
Exploring the Limits of Common Coins

Using Frontier Analysis of Protocols

Hemanta K. Maji1,�, Pichayoot Ouppaphan1,��, Manoj Prabhakaran1,�,
and Mike Rosulek2

1 Department of Computer Science, University of Illinois, Urbana-Champaign
{hmaji2,pouppap2,mmp}@uiuc.edu

2 Department of Computer Science, University of Montana
mikero@cs.umt.edu

Abstract. In 2-party secure computation, access to common, trusted
randomness is a fundamental primitive. It is widely employed in the
setting of computationally bounded players (under various complexity
assumptions) to great advantage. In this work we seek to understand
the power of trusted randomness, primarily in the computationally un-
bounded (or information theoretic) setting. We show that a source of
common randomness does not add any additional power for secure eval-
uation of deterministic functions, even when one of the parties has arbi-
trary influence over the distribution of the common randomness. Further,
common randomness helps only in a trivial sense for realizing random-
ized functions too (namely, it only allows for sampling from publicly fixed
distributions), if UC security is required.

To obtain these impossibility results, we employ a recently developed
protocol analysis technique, which we call the frontier analysis. This in-
volves analyzing carefully defined “frontiers” in a weighted tree induced
by the protocol’s execution (or executions, with various inputs), and es-
tablishing various properties regarding one or more such frontiers. We
demonstrate the versatility of this technique by employing carefully cho-
sen frontiers to derive the different results. To analyze randomized func-
tionalities we introduce a frontier argument that involves a geometric
analysis of the space of probability distributions.

Finally, we relate our results to computational intractability ques-
tions. We give an equivalent formulation of the “cryptomania assump-
tion” (that there is a semi-honest or standalone secure oblivious transfer
protocol) in terms of UC-secure reduction among randomized function-
alities. Also, we provide an unconditional result on the uselessness of
common randomness, even in the computationally bounded setting.

Our results make significant progress towards understanding the exact
power of shared randomness in cryptography. To the best of our knowl-
edge, our results are the first to comprehensively characterize the power
of large classes of randomized functionalities.

� Partially supported by NSF grants CNS 07-47027 and CNS 07-16626.
�� Supported by NSF grant CNS 0851957 for undergraduate research.

Y. Ishai (Ed.): TCC 2011, LNCS 6597, pp. 486–503, 2011.
c© International Association for Cryptologic Research 2011

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 487

1 Introduction

In this work, we consider a fundamental question: How cryptographically useful
is a trusted source of public coins?

While there are several instances in cryptography where a common random
string or a trusted source of public coins is very useful (e.g. [3,5]), we show severe
limitations to its usefulness1 in secure two-party computation, without — and
sometimes even with — computational intractability assumptions. In contrast,
it is well known that more general correlated private random variables can be
extremely powerful [2]. Given that for semi-honest security common randomness
is useless (as one of the parties could sample and broadcast it), it is not surpris-
ing that it should turn out to be not as powerful as general correlated random
variables. However, despite its fundamental nature, the exact power of common
randomness has not yet been characterized. Here, we provide tight characteriza-
tions of what can be achieved with a source of common randomness, in various
settings of 2-party computation. We show:

– For two-party secure function evaluation (SFE) of deterministic functions,
being given a source of common randomness is useless, irrespective of any
computational complexity assumptions, when considering security in the
standalone setting2.

– Clearly a source of common randomness can be useful for realizing ran-
domized functionalities. However, in the case of UC security, we show that a
source of common coins can be useful only in a trivial sense (unless restricted
to the computationally bounded setting, and intractability assumptions are
employed). We show that any UC-secure protocol that uses common coins
for evaluating a randomized function can be replaced by a protocol of the
following simple form: one of the parties announces a probability distribu-
tion, based deterministically on its input, and then the two parties sample
an outcome from this distribution using freshly sampled common coins. We
call the resulting functionality a publicly-selectable source.

– We relate computational intractability assumptions to secure reductions
among randomized functionalities, giving evidence that common random-
ness is useful only under strong computational assumptions. In particular
we show that common randomness can be used to UC-securely realize a
symmetric functionality with bi-directional influence (i.e., the output is in-
fluenced by both the parties’ inputs) if and only if there exists a semi-honest
secure protocol for oblivious transfer.

These results are actually proven for a class of sources more general than coin
tossing, namely selectable sources – that let one of the parties (secretly) specify
1 We say that a source of common randomness is useless in realizing some 2-party

functionality F if either F could be realized without using the given source or F
cannot be realized even given the source. Note that we consider only the feasibility
question and not any efficiency issues.

2 In the case of UC security, it follows from the results in [16] that a source of common
randomness is useless except in Cryptomania, where it is a complete functionality.

488 H.K. Maji et al.

which among a set of distributions should be used by the source. We highlight
two aspects of these results:

Non-blackbox analysis of protocols. In deriving the impossibility results our anal-
ysis crucially relies on the communication and information structure of protocols.
We build on the “frontier analysis” paradigm in [8,15,16], but significantly ex-
tend its power, among other things, to enable analyzing protocols for arbitrary
randomized functionalities, and protocols using randomized functionalities.

