.3 0.0 1.7 0.0

Damned Lies 359 96.6 3.3 0.0 74.6 0.5 17.8 0.0 0.2 6.6
oebfare 149 97.3 2.6 0.0 85.2 6.0 8.0 0.0 0.0 0.6
Malaysia
Crime

235 98.7 1.2 0.0 77.8 0.0 1.7 0.0 20.4 0.0

Philippe
Marichal’s web
site

13 100.0 0.0 0.0 84.6 0.0 15.3 0.0 0.0 0.0

An auto-sanitization mechanism that requires developers to sanitize diligently is self-
defeating. Developers should be aware of this responsibility when building on such a
mechanism.

Context-Sensitive Sanitization. Context-sensitive auto-sanitization addresses the
above issues. Three web frameworks, namely GWT, Google Clearsilver, and Google
Ctemplate, provide this capability. In these frameworks, the auto-sanitization engine
performs runtime parsing, keeping track of the context before emitting untrusted data.
The correct sanitizer is then automatically applied to untrusted data based on the tracked
context. These frameworks rely on developers to identify untrusted data. The typical
strategy is to have developers write code in templates, which separate the HTML con-
tent from the (untrusted) data variables. For example, consider the following simple
template supported by the Google Ctemplate framework:

Example 2
{{%AUTOESCAPE context="HTML"}}
<html><body><script> function showName() {
document.getElementById("sp1").textContent = "Name: {{NAME}}";} </script>
<span id="sp1" onclick="showName()">Click to display name.</span><br/>
Homepage: <a href="{{URI}}"> {{PAGENAME}} </a></body></html>

Variables that require sanitization are surrounded by {{ and }}; the rest of the text is
HTML content to be output. When the template executes, the engine parses the output
and determines that {{NAME}} is in a JavaScript string context and automatically ap-
plies the sanitizer for the JavaScript string context, namely :javascript_escape. For
other variables, the same mechanism applies the appropriate sanitizers. For instance,
the variable {{URI}} is sanitized with the :url_escape_with_arg=html sanitizer.



160 J. Weinberger et al.

3.2 Security of Client-Side Code Evaluation

In Section 2, we identified subtleties of dynamic evaluation of HTML via JavaScript’s
DOM API (Challenge 4). The browser applies different transductions depending on the
DOM interface used (Challenge 3 and listed in Appendix A). Given the complexity
of sanitizing dynamic evaluation, we believe web frameworks should provide support
for this important class of XSS attack vectors too. Ideally, a web framework could
incorporate knowledge of these subtleties, and provide automatic sanitization support
during JavaScript code execution.

Support in Web Frameworks. The frameworks we studied do not support sanitiza-
tion of dynamic flows. Four frameworks support sanitization of untrusted data used in
a JavaScript string or number context (Table 3). This support is only static: it can en-
sure that untrusted data doesn’t escape out during the parsing by the browser, but such
sanitization can’t offer any safety during dynamic code evaluation, given that dynamic
code evaluation can undo previously applied transductions (Challenge 4).

Context-insensitivity issues with auto-sanitization also extend to JavaScript code.
For example, Django uses the context-insensitive HTML-escape sanitizer even in
JavaScript string contexts. Dangerous characters (e.g., \n,\r,;) can still break out
of the JavaScript string literal context. For example, in the Malaysia Crime Applica-
tion (authored in Django), the crime.icon variable is incorrectly auto-sanitized with
HTML-entity encoding and is an argument to a JavaScript function call.

Example 3
map.addOverlay(new GMarker(point, {{ crime.icon }}))

Awareness in Web Applications. DOM-based XSS is a serious problem in web ap-
plications [49, 50]. Recent incidents in large applications, such as vulnerabilities in
Google optimizer [46] scripts and Twitter [60], show that this is a continuing problem.
This suggests that web applications are not fully aware of the subtleties of the DOM
API and dynamic code evaluation constructs (Challenge 3 and 4 in Section 2).

To illustrate this, we present a real-world example from one of the applications we
evaluated, phpBB3, showing how these subtleties may be misunderstood by developers.

Example 4
text = element.getAttribute(’title’);
// ... elided ...
desc = create_element(’span’, ’bottom’);
desc.innerHTML = text;
tooltip.appendChild(desc);

In the server-side code, which is not shown here, the application sanitizes the title

attribute of an HTML element by HTML-entity encoding it. If the attacker enters a
string like <script>, the encoding converts it to &lt;script&gt;. The client-side code
subsequently reads this attribute via the getAttribute DOM API in JavaScript code
(shown above) and inserts it back into the DOM via the innerHTML method. The vul-
nerability is that the browser automatically decodes HTML entities (through edge 1 in
Figure 1) while constructing the DOM. This effectively undoes the server’s sanitization



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 161

Table 3. Sanitizers provided by languages and/or frameworks. For frameworks, we also include
sanitizers provided by standard packages or modules for the language.