These results (and hence proofs) are necessarily of a non-relativizing nature —
if the protocol has access to another trusted functionality (more sophisticated
than common randomness), the impossibility results no longer hold. Specifics
about the common randomness functionality are (and must be) used in our
proofs. Such low-level analysis of protocols, we believe, is crucial to understand-
ing the power and complexity of multi-party computation primitives.

Understanding randomized functionalities. Secure evaluation of randomized func-
tions has in general been a poorly understood area. In particular, to date it
remains open to characterize which randomized functions can be securely real-
ized even against computationally unbounded passive (honest-but-curious) ad-
versaries — a problem that was solved for deterministic functions twenty years
ago [1,13]. Much of the study of randomized functionalities has been focused on
in-depth understanding of the simplest such functionality — namely generating
shared fair coins (e.g., see [7,10,8,18] and references therein). Our results provide
significant insight into other randomized functionalities as well, and their con-
nections to computational intractability assumptions. In particular, our results
involve two interesting classes of randomized functionalities, namely selectable
sources and publicly-selectable sources.

1.1 Overview

Frontier analysis. The bulk of our results take the form of statements of crypto-
graphic impossibility. That is, we show that a protocol for a given cryptographic
task is impossible (or else implies a certain computational primitive like one-way
functions). Such impossibility results have been a core challenge in cryptography.
In this work, we present a powerful battery of techniques that we use to analyze
2-party protocols, which we broadly call “frontier analysis.”

The basic outline of a frontier analysis is as follows. We first interpret a proto-
col as a tree of possible transcripts, with weights corresponding to the probability
that the protocol assigns to each message, based on the parties’ inputs. Within
this tree, we identify “frontiers”, which are simply a collection of nodes (partial
transcripts) that form a cut and an independent set. Intuitively, these frontiers
correspond to points in the protocol when some condition is satisfied for the first
time, where the condition in question depends on the kind of analysis needed:
for example, the first place the transcript leaks “significant” information about
a party’s input, or the first place that common coins have made a “significant”
influence on the protocol’s output.

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 489

Impossibility proofs using frontier analysis proceed by showing that frontiers
of certain kind exist, often showing that multiple frontiers must be encountered
in a specific order, and then showing that an adversary can effect an attack by
exploiting the properties of these frontiers. The interested reader can find a high
level discussion on frontier analysis as a tool for protocol analysis in the full
version of this paper [14].

Common coins are not useful in SFE protocols. We show that against compu-
tationally unbounded adversaries (more precisely, against adversaries that can
break one-way functions), any 2-party deterministic SFE (in which both par-
ties receive the same output) functionality that can be securely realized given
a trusted coin-tossing functionality can in fact be securely realized without it.
This is most interesting for the standalone setting, because if one-way functions
do exist then a standalone-secure coin-tossing protocols exist, so again access to
a trusted coin-tossing functionality is redundant3.

We start off by showing that there is no secure protocol for evaluating boolean
xor given a coin-tossing functionality. In many ways these functionalities have
similar “complexity” (in particular, neither is complete, and both are trivial
to realize against passive adversaries), so establishing a qualitative separation
between them is interesting in itself. In a protocol for xor, either party may be
the first to reveal information about their input, and the two parties can even
gradually reveal more and more information about their input in an interleaved
fashion. We define a frontier corresponding to the first point at which some
party has revealed “significant” information about its input. Then we define an
attack that can be carried out when the protocol crosses this frontier. Since
a large class of SFE functionalities can be used to securely realize xor, the
impossibility extends to these functionalities as well.

We then use the combinatorial characterizations of Symmetric Secure Func-
tion Evaluation (SSFE) functionalities (obtained using frontier analysis) from
[15] to extend the result to arbitrary SSFE functionalities (instead of just XOR).
Further, using an extension of a result in [11], we extend this to arbitrary SFE
functionalities by associating a symmetric SFE with every general SFE that has
a secure protocol using a source of common randomness.

For randomized SFE, common coins help only in a trivial sense. We show that
common coins are useful in constructing UC-secure protocols for randomized
SFE functionalities only for the class of publicly-selectable sources (Theorem 2).
For this result, we exploit the versatility of the frontier analysis and also employ
a geometric analysis of the space of effective probability distributions.

3 A recent result in [16] gives a sharp result for the case of UC security: the coin-
tossing functionality is useful in realizing further deterministic SFE functionalities
if and only if there exists a semi-honest oblivious transfer protocol. However neither
the result nor the approach in [16] extends to the standalone setting. Also, our result
is applicable to not just symmetric functionalities and coin-tossing, but extends to
general SFE functionalities and all selectable sources.

490 H.K. Maji et al.

The frontier analysis is carried out for an SSFE functionality, and then the re-
sult is extended to general SFE functionality separately. For a randomized SSFE
functionality, for each pair of inputs, the output is specified by a distribution
(over a finite output alphabet). This distribution can be represented as a vector
in d-dimensional real space where d is the size of the output alphabet. By con-
sidering all possible inputs, we obtain a set of points in this space as legitimate
output distributions. But since the parties can choose their input according to
any distribution they wish, the entire convex hull of these points is the set of le-
gitimate output distributions. Note that the vertices of this polytope correspond
to the output distributions for various specific input choices.

In analyzing a protocol for such a functionality, we define two very different
frontiers: one intuitively captures the last point in the protocol where the parties’
inputs have any noticeable influence over the output distribution. The other
intuitively captures the first point where the common coins have had a non-
trivial influence on the output distribution.