Language Framework HTML
tag con-
tent or
non-URI
attribute

URI At-
tribute
(excluding
scheme)

URI At-
tribute
(including
scheme)

JS
String

JS Num-
ber or
Boolean

Style At-
tribute or
Tag

Perl
Mason [2, 42] • •
Template Toolkit [58] • •
Jifty [35] • •

PHP

CakePHP [15] • •
Smarty Template Engine [55] • • •
Yii [32, 69] • •
Zend Framework [71] • •
CodeIgniter [19, 20] • •

VB, C#, C++, F# ASP.NET [4] • •
Ruby Rails [48] • •
Python Django [22] • • • •
Java GWT SafeHtml [28] • • •
C++ Ctemplate [21] • • • • • •
Language-neutral ClearSilver [18] • • • • •

in this example. The getAttribute DOM API reads the decoded string (e.g., <script>)
from the DOM (edge 7). Writing <script> via innerHTML (edge 6) results in XSS.

This bug is subtle. Had the developer used innerText instead of innerHTML to write
the data, or used innerHTML to read the data, the code would not be vulnerable. The
reason is that the two DOM APIs discussed here read different serializations of the
parsed page, as explained in Appendix A.

The prevalence of DOM-based XSS vulnerabilities and the lack of framework sup-
port suggest that this is a challenge for web applications and web frameworks alike.
Libraries such as Caja and ADsafe model JavaScript and DOM manipulation but tar-
get isolation-based protection such as authority safety, not DOM-based XSS [3, 14].
Protection for this class of XSS requires further research.

3.3 Context Expressiveness

Having analyzed the auto-sanitization support in web frameworks for static HTML eval-
uation as well as dynamic evaluation via JavaScript, we turn to the support for manual
sanitization. Frameworks may not provide auto-sanitization but instead may provide
sanitizers which developers can call. This improves security by freeing the developer
from (re)writing complex, error-prone sanitization code. In this section, we evaluate the
breadth of contexts for which each framework provides sanitizers, or the context expres-
siveness of each framework. For example, a framework that provides built-in sanitizers
for more than one context, say in URI attributes, CSS keywords, JavaScript string con-
texts, is more expressive than one that provides a sanitizer only for HTML tag context.

Expressiveness of Framework Sanitization Contexts. Table 3 presents the expres-
siveness of web frameworks we study and Table 4 presents the expressiveness required
by our subject web applications. The key insights are:



162 J. Weinberger et al.

– We observe that 9 out of the 14 frameworks do not support contexts other than the
HTML context (e.g., as the content body of a tag or inside a non-URI attribute) and
the URI attribute context. The most common sanitizers for these are HTML entity
encoding and URI encoding, respectively.

– 4 web frameworks, ClearSilver, Ctemplate, Django, and Smarty, provide appropri-
ate sanitization functions for emitting untrusted data into a JavaScript string. Only 1
framework, Ctemplate, provides a sanitizer for emitting data into JavaScript outside
of the string literal context. However, the sanitizer is a restrictive whitelist, allow-
ing only numeric or boolean literals. No framework we studied allows untrusted
JavaScript code to be emitted into JavaScript contexts. Supporting this requires a
client-side isolation mechanism such as ADsafe [3] or Google’s Caja [14].

– 4 web frameworks, namely Django, GWT, Ctemplate, and Clearsilver, provide san-
itizers for URI attributes in which a complete URI (i.e., including the URI protocol
scheme) can be emitted. These sanitizers reject URIs that use the javascript:

scheme and accept only a whitelist of schemes, such as http:.

– Of the frameworks we studied, we found only one that provides an interface for
customizing the sanitizer for a given context. Yii uses HTML Purifier [32], which
allows the developer to specify a custom list of allowed tags. For example, a devel-
oper may specify a policy that allows only <b> tags. The other frameworks (even
the context-sensitive auto-sanitizing ones) have sanitizers that are not customiz-
able. That is, untrusted content within a particular context is always sanitized the
same way. Our evaluation of web applications strongly invalidates this assumption,
showing that applications often sanitize data occurring in the same context differ-
ently based on other attributes of the data.

The set of contexts for which a framework provides sanitizers gives a sense of how
the framework expects web applications to behave. Specifically, frameworks assume
applications will not emit sanitized content into multiple contexts. More than half of
the frameworks we examined do not expect web applications to insert content with
arbitrary schemes into URI contexts, and only one of the frameworks supports use of
untrusted content in JavaScript Number or Boolean contexts. Below, we challenge these
assumptions by quantifying the set of contexts for which applications need sanitizers.

Expressiveness of Contexts and Sub-context Variance in Web Applications. We
examined our 8 subject PHP applications, ranging from 19 to 532 KLOC, to understand
what expressiveness they require and whether they could, theoretically, migrate to the
existing frameworks. We systematically measure and enumerate the contexts into which
these applications emit untrusted data. Table 4 shows the result of this evaluation. We
observe that nearly all of the applications insert untrusted content into all of the outlined
contexts. Contrast this with Table 3, where most frameworks support a much more
limited set of contexts with built-in sanitizers.

More surprisingly, we find that applications often employ more than one sanitizer for
each context. That is, an abstraction that ties a single sanitizer to a given context may be
insufficient. We term this variation in sanitization across code paths sub-context vari-
ance. Sub-context variance evidence suggests that directly migrating web applications



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 163

Table 4. The web applications we study and the contexts for which they sanitize

Application Description LOC HTML
Context

URI
Attr.
(excl.
scheme)

URI
Attr.
(incl.
scheme)

JS Attr.
Context

JS Num-
ber or
String
Context

No.
Sani-
tizers

No.
Sinks

RoundCube IMAP Email Client 19,038 • • • • • 30 75
Drupal Content Management System 20,995 • • • • • 32 2557
Joomla Content Management System 75,785 • • • • 22 538
WordPress Blogging Application 89,504 • • • • 95 2572
MediaWiki Wiki Hosting Application 125,608 • • • • • 118 352
PHPBB3 Bulletin Board Software 146,991 • • • • • 19 265
OpenEMR Medical Records Management 150,384 • • • 18 727
Moodle E-Learning Software 532,359 • • • • • 43 6282

to web frameworks’ (auto-) sanitization support may not be directly possible given that
even context-sensitive web frameworks rigidly apply one sanitizer for a given context.

Sub-context variance is particularly common in the form of role-based sanitization,
where the application applies different sanitizers based on the privilege of the user. We
found that it is common to have a policy in which the site administrator’s content is sub-
ject to no sanitization (by design). Examples include phpBB, WordPress, Drupal. For
such simple policies, there are legitimate code paths that have no sanitization require-
ments. To illustrate this, we present a real-world example from the popular WordPress
application which employs different sanitization along different code paths.

Example 5
WordPress, the popular blogging application, groups users into roles. A user in the
author role can create a new post on the blog with most non-code tags permitted.
An anonymous commenter, on the other hand, can only use a small number of text
formatting tags. In particular, the latter cannot insert images in comments while an
author can insert images in his post. Note that neither can insert <script> tags, or
any other active content. In both cases, untrusted input flows into HTML tag context,
but the sanitizer applied changes as a function of the user role.

Most auto-sanitizing frameworks do not support such rich abstractions to support
auto-sanitization specifications at a sub-context granularity. Nearly all sanitization li-
braries (not part of web frameworks) are customizable. However, their connection to
special role-based sanitization (or similar cases) are not supported presently. We believe
that web frameworks can fill this gap. Only 1 framework, Yii, provides the flexibility to
handle such customizations using the HTMLPurifier sanitization library. Unfortunately,
Yii only provides this flexibility for the HTML tag context.

3.4 Enabling Reasoning of Sanitizer Correctness

Prior research on web applications has shown that developing sanitization functions,
especially custom sanitizers, is tricky and prone to errors [7]. We investigate how the
sanitizers in web frameworks handle this issue. We compare the structure of the san-
itizers used in frameworks to the structure we observe in our subject applications and
characterize the ground assumptions that developers should be aware of.



164 J. Weinberger et al.

Blacklists vs. Whitelists. We find that most web frameworks structure their sanitizers
as a declarative-style whitelist of code constructs explicitly allowed in untrusted con-
tent. For instance, one sanitization library employed in the Yii is HTML-Purifier [32],
which permits a declarative list of HTML elements like event attributes of special tags in
untrusted content. All of the web applications we studied also employ this whitelisting
mechanism, such as the KSES library used in Wordpress [38]. Such sanitizers assume
that the whitelist is only contains a well understood and safe subset of the language
specification, and does not permit any unsafe structures.

In contrast, we find that only 1 subject web framework, viz. CodeIgniter, employs
a blacklist-based sanitization approach. Even if one verifies that all the elements on a
blacklist conform to an unsafe subset of the language specification, the sanitizer may
still allow unsafe parts of the language. For example, CodeIgniter’s xss_clean func-
tion removes a blacklist of potentially dangerous strings like document.cookie that
may appear in any context. Even if it removes all references to document.cookie,
there still may be other ways for attacker code to reference cookies, such as via
document[‘cookie’].

Correctness of the sanitizers used is fundamental to the safety of the sanitization
based strategy used in web frameworks. Based on the above examples, we claim that it
is easier to verify that a whitelist policy is safe and recommend frameworks adopt such
a strategy.

HTML Canonicalization. Essential to the safety of sanitization-based defense is that
the user’s browser parse the untrusted string in a manner consistent with the parsing
applied by the sanitizer. For instance, if the context-determination in the frameworks
differs from the actual parsing in the browser, the wrong sanitizer could be applied by
the framework.

We observe that frameworks employ a canonicalization strategy to ensure this prop-
erty; the web frameworks identify a ‘canonical’ subset of HTML-related languages into
which all application output is generated. The assumption they rely on is that this canon-
ical form parses the same way across major web browsers. We point out explicitly that
these assumptions are not systematically verified today and, therefore, framework out-
puts may still be susceptible to XSS attacks. For example, a recent XSS vulnerability in
the HTML Purifier library (used in Yii) was traced back to “quirks in Internet Explorer’s
parsing of string-like expressions in CSS [31].”