Defining these frontiers is a delicate task, but once they are defined, we can show
that, for the protocol to be UC-secure, the two frontiers must be encountered in
the order listed above. Thus there is always a point within the protocol where the
parties’ inputs have stopped influencing the output, yet the public coins have not
yet started influencing the output in a non-trivial way. At this point, we can show
that the output distribution is uniquely determined, and that the subsequent coins
are simply used to sample from this publicly-chosen distribution.

Then, on each node in the first frontier the conditional output distribution is
still within the polytope. On the other hand, since the input influence has ceased
at this point, for any fixed input, its output distribution must be determined by
this frontier: i.e., it must be a convex combination of the conditional output
distributions at the nodes on the frontier. That is, the output distribution for
this input is a convex combination of conditional output distributions which
are all themselves within the polytope. Now, (without loss of generality, as it
turns out) we can consider inputs whose output distributions are vertices of the
polytope. Then, for all nodes in the frontier the conditional output distribution
must coincide with the final distribution itself. Thus on reaching this frontier in
the protocol, the output distribution is revealed (as a deterministic function of
the inputs) and the rest of the protocol simply samples from this distribution.

Finally, we extend this result also to general SFE (instead of just symmetric
SFE) functionalities, in the same way as for deterministic functionalities.

Selectable sources. Selectable sources are an interesting class of randomized func-
tionalities with an intermediate level of complexity: they can be more complex
than a (fixed) source of common randomness, yet they are simple enough that
we can show that they are as useless as common randomness when it comes
to securely realizing deterministic functionalities. The extension is observed by
following the analysis for the case of the source of common randomness, and iden-
tifying the properties that it relies on. We do not know at this point whether
these are exactly all the functionalities which are useless for realizing SFE func-
tionalities, but based on our understanding so far, we conjecture that they are.

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 491

Connections to Computational Intractability. Finally, we relate our results to
computational intractability questions. The attacks based on frontier analysis
can often be extended to the computationally bounded setting, if one-way func-
tions do not exist (as was pointed out in [16]). We show that this is indeed the
case for our attacks. In fact, our first application of such an extension is to obtain
an unconditional result about the uselessness of selectable sources in realizing
deterministic secure function evaluation with standalone security. For this we use
the fact that if one-way functions do not exist we can attack any given protocol,
whereas if one-way functions do exist then we can realize any selectable source
functionality (with standalone security) and then again they are useless.

We also generalize a result in [16] to the setting of randomized functional-
ities. There it was shown that if any non-trivial deterministic functionality is
UC-securely realizable using access to common randomness, then there exists an
oblivious transfer protocol secure against semi-honest adversaries. We generalize
common randomness to any selectable source, and also generalize non-trivial de-
terministic functionalities to randomized SSFE functionalities with both parties’
inputs having an influence on the output.

Related Results. Frontier analysis is possibly implicit in previous works on prov-
ing impossibility or lower bounds for protocols. For instance, the analysis in [8]
very well fits our notion of what frontier analysis is. The analysis of protocols in
[6,1,13] also have some elements of a frontier analysis, but of a rudimentary form
which was sufficient for analysis of perfect security. In [15] frontier analysis was
explicitly introduced and used to prove several protocol impossibility results and
characterizations. [12] also presented similar results and used somewhat similar
techniques (but relied on analyzing the protocol by rounds, instead of frontiers,
and suffered limitations on the round complexity of the protocols for which the
impossibility could be shown).

2 Preliminaries

We say that a function ν : N → R is negligible if for every polynomial p,
ν(k) < 1/p(k) for sufficiently large k. If D,D′ are discrete probability distri-
butions with support S, we write SD(D,D′) to denote the statistical distance of
the distributions, defined as SD(D,D′) = 1

2

∑
s∈S |D(s) −D′(s)|.

Security. We use standard conventions and terminology for the security of proto-
cols for multi-party computation tasks. A protocol is secure if for every adversary
in the real world (in which parties execute a protocol), there is an adversary, or
simulator, in the ideal world (in which the task is carried out on behalf of the
parties by a trusted third party called a functionality) that achieves the same
effect. A semi-honest or passive adversary is one which is not allowed to deviate
from the protocol. Standalone security is achieved if the simulator is allowed to
rewind the adversary; Universally composable (UC) security [4] is achieved if
the simulation is straight-line (i.e., never rewinds the adversary). In this work,

492 H.K. Maji et al.

we exclusively consider static adversaries, who do not adaptively corrupt honest
parties during the execution of a protocol.

The plain model is a real world in which protocols only have access to a
simple communication channel; a hybrid model is a real world in which protocols
can additionally use a particular trusted functionality. While hybrid worlds are
usually considered only for UC security, we also use the terminology in the setting
of standalone security. We note that protocols for non-reactive functionalities
(i.e., those which receive input from all parties, then give output, and then stop
responding) do securely compose even in the standalone security setting.

2.1 Functionalities

We focus on classifying several important subclasses of functionalities.

Secure function evaluation (SFE). A 2-party secure function evaluation (SFE)
functionality is specified by two functions f1 : X ×Y → Z and f2 : X ×Y → Z,
where X and Y are finite sets. The functionality waits for input x ∈ X from Alice
and y ∈ Y from Bob, then delivers f1(x, y) and f2(x, y) to them, respectively.
There is no fairness guarantee: if a party is corrupt, it can obtain its own output
first and decide whether the output should be delivered to the other party.