Finally, we point out that sanitization-based defense isn’t the only alternative—
proposals for sanitization-free defenses, such as DSI [43], BLUEPRINT [59] and the
Content Security Policy [56] have been presented. Future frameworks could consider
these. Verifying the safety of the whitelist-based canonicalization strategy and its as-
sumptions also deserves research attention.

4 Related Work

XSS Analysis and Defense. Much of the research on cross-site scripting vulnerabil-
ities has focused on finding XSS flaws in web applications, specifically on server-
side code [7, 33, 36, 39–41, 44, 66, 68] but also more recently on JavaScript



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 165

code [8, 27, 49, 50]. These works have underscored the two main causes of XSS vulner-
abilities: identifying untrusted data at output and errors in sanitization by applications.
There have been three kinds of defenses: purely server-side, purely browser-based, and
those involving both client and server collaboration.

BLUEPRINT [59], SCRIPTGARD [51] and XSS-GUARD [13] are three server-side
solutions that have provided insight into context-sensitive sanitization. In particular,
BLUEPRINT provides a deeper model of the web browser and points out that browsers
differ in how the various components communicate with one another. The browser
model detailed in this work builds upon BLUEPRINT’s model and more closely upon
SCRIPTGARD’s formalization [51]. We provide additional details in our model to de-
mystify the browser’s parsing behavior and explain subtleties in sanitization that the
prior work did not address.

Purely browser-based solutions, such as XSSAuditor, are implemented in modern
browsers. These mechanisms are useful in nullifying common attack scenarios by ob-
serving HTTP requests and intercepting HTTP responses during the browser’s parsing.
However, they do not address the problem of separating untrusted from trusted data, as
pointed out by Barth et al. [12].

BEEP, DSI and NonceSpaces investigated client-server collaborative defenses. In
these proposals, the server is responsible for identifying untrusted data, which it reports
to the browser, and the browser ensures that XSS attacks can not result from parsing
the untrusted data. While these proposals are encouraging, they require browser and
server modifications. The closest practical implementation of such client-server defense
architecture is the recent content security policy specification [56].

Correctness of Sanitization. While several systems have analyzed server-side code,
the SANER [7] system empirically showed that custom sanitization routines in web
applications can be error-prone. FLAX [50] and KUDZU [49] empirically showed that
sanitization errors are not uncommon in client-side JavaScript code. While these works
highlight examples, the complexity of the sanitization process remained unexplained.
Our observation is that sanitization is pervasively used in emerging web frameworks as
well as large, security-conscious applications. We discuss whether applications should
use sanitization for defense in light of previous bugs.

Techniques for Separating Untrusted Content. Taint-tracking based techniques [16,
36, 44, 53, 63, 68] as well as security-typed languages [17, 47, 54, 57] aim to address the
problem of identifying and separating untrusted data from HTML output to ensure that
untrusted data gets sanitized before it is output. Web templating frameworks, some of
which are studied in this work, offer a different model in which they coerce developers
into explicitly specifying trusted content. This offers a fail-closed design and has seen
adoption in practice because of its ease of use.

5 Conclusions and Future Work

We study the sanitization abstractions provided in 14 web application development
frameworks. We find that frameworks often fail to comprehensively address the sub-
tleties of XSS sanitization. We also analyze 8 web applications, comparing the saniti-



166 J. Weinberger et al.

zation requirements of the applications against the abstractions provided by the frame-
works. Through real-world examples, we quantify the gap between what frameworks
provide and what applications require.

Auto-sanitization Support and Context Sensitivity. Automatic sanitization is a step
in the right direction. For correctness, auto-sanitization needs to be context-sensitive:
context-insensitive sanitization can provide a false sense of security. Our application
study finds that applications do, in fact, need to emit untrusted data in multiple contexts.
However, the total number of contexts used by applications in our study is limited,
suggesting that frameworks only need to support a useful subset of contexts.

Security of Client-side Code Evaluation. DOM-based XSS is a serious challenge in
web applications, but no framework supports sanitization for dynamic evaluation on
the client. Application developers must be particularly alert when using the DOM API.
Of particular relevance to XSS sanitization is the possibility of the browser “undoing”
server-side sanitization, making the application vulnerable to DOM-based XSS.

Context Expressiveness and Sanitizer Correctness. Some frameworks offer sanitiza-
tion primitives as library functions the developer can invoke. We find that most frame-
works do not provide sufficiently expressive sanitizers, i.e., the sanitizers provided do
not support all the contexts that applications use. For instance, applications emit un-
trusted data into URI attribute and JavaScript literal contexts, but most of the frame-
works we study do not provide sanitizers for these contexts. As a result, application
developers must implement these security-critical sanitizers themselves, a tedious and
error-prone exercise. We also find that sub-context variance, such as role-based sanitizer
selection, is common. Only one of the frameworks we examined provides any support
for this pattern, and its support is limited.

Finally, our study identifies the set of assumptions fundamental to frameworks.
Namely, frameworks assume that their sanitizers can be verified for correctness, and
that HTML can be canonicalized to a single, standard form. Developers need to be
aware of these assumptions before adopting a framework.

Future Directions. As we outline in this work, the browser’s parsing and transforma-
tion of the web content is complex. If we develop a formal abstract model of the web
browser’s behavior for HTML 5, sanitizers can be automatically checked for correct-
ness. Our browser model is a first step in this direction. We identify that parts of the
web browser are either transducers or language recognizers. There have been practical
guides for dealing with these issues, but a formal model of the semantics of browsers
could illuminate all of the intricacies of the browser [70]. Verification techniques and
tools for checking correctness properties of web code is an active area of research.

If one can show the correctness of a framework’s sanitizers, we can prove the security
and correctness for code generated from it. Though existing auto-sanitization mecha-
nisms are weak today, they can be improved. Google AutoEscape is one attempt at this
type of complete sanitization but is currently limited to a fairly restrictive templating
language [21]. If these abstractions can be extended to richer web languages, it would



A Systematic Analysis of XSS Sanitization in Web Application Frameworks 167

provide a basis to build web applications secure from XSS from the ground up—an
important future direction for research.

Acknowledgments. This material is based on work partially supported by the National
Science Foundation (NSF) under Grants No. 0311808, No. 0832943, No. 0448452, No.
0842694, and No. CCF-0424422, and a NSF Graduate Research Fellowship, as well as
by the Air Force Office of Scientific Research under Grant No. A9550-09-1-0539. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the National Science
Foundation.

References

1. jQuery, http://jquery.com/
2. Aas, G.: CPAN: URI::Escape, http://search.cpan.org/~gaas/URI-1.56/URI/

Escape.pm

3. Adsafe : Making javascript safe for advertising, http://www.adsafe.org/
4. How To: Prevent Cross-Site Scripting in ASP.NET, http://msdn.microsoft.com/

en-us/library/ff649310.aspx

5. Microsoft ASP.NET: Request Validation – Preventing Script Attacks, http://www.asp.
net/LEARN/whitepapers/request-validation

6. Athanasopoulos, E., Pappas, V., Krithinakis, A., Ligouras, S., Markatos, E., Karagiannis, T.:
xJS: practical XSS prevention for web application development. In: Proceedings of the 2010
USENIX Conference on Web Application Development (2010)

7. Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.:
Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applica-
tions. In: Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA (2008)

8. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: Vetting browser extensions
for security vulnerabilities (2010)

9. Baron, D.: Mozilla’s quirks mode, https://developer.mozilla.org/en/mozilla’s_
quirks_mode

10. Barth, A., Caballero, J., Song, D.: Secure content sniffing for web browsers or how to stop
papers from reviewing themselves. In: Proceedings of the 30th IEEE Symposium on Security
and Privacy, Oakland, CA (May 2009)

11. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities (2009)

12. Bates, D., Barth, A., Jackson, C.: Regular expressions considered harmful in client-side xss
filters. In: Proceedings of the 19th International Conference on World Wide Web, WWW
2010, pp. 91–100. ACM, New York (2010)

13. Bisht, P., Venkatakrishnan, V.: XSS-GUARD: precise dynamic prevention of cross-site
scripting attacks. In: Detection of Intrusions and Malware, and Vulnerability Assessment,
pp. 23–43 (2008)

14. Google-caja: A source-to-source translator for securing javascript-based web content,
http://code.google.com/p/google-caja/

15. CakePHP: Sanitize Class Info, http://api.cakephp.org/class/sanitize
16. Chin, E., Wagner, D.: Efficient character-level taint tracking for java. In: Proceedings of

the 2009 ACM Workshop on Secure Web Services, SWS 2009, pp. 3–12. ACM, New York
(2009)

http://jquery.com/
http://search.cpan.org/~gaas/URI-1.56/URI/Escape.pm
http://search.cpan.org/~gaas/URI-1.56/URI/Escape.pm
http://www.adsafe.org/
http://msdn.microsoft.com/en-us/library/ff649310.aspx
http://msdn.microsoft.com/en-us/library/ff649310.aspx
http://www.asp.net/LEARN/whitepapers/request-validation
http://www.asp.net/LEARN/whitepapers/request-validation
https://developer.mozilla.org/en/mozilla's_quirks_mode
https://developer.mozilla.org/en/mozilla's_quirks_mode
http://code.google.com/p/google-caja/
http://api.cakephp.org/class/sanitize


168 J. Weinberger et al.

17. Chong, S., Liu, J., Myers, A.C., Qi, X., Vikram, K., Zheng, L., Zheng, X.: Secure web ap-
plications via automatic partitioning. In: Proceedings of Twenty-First ACM SIGOPS Sym-
posium on Operating Systems Principles, pp. 31–44. ACM, New York (2007)