If f1 = f2 are identical we call it a symmetric SFE (or SSFE) functionality.
SSFE functionalities are the most fundamental, and have been studied since Yao
first introduced the concept of multi-party computation [20]. We can specify an
SSFE function by simply giving its function table, where the rows correspond
to an input of Alice, and columns correspond to an input of Bob. For instance,
the XOR functionality has function table 0 1

1 0 .

Randomized functionalities. A randomized SFE functionality is specified by
functions f1, f2 : X × Y × R → Z. The functionality takes inputs x ∈ X from
Alice, y ∈ Y from Bob, uniformly samples r ∈ R and outputs f1(x, y, r) and
f2(x, y, r) to Alice and Bob, respectively. An important example is the common
randomness functionality, denoted by Fcoin (with X = Y = {0}, R = {0, 1}, and
f1(x, y, r) = f2(x, y, r) = r). Note that for a given pair of inputs, the outputs to
Alice and Bob could be correlated as the same value r is used in both.

We identify two important subclasses of randomized SSFE functionalities:

Selectable sources: One in which one party’s input does not affect the output.
That is, functions which can be written as f(x, y, r) = h(x, r) for some func-
tion h. Note that for different values of x, the function’s output distribution
may be arbitrary.

Publicly-selectable sources: Those functions which can be written as
f(x, y, r) = (g(x), h(g(x), r)), for some functions g and h. In this case, the
function’s output distribution for different values of x must be either iden-
tical (when g(x) = g(x′)) or have disjoint supports (when g(x) �= g(x′),
which is included in the function’s output). Intuitively, the function’s out-
put determines the identity of the random distribution h(g(x), ·) that was
used.

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 493

In these two classes of functionalities, only one party can influence the output,
so we say they have uni-directional influence. If there exists inputs x, x′, x′′ for
Alice and y, y′, y′′ for Bob so that f(x, y′) �≡ f(x, y′′), and f(x′, y) �≡ f(x′′, y),
then both parties can potentially influence the output, and we say that the
functionality has bi-directional influence.

Isomorphism. F and G are isomorphic4 if either functionality can be UC-securely
realized using the other functionality by a protocol that is “local” in the following
sense: to realize F given G (say), each party maps its input (possibly probabilis-
tically) to inputs for the functionality G, calls G once with that input and, based
on their private input, the output obtained from G, and possibly private random
coins, locally computes the final output, without any other communication. It is
easy to see that isomorphism is an equivalence relation.

Usefulness of a source. We say that a source of common randomness G is useless
in realizing a 2-party functionality F if either F could be securely realized in
the plain model (i.e., without using G) or F cannot be securely realized even in
the G-hybrid model. Note that we consider only the feasibility question and not
any efficiency issues.

2.2 Frontier Analysis

Protocols and transcript trees. We view a 2-party protocol as a weighted tree of
possible transcripts. The leaves of the tree correspond to completed transcripts,
on which both parties give output. The tree’s internal nodes alternate between
“Alice” and “Bob” nodes, corresponding to points in the protocol (identified by
partial transcripts) at which Alice and Bob send messages, respectively. Given
a party’s private input and the transcript so far (i.e., a node in the tree), the
protocol assigns probabilities to the outgoing edges (i.e., possible next messages).
In some settings we also consider nodes corresponding to invocations of ideal
functionalities (like Fcoin), when appropriate. For these the protocol tree assigns
probabilities to the outputs of the functionality (the corresponding “messages”
included in the transcripts for these steps) according to the probabilities of
parties’ inputs and the functionality’s internal randomness. An execution of the
protocol corresponds to a traversal from root to leaf in the tree.

Probabilities and frontiers. We write Pr[v|x, y] for the probability that the pro-
tocol visits node v (equivalently, generates a transcript with v as a prefix) when
executed honestly on inputs x and y. Suppose πA(x, vb) is the probability that
when Alice executes the protocol honestly with input x and the transcript so far
is v, her next message is b. Similarly, we define a probability πB for Bob. Then
(assuming Alice speaks first in the protocol):

Pr[v|x, y] = πA(x, v1)πB(y, v1v2) · · · =

[
∏

i odd

πA(x, v1 · · · vi)

] [
∏

i even

πB(y, v1 · · · vi)

]

4 The definition given here is a generalization for randomized functionalities of the
definition from [15].

494 H.K. Maji et al.

If we define α(v, x) and β(v, y) to be the two parenthesized quantities (equiva-
lently, the product of weights from Alice nodes and Bob nodes in the transcript
tree, respectively), then we have Pr[v|x, y] = α(v, x)β(v, y). Thus, in a plain
protocol, the two parties make independent contributions to the probability of
each transcript. In fact, even if the protocol is allowed to use a selectable source,
this property still holds (see Section 4). This property of protocols is crucially
used in all frontier analysis in this work.

When S is a set of independent nodes in the transcript tree (prefix-free partial
transcripts), we define Pr[S|x, y] =

∑
v∈S Pr[v|x, y], as all the probabilities in the

summation are for mutually exclusive events. If Pr[F |x, y] = 1, then we call F a
frontier. Equivalently, a frontier is a maximal independent set in the transcript
tree. In general, a frontier represents a point in the protocol where a certain
event happens, usually defined in terms of the probabilities α and β.