18. ClearSilver: Template Filters, http://www.clearsilver.net/docs/man_filters.hdf
19. CodeIgniter/system/libraries/Security.php, http://bitbucket.org/ellislab/

codeigniter/src/tip/system/libraries/Security.php

20. CodeIgniter User Guide Version 1.7.2: Input Class, http://codeigniter.com/user_
guide/libraries/input.html

21. Ctemplate: Guide to Using Auto Escape, http://google-ctemplate.googlecode.com/
svn/trunk/doc/auto_escape.html

22. django: Built-in template tags and filters, http://docs.djangoproject.com/en/dev/
ref/templates/builtins

23. Django sites : Websites powered by django, http://www.djangosites.org/
24. The Django Book: Security, http://www.djangobook.com/en/2.0/chapter20/
25. Finifter, M., Wagner, D.: Exploring the Relationship Between Web Application Development

Tools and Security. In: Proceedings of the 2nd USENIX Conference on Web Application
Development. USENIX (June 2011)

26. Finifter, M., Weinberger, J., Barth, A.: Preventing capability leaks in secure javascript sub-
sets. In: Proc. of Network and Distributed System Security Symposium (2010)

27. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for ajax intrusion detection. In:
Proceedings of the 18th International Conference on World Wide Web, WWW 2009, pp.
561–570. ACM, New York (2009)

28. Google Web Toolkit: Developer’s Guide – SafeHtml, http://code.google.com/

webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html

29. Hansen, R.: XSS cheat sheet (2008)
30. Hickson, I.: HTML 5 : A vocabulary and associated apis for html and xhtml, http://www.

w3.org/TR/html5/

31. HTML Purifier Team: Css quoting full disclosure (2010), http://htmlpurifier.org/
security/2010/css-quoting

32. HTML Purifier : Standards-Compliant HTML Filtering, http://htmlpurifier.org/
33. Huang, Y.W., Yu, F., Hang, C., Tsai, C.H., Lee, D.T., Kuo, S.Y.: Securing web application

code by static analysis and runtime protection. In: Proceedings of the 13th International
Conference on World Wide Web, WWW 2004, pp. 40–52. ACM, New York (2004)

34. Jean, J.: Facebook CSRF and XSS vulnerabilities: Destructive worms on a social network,
http://seclists.org/fulldisclosure/2010/Oct/35

35. JiftyManual, http://jifty.org/view/JiftyManual
36. Jovanovic, N., Krügel, C., Kirda, E.: Pixy: A static analysis tool for detecting web application

vulnerabilities (short paper). In: IEEE Symposium on Security and Privacy (2006)
37. Kirda, E., Kruegel, C., Vigna, G., Jovanovic, N.: Noxes: a client-side solution for mitigat-

ing cross-site scripting attacks. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, pp. 330–337. ACM, New York (2006)

38. KSES Developer Team: Kses php html/xhtml filter, http://sourceforge.net/

projects/kses/

39. Livshits, B., Lam, M.S.: Finding security errors in Java programs with static analysis. In:
Proceedings of the Usenix Security Symposium (2005)

40. Livshits, B., Martin, M., Lam, M.S.: SecuriFly: Runtime protection and recovery from Web
application vulnerabilities. Tech. rep., Stanford University (September 2006)

41. Martin, M., Lam, M.S.: Automatic generation of XSS and SQL injection attacks with goal-
directed model checking. In: 17th USENIX Security Symposium (2008)

42. The Mason Book: Escaping Substitutions, http://www.masonbook.com/book/

chapter-2.mhtml

http://www.clearsilver.net/docs/man_filters.hdf
http://bitbucket.org/ellislab/codeigniter/src/tip/system/libraries/Security.php
http://bitbucket.org/ellislab/codeigniter/src/tip/system/libraries/Security.php
http://codeigniter.com/user_guide/libraries/input.html
http://codeigniter.com/user_guide/libraries/input.html
http://google-ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html
http://google-ctemplate.googlecode.com/svn/trunk/doc/auto_escape.html
http://docs.djangoproject.com/en/dev/ref/templates/builtins
http://docs.djangoproject.com/en/dev/ref/templates/builtins
http://www.djangosites.org/
http://www.djangobook.com/en/2.0/chapter20/
http://code.google.com/webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html
http://code.google.com/webtoolkit/doc/latest/DevGuideSecuritySafeHtml.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://htmlpurifier.org/security/2010/css-quoting
http://htmlpurifier.org/security/2010/css-quoting
http://htmlpurifier.org/
http://seclists.org/fulldisclosure/2010/Oct/35
http://jifty.org/view/JiftyManual
http://sourceforge.net/projects/kses/
http://sourceforge.net/projects/kses/
http://www.masonbook.com/book/chapter-2.mhtml
http://www.masonbook.com/book/chapter-2.mhtml


A Systematic Analysis of XSS Sanitization in Web Application Frameworks 169

43. Nadji, Y., Saxena, P., Song, D.: Document structure integrity: A robust basis for cross-site
scripting defense. In: NDSS (2009)

44. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically harden-
ing web applications using precise tainting. In: 20th IFIP International Information Security
Conference (2005)