3 Handling General SFE Functionalities

Frontier analysis is most naturally applied to protocols realizing SSFE function-
alities — that is, functionalities which give the same output to both parties.
So we derive our results for such functionalities. However, we can then extend
our characterizations to apply to SFE functionalities with unrestricted outputs
using the following lemma (see the full version of this paper [14]):

Lemma 1. Suppose H is a functionality that has a passive-secure protocol in the
plain model. If H is useful in UC- or standalone-securely realizing a (possibly
randomized) SFE functionality F , then there exists a symmetric SFE function-
ality F∗ such that F∗ is isomorphic to F , and H is useful in (respectively, UC-
or standalone-) securely realizing F∗.
Here, being useful or not is in the sense of the definition given in Section 2.1.

Proving Lemma 1 essentially involves relating SSFE and SFE functionali-
ties. As it turns out, relating symmetric and unrestricted functionalities is most
convenient in the setting of passive security. In that setting, we associate with
every SFE functionality F a symmetric functionality which is simply the maxi-
mal “common information” provided to the two parties by F . (See proof in the
full version [14] for a combinatorial description of this function) Following [11]
it is not hard to show that if an SFE functionality G is not isomorphic to its
(symmetric-output) common information functionality then G must be complete
in the passive security setting.

To apply this result, however, we must be careful in relating passive security
and active security. It is not necessarily the case that an actively secure pro-
tocol implies a passively secure protocol (since in the passive security setting,
the security reduction must map passively corrupt adversaries to passively cor-
rupt simulators). In [14] we show that every SFE functionality is isomorphic to
a functionality that is “deviation-revealing” [19]. Such functionalities have the
property that active-secure protocols imply passive-secure protocols. Using these

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 495

two results, we are able to transition from active to passive security, and then
argue about generalized vs. symmetric output.

4 Selectable Sources Are Useless for Deterministic SFE

In this section we will show that any selectable source is useless for securely re-
alizing any deterministic SFE functionality against computationally unbounded
adversaries. In particular this shows that Fcoin is useless for realizing any deter-
ministic SFE functionality.

Theorem 1. Suppose F is a 2-party deterministic SFE and G is a selectable
source. Then F has a standalone-secure (resp. UC-secure) protocol in the G-
hybrid model against computationally unbounded adversaries if and only if F
has a standalone-secure (resp. UC-secure) protocol in the plain model.

To give an overview of our techniques, we present the result for the special case
of F = Fxor and G = Fcoin. Then we describe the modifications necessary to
consider arbitrary F and arbitrary selectable source G, respectively.

The case of Fxor and Fcoin. This special case illustrates our new frontier-based
attack. It is well-known that there is no standalone-secure (or UC-secure) proto-
col for Fxor in the plain model (cf. the complete characterization of [12,15]). Also
note that standalone security is a special case of UC security. Thus it suffices to
show the following:

Lemma 2. There is no standalone-secure protocol for Fxor using Fcoin, against
computationally unbounded adversaries.

Proof (Sketch). The main novelty in this proof (compared to the techniques in
[15]) is the nature of the frontier we consider, in a semi-honest protocol. For semi-
honest security, Fxor does not have a canonical order for what information must
be revealed by the two parties. This thwarts the analysis in [15], which depends
on defining frontiers corresponding to what information is revealed in what order.
Nevertheless we show that using a frontier parameterized by a threshold μ on
(an appropriately defined notion of) how much information is revealed about a
party’s input, one can devise an attack on purported protocol for Fxor in the
Fcoin-hybrid model.

For simplicity, first assume that we are given a protocol π for Fxor in the plain
model (i.e., let us ignore Fcoin for the moment). Let α and β be defined as in
Section 2. Then for every node v in the transcript tree of π, define

δA(v, x, x′) =
|α(v, x) − α(v, x′)|
α(v, x) + α(v, x′)

and δB(v, y, y′) =
|β(v, y) − β(v, y′)|
β(v, y) + β(v, y′)

.

496 H.K. Maji et al.

δA and δB are well-defined after we exclude any nodes that have α(v, x) =
α(v, x′) = 0 or β(v, y) = β(v, y′) = 0. Intuitively, δA(v, x, x′) and δB(v, y, y′)
measure how much the transcript reveals about the distinction between x and
x′, or y and y′, respectively. A δ value of 0 means that the partial transcript v is
independent of the choice between the two inputs; a value of 1 means that the
transcript v is only consistent with one of the two inputs.

Then given a parameter μ, we define a frontier F as follows:

F =
{

v

∣
∣
∣
∣

max{δA(v, 0, 1), δB(v, 0, 1)} ≥ μ

and no proper prefix of v also satisfies this condition

}

Intuitively, F is the first place at which one of the parties has revealed “signifi-
cant” information about its input, where significance is measured by μ.