45. XSS Prevention Cheat Sheet, http://www.owasp.org/index.php/XSS_(Cross_Site_
Scripting)_Prevention_Cheat_Sheet

46. Pullicino, J.: Google XSS Flaw in Website Optimizer Explained (December
2010), http://www.acunetix.com/blog/web-security-zone/articles/

google-xss-website-optimizer-scripts/

47. Robertson, W., Vigna, G.: Static enforcement of web application integrity through strong
typing. In: Proceedings of the 18th Conference on USENIX Security Symposium, SSYM
2009, pp. 283–298. USENIX Association, Berkeley (2009)

48. Ruby on Rails Security Guide, http://guides.rubyonrails.org/security.html
49. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution

framework for javascript. In: Proceedings of the 2010 IEEE Symposium on Security and
Privacy, SP 2010, pp. 513–528. IEEE Computer Society, Washington, DC, USA (2010)

50. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic discovery of client-side
validation vulnerabilities in rich web applications. In: 17th Annual Network & Distributed
System Security Symposium NDSS (2010)

51. Saxena, P., Molnar, D., Livshits, B.: Scriptgard: Preventing script injection attacks in legacy
web applications with automatic sanitization. Tech. rep., Microsoft Research (September
2010)

52. Schmidt, B.: Google Analytics XSS Vulnerability, http://spareclockcycles.org/

2011/02/03/google-analytics-xss-vulnerability/

53. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to ask). In: Proceed-
ings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 317–331. IEEE
Computer Society, Washington, DC, USA (2010)

54. Seo, J., Lam, M.S.: Invisitype: Object-oriented security policies (2010)
55. Smarty Template Engine: escape, http://www.smarty.net/manual/en/language.

modifier.escape.php

56. Stamm, S.: Content security policy (2009), https://wiki.mozilla.org/Security/

CSP/Spec

57. Swamy, N., Corcoran, B., Hicks, M.: Fable: A language for enforcing user-defined security
policies. In: Proceedings of the IEEE Symposium on Security and Privacy (May 2008)

58. Template::Manual::Filters, http://template-toolkit.org/docs/manual/Filters.

html

59. Mike, T.L., Venkatakrishnan, V.N.: BluePrint: Robust Prevention of Cross-site Scripting At-
tacks for Existing Browsers. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy (2009)

60. TwitPwn: DOM based XSS in Twitterfall (2009), http://www.twitpwn.com/2009/07/
motb-08-dom-based-xss-in-twitterfall.html

61. Twitter: All about the “onMouseOver” incident, http://blog.twitter.com/2010/09/
all-about-onmouseover-incident.html

62. UTF-7 XSS Cheat Sheet, http://openmya.hacker.jp/hasegawa/security/utf7cs.
html

63. Venema, W.: Taint support for PHP (2007), ftp://ftp.porcupine.org/pub/php/

php-5.2.3-taint-20071103.README.html

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
http://www.acunetix.com/blog/web-security-zone/articles/google-xss-website-optimizer-scripts/
http://www.acunetix.com/blog/web-security-zone/articles/google-xss-website-optimizer-scripts/
http://guides.rubyonrails.org/security.html
http://spareclockcycles.org/2011/02/03/google-analytics-xss-vulnerability/
http://spareclockcycles.org/2011/02/03/google-analytics-xss-vulnerability/
http://www.smarty.net/manual/en/language.modifier.escape.php
http://www.smarty.net/manual/en/language.modifier.escape.php
https://wiki.mozilla.org/Security/CSP/Spec
https://wiki.mozilla.org/Security/CSP/Spec
http://template-toolkit.org/docs/manual/Filters.html
http://template-toolkit.org/docs/manual/Filters.html
http://www.twitpwn.com/2009/07/motb-08-dom-based-xss-in-twitterfall.html
http://www.twitpwn.com/2009/07/motb-08-dom-based-xss-in-twitterfall.html
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html
http://blog.twitter.com/2010/09/all-about-onmouseover-incident.html
http://openmya.hacker.jp/hasegawa/security/utf7cs.html
http://openmya.hacker.jp/hasegawa/security/utf7cs.html
ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint-20071103.README.html
ftp://ftp.porcupine.org/pub/php/php-5.2.3-taint-20071103.README.html


170 J. Weinberger et al.

64. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C., Vigna, G.: Cross site scripting
prevention with dynamic data tainting and static analysis. In: Proceeding of the Network and
Distributed System Security Symposium (NDSS), vol. 42. Citeseer (2007)

65. Weinberger, J., Saxena, P., Akhawe, D., Finifter, M., Shin, R., Song, D.: An empirical anal-
ysis of xss sanitization in web application frameworks. Tech. Rep. UCB/EECS-2011-11,
EECS Department, University of California, Berkeley (February 2011)

66. Xie, Y., Aiken, A.: Static detection of security vulnerabilities in scripting languages. In:
Proceedings of the Usenix Security Symposium (2006)

67. xssterminate, http://code.google.com/p/xssterminate/
68. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical approach to

defeat a wide range of attacks. In: Proceedings of the 15th USENIX Security Symposium,
pp. 121–136 (2006)