Now we sketch an attack based on this frontier. (The actual proof and calcu-
lations in [14] follow a slightly different argument, but using the same frontier).
Suppose by symmetry that on an honest execution, the protocol assigns the
majority of the weight on F to transcripts v satisfying δB(v, 0, 1) ≥ μ. Then,
intuitively, Alice can launch an attack as follows. She runs the protocol honestly
(say, with input 0) until reaching F . Then at F , the transcript is correlated with
Bob’s input enough so that Alice can guess Bob’s input with bias roughly μ/2.
On the other hand, since δA(v, 0, 1) < μ with good probability at this point of
the protocol, both values for Alice’s input are somewhat likely explanations for
the transcript seen so far. Therefore if Alice changes her input at this point (by
sampling a state consistent with the current transcript and the new input), the
outcome of the protocol will change with all but negligible probability, thanks
to the correctness guarantee of the protocol. Thus, Alice can significantly corre-
late her effective input with Bob’s, so that Bob’s output is biased significantly
towards 1 (when Bob picks his input at random). But this is a behavior that is
not possible in an ideal-world interaction with Fxor, so it constitutes a violation
of the security of π.

The only difference when attacking a protocol in the Fcoin-hybrid model is
that the common coins also influence the probabilities of partial transcripts. One
may consider the probability of a partial transcript v (which includes outputs of
Fcoin) as a product of α(v, x), β(v, y), and a contribution γ(v) from the combined
calls to Fcoin. However, γ(v) does not depend on x or y, so we can absorb its
contribution into (arbitrarily) α(v, x) and the analysis remains valid5.

Uselessness of Fcoin for any SFE F . First we consider the case when F is a sym-
metric SFE functionality. We use the characterization of SSFE functionalities

5 Note that α and β are defined only in terms of honest behavior by the parties, so that
every call to Fcoin delivers its output to both parties in our analysis and associated
attack. (Only corrupt parties can prevent output delivery in a functionality with no
output fairness guarantee.) Thus our attacks neither rely on fairness nor crucially
exploit unfairness in the source of common coins; the adversaries we construct will
always choose to deliver the outputs of the setup functionality.

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 497

with standalone-secure protocols from [15] to show that if an SSFE functional-
ity F has no standalone-secure protocol in the plain model, then either there
is a standalone-secure protocol for Fxor in the F -hybrid model, or else there
is a frontier-based attack that violates standalone security of every purported
protocol for F in the plain model.

In the first case, Lemma 2 demonstrates that F can have no standalone-
secure protocol in the Fcoin-hybrid world. In the second case, we observe that
the frontier-based attacks go through unaltered even if the protocols are allowed
access to Fcoin. This is because the frontier attack merely relies on the fact that
in a protocol, given a transcript prefix v, the next message depends only on one
of Alice and Bob’s inputs. However, this is true even if the protocol has access
to Fcoin— the bits from Fcoin being independent of both parties’ inputs.

This allows us to conclude that in either case, there can be no protocol for
F in the Fcoin-hybrid model, giving us the following lemma (see the full version
[14] for more details).

Lemma 3. If F is a 2-party deterministic SSFE that has no standalone-secure
(resp. UC-secure) protocol against unbounded adversaries in the plain model,
then F has no standalone-secure (resp. UC-secure) protocol in the Fcoin-hybrid
model.

Replacing G with an arbitrary selectable source. Our analysis goes through with
minimal modification when Fcoin is replaced by an arbitrary selectable source.
Recall that in a selectable source functionality G, only one party can influence
the output at a time (depending on which “direction” G is used in). When G is
used such that only Alice influences the output, the influence on the transcript’s
probability can be collected into the term α(v, x). Similarly, when only Bob can
influence the output of G, the influence can be collected into the term β(v, y).
Therefore, we can still write Pr[v|x, y] = α(v, x)β(v, y) for appropriate α and β.
Each invocation of G is an atomic event with respect to the frontiers and to the
adversary’s changes in behavior in our our attacks.

Extending to general SFE functionalities. Finally, we prove Theorem 1, using
Lemma 1. Note that a selectable source has a passive secure protocol (Alice
samples an output and gives it to Bob). Thus if there exists any SFE functionality
F for which some selectable source is useful in (UC- or standalone-) securely
realizing, then by Lemma 1 selectable source is useful in (UC- or standalone-)
securely realizing some SSFE functionality as well, contradicting Lemma 3.

5 Coins Are Useless for Randomized SFE

In this section, we characterize the set of randomized SFE functionalities that
can be reduced to Fcoin.

Since Fcoin itself is not securely realizable (in the UC or standalone model)
against computationally unbounded adversaries, common randomness clearly

498 H.K. Maji et al.

allow more functionalities to be securely realized. In particular common ran-
domness can be used to generate a shared sample from a publicly agreed-upon
distribution. However, we show that this is essentially the only use of common
randomness, when UC security is required6. More precisely,

Theorem 2. A randomized SFE functionality F has a UC-secure protocol in
the Fcoin-hybrid model if and only if F is isomorphic to the SSFE functional-
ity F∗ with output function F∗ such that F∗(x, y, r) = (h(x), r), where h is a
deterministic function.

Note that a secure protocol for F∗(x, y, r) above is simple: Alice sends h(x) to
Bob, and then they obtain uniformly random coins r from Fcoin. Thus, any UC
secure protocol for f which uses Fcoin can be replaced by one of the following
form: (1) one party sends a function of its input to the other party; (2) both
parties access Fcoin to obtain coins r; (3) both parties carry out local computation
to produce their outputs.

Given Lemma 1, it is enough to establish our characterization for the special
case of symmetric SFE functionalities (for which we shall denote the common
output by f(x, y, r)).

The first step in proving Theorem 2 for SSFE is to show that only one party’s
input can have influence on the outcome of the other party.

Lemma 4. If F is a 2-party randomized SSFE functionality with a UC-secure
protocol in the Fcoin-hybrid model, then F(x, y) is distributed as F ′(x) (or F ′(y)),
where F ′ is some randomized function of one input.

If F does not have the form F ′(x) or F ′(y), we call it an SSFE functionality with
bidirectional influence. Using a lemma proven in the full version of this paper
[14], we know that if a SSFE F with bidirectional influence has a UC-secure
protocol in the Fcoin-hybrid then there exists a semi-honest protocol for OT.
However, this is not possible against computationally unbounded adversaries
and hence, F can not have bidirectional influence.

Frontiers of influence. Suppose we are given a protocol π for f in the Fcoin-
hybrid model, with simulation error ε. Without loss of generality, we assume

6 The full version of this paper [14] contains examples of randomized SSFE for which
Fcoin is useful in a more non-trivial way, but for standalone security. For one such
example, consider the protocol to compute the minimum of the private inputs of
the two parties [15,12]: Alice declares whether her input is 0 or 2; next, conditioned
on Alice input being 2, Bob declares whether his input is 1 or 3. This protocol

is a standalone secure protocol for the deterministic SSFE:
0 0

1 3 . Now, we random-
ize the output when Alice input is 1: Based on whether Bob’s input is 1 or 3 we
use Fcoin to uniformly sample from the set {1, 2} or {2, 3}, respectively. This is a

standalone-secure protocol for the randomized SSFE:
(1,0,0,0) (1,0,0,0)

(0, 1
2 , 1

2 ,0) (0,0, 1
2 , 1

2) , where the

vectors indicate probability distribution over an output alphabet of size 4.

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 499

that the last step of π is to toss a random coin which is included in the output7.
First, define Ox

v to be the output distribution of the protocol when executed
honestly on (Alice) input x, starting from partial transcript v. We use this to
define our first frontier:

G =

⎧
⎨

⎩
v

∣
∣
∣
∣
∣
∣

∀x′, x′′ : SD
(
Ox′

v ,Ox′′
v

)
<

√
ε

and no ancestor of v satisfies the same condition

⎫
⎬

⎭

Intuitively, G represents the point at which Alice’s input has first exhausted
any “significant” influence on the final output distribution — her input can no
longer change the output distribution by more than

√
ε. Next, note that the only

way to induce an output distribution in the ideal world is to choose an input
x according to some distribution D and then send x to f , yielding the output
distribution {f(x)}x←D. Let S be the space of all possible output distributions
that can be induced in this way8. We use this to define a collection of frontiers,
one for each value of x.

Fx = {v | SD(Ox
v ,S) >

√
ε and no ancestor of v satisfies the same condition}

Intuitively Fx represents the first time that randomness has had a “significantly”
non-trivial influence on the output when Alice’s input is x. Here, the influence of
randomness in the protocol is considered non-trivial if the protocol has reached
a point such that the conditional output distribution induced by the protocol
starting from that point cannot be achieved by Alice in the ideal world.

We now show that in a secure protocol, Alice’s input must completely exhaust
its influence before the randomness from Fcoin can begin to influence the output
distribution.

Lemma 5. In the above setting, let Fx < G denote the event that the protocol
generates a transcript that encounters frontier Fx strictly before encountering
frontier G. Then Pr[Fx < G|x] is negligible for all x.

Proof (Sketch). Consider a malicious Alice that runs π honestly on input x.
Whenever this adversary encounters Fx strictly before G, it reports the resulting
partial transcript to the environment. Being in the frontier Fx, this transcript
intuitively represents an assertion by the adversary that it can realize an output
distribution Ox

v that is impossible to effect in the ideal world (by continuing
hereafter with input x). Being before G, the transcript also indicates an assertion
by the adversary that it can still induce two “significantly” different output

7 To see that this is without loss of generality, define a randomized SSFE f ′ which
on input x, outputs f(x) as well as a random bit. Then define π′ to be the protocol
which runs π and in the last step uses Fcoin to toss a coin which is included in the
output. It is easy to see that if π is a secure protocol for f , then π′ is a secure
protocol for f ′, so proving the insecurity of π′ establishes the insecurity of π.

8 Note that S is the space of convex combinations of {f(x) | x}, where here f(x)
denotes the discrete probability distribution itself, represented by a stochastic vector.

500 H.K. Maji et al.

distributions (by continuing hereafter with one of the inputs from the condition
in the definition of G). The environment can choose to challenge the adversary
on any of these choices, and in the real world the adversary can always succeed.
However, for any simulator in the ideal world, there must be some challenge
for which the simulator must fail. Namely, if the simulator has already sent an
input to ideal f at the time it makes its “assertion”, then it cannot proceed
to induce two significantly different output distributions on command — the
output is already fixed. On the other hand, if the simulator has not sent an
input to the ideal f , then it cannot proceed to realize an output distribution
that is impossible in the ideal world.

Thus this adversary violates the security of f with success proportional to
Pr[Fx < G|x], so we conclude that this probability must be negligible.