69. Yii Framework: Security, http://www.yiiframework.com/doc/guide/1.1/en/

topics.security
70. Zalewski, M.: Browser security handbook. Google Code (2010), http://code.google.

com/p/browsersec/wiki/Part1
71. Zend Framework: Zend Filter, http://framework.zend.com/manual/en/zend.

filter.set.html

A Transductions in the Browser

Table 5 details browser transductions that are automatically performed upon reading
or writing to the DOM. The DOM property denotes the various aspects of an element
accessible through the DOM APIs, while the access method describes the specific part
of the API through which a developer may edit or examine these attributes. Excepting
“specified in markup”, the methods are all fields or functions of DOM elements.

Table 6 describes the specifics of the transducers employed by the browser. Except
for “HTML entity decoding”, the transductions all occur in the parsing and serialization
processes triggered by reading and writing these properties as strings. When writing to
a property, the browser parses the string to create an internal AST representation. When
reading from a property, the browser recovers a string representation from the AST.

Textual values are HTML entity decoded when written from the HTML parser to the
DOM via edge 1 in Figure 1. Thus, when a program reads a value via JavaScript, the
value is entity decoded. In some cases, the program must re-apply the sanitization to
this decoded value or risk having the server’s sanitization negated.

One set of DOM read access APIs creates a serialized string of the AST representa-
tion of an element, as described in Table 6. The other API methods simply read the text
values of the string versions (without serializing the ASTs to a string) and perform no
canonicalization of the values.

The transductions vary significantly for the DOM write access API as well, as de-
tailed in Table 5. Some writes cause input strings to be parsed into an internal AST
representation, or apply simple replacements on certain character sequences (such as
URI percent-decoding), while others store the input as is.

In addition, the parsers in Figure 1 apply their own transductions internally on cer-
tain pieces of their input. The CSS and JavaScript parsers unescape certain character
sequences within string literals (such as Unicode escapes), and the URI parser applies
some of its own as well (undoing percent-encoding).

http://code.google.com/p/xssterminate/
http://www.yiiframework.com/doc/guide/1.1/en/topics.security
http://www.yiiframework.com/doc/guide/1.1/en/topics.security
http://code.google.com/p/browsersec/wiki/Part1
http://code.google.com/p/browsersec/wiki/Part1
http://framework.zend.com/manual/en/zend.filter.set.html
http://framework.zend.com/manual/en/zend.filter.set.html


A Systematic Analysis of XSS Sanitization in Web Application Frameworks 171

Table 5. Transductions applied by the browser for various accesses to the document. These sum-
marize transductions when traversing edges connected to the “Document” block in Figure 1.

DOM property Access method Transductions on reading Transductions on writing

data-* attribute
get/setAttribute None None
.dataset None None
specified in markup N/A HTML entity decoding

src, href attributes
get/setAttribute None None
.src, .href URI normalization None
specified in markup N/A HTML entity decoding

id, alt, title, type, lang, class get/setAttribute None None
dir attributes .[attribute name] None None

specified in markup N/A HTML entity decoding

style attribute
get/setAttribute None None
.style.* CSS serialization CSS parsing
specified in markup N/A HTML entity decoding

HTML contained by node .innerHTML HTML serialization HTML parsing
Text contained by node .innerText,

.textContent
None None

HTML contained by node, including
the node itself

.outerHTML HTML serialization HTML parsing

Text contained by node, surrounded by
markup for node

.outerText None None

Table 6. Details regarding the transducers mentioned in Table 5. They all involve various parsers
and serializers present in the browser for HTML and its related sub-grammars.

Type Description Illustration

HTML entity decoding Replacement of character entity references with the actual
characters they represent.

&amp;→ &

HTML parsing Tokenization and DOM construction following the HTML
parsing rules, including entity decoding as appropriate.

<p>&gt;</p> → HTML element P with
body >

HTML serialization Creating a string representation of an HTML node and its
children.

HTML element P with body > →
<p>&gt;</p>

URI normalization Resolving the URI to an absolute one, given the context in
which it appears.

/article title →
http://www.example.com/
article%20title

CSS parsing Parsing CSS declarations, including character escape de-
coding as appropriate.

color: \72\65\64→ color: red

CSS serialization Creating a canonical string representation of a CSS style
declaration.

“color:#f00” → “color: rgb(255,
0, 0); ”


	A Systematic Analysis of XSS Sanitization in Web Application Frameworks
	Introduction
	A Systematic Browser Model for XSS
	Problem Formulation: XSS Explained
	Subtleties and Challenges in XSS Sanitization
	The Role of Web Frameworks
	Analysis Objectives

	Analysis of Web Frameworks and Applications
	Auto-Sanitization: Features and Pitfalls
	Security of Client-Side Code Evaluation
	Context Expressiveness
	Enabling Reasoning of Sanitizer Correctness

	Related Work
	Conclusions and Future Work
	References
	Transductions in the Browser



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