Using the previous two lemmas, we can now prove the special case of Theorem 2,
restricted to SSFE functionalities:

Lemma 6. A 2-party randomized SSFE functionality F has a UC-secure pro-
tocol in the Fcoin-hybrid model against computationally unbounded adversaries if
and only if F is isomorphic to the SSFE functionality F∗ with output function
f∗ such that f∗(x, y, r) = (h(x), r), where h is a deterministic function.

Proof. The complete proof of the lemma is provided in the full version of this
paper [14]. Lemma 5 shows that there is a frontier G that separates all of the
influence of Alice’s input (before G) from all of the influence of Fcoin (after G).

Our analysis relies on the geometric interpretation of possible output distri-
butions. As before, let S denote the space of output distributions that can be
realized in the ideal world by randomly choosing an input and sending it to f
to obtain a sample of f(x). S is the convex closure of a finite set of points f(x).
Call an input x fundamental if f(x) is a corner on the convex hull of S. Without
loss of generality, we restrict our attention exclusively to fundamental inputs9.

Let x be a fundamental input. Since x affects the output of the protocol only
negligibly after the transcript reaches G, we have that f(x) is statistically close
to a convex combination of {Ox

v | v ∈ G}. An overwhelming weight of these
distributions Ox

v are negligibly close (in statistical distance) to the space S. By
a geometric argument, since f(x) is a corner in the space S, we have that an
overwhelming weight of Ox

v distributions are negligibly close to f(x).
Thus, consider any two inputs x, x′ such that f(x) �≡ f(x′). The statistical

distance between these two distributions is a constant Δ. The above argument
implies that x and x′ must induce distributions over G that have statistical
distance negligibly close to 1. In other words, executing the protocol until G
unambiguously determines the distribution f(x); after G, x has no more influence
on the output. Then it is straight-forward to show that the following simple
protocol is also secure for f : Alice sends a description of the distribution f(x)
to Bob (say, the lexicographically smallest x∗ s.t. the distributions of f(x) and

9 Any non-fundamental input x is redundant in f and we can remove it to obtain an
isomorphic functionality (for details refer to the full version of this paper [14]).

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 501

f(x∗) are identical). Both parties use Fcoin to generate random coins r and use
them to compute a sample from the distribution f(x). Then it is clear that f has
the desired form — the output of this protocol is computed from a deterministic
function of x along with independent coins.

On extending to selectable sources. Unlike our results in Section 4, Theorem 2
does not generalize to arbitrary selectable sources (instead of just Fcoin). To
see this, one can easily construct a selectable source f which is not of the form
f(x, y, r) = (h(x), r). Then trivially f has a UC-secure protocol using some
selectable source (namely, itself), but f is not of the form required by Theorem 2.

Indeed, to prove Theorem 2, we made a crucial distinction between Alice’s
choice of input influencing the output distribution and Fcoin influencing the
output distribution. This distinction is lost if Fcoin is replaced by a functionality
in which Alice is allowed to influence the output.

On a common random string (CRS) vs. Fcoin. A common random string (CRS)
is a source of shared randomness in which all random bits are generated once and
for all at the beginning of a protocol interaction, rather than as-needed, as with
Fcoin. Our proof of Theorem 2 states that the influence of the parties’ inputs
ends before the influence of the shared randomness begins. Since the influence
of a CRS must happen at the start of a protocol, a CRS is useless for SSFEs
except those of the form f(x, y, r) = h(x) (no influence from shared randomness)
or f(x, y, r) = h(r) (no influence from parties’ inputs), for a deterministic h.

6 Randomized Functionalities and Computational
Intractability

Our results so far have been presented in the computationally unbounded set-
ting. However, they do extend somewhat to the probabilistic polynomial time
(PPT) setting (where all entities, including the adversary and the environment
are PPT), and yield interesting connections with computational intractability
assumptions. These results are similar in spirit to the connections established in
[16], but unlike there, are applicable to randomized functionalities.

Firstly, in the case of deterministic SFE functionalities, we obtain the following
unconditional result in the PPT setting

Theorem 3. For every 2-party deterministic SFE F and selectable source G,
F has a standalone secure protocol in the G-hybrid model in the PPT setting, if
and only if F has a standalone secure protocol in the plain model in the PPT
setting. (for the proof, consult the full version [14]).

Our other results for the PPT setting are conditional. An important observation
in [16] was that, statements of the form “2-party functionality F has a UC-
secure protocol in the G-hybrid world (in the PPT setting)” are either known to
be unconditionally true or false, or tend to be equivalent to the assumption that
one-way functions exist, or the assumption that there is an oblivious transfer

502 H.K. Maji et al.

(OT) protocol secure against semi-honest adversaries. [16] study a large class of
such statements for deterministic F and G, and show that for every one of them
the corresponding statement falls into one of the four classes listed above. An
important problem left open is to understand whether the same pattern holds
when considering randomized functionalities.

Our results suggest that this may be the case: the only intractability assump-
tions (other than being known to be unconditionally true or false) that arise
among randomized functionalities still seem to be the existence of OWF and the
existence of a semi-honest OT protocol. In particular we have the following two
results (refer to the full version of this paper [14]):

Theorem 4. Let F be any 2-party SFE functionality, possibly randomized. If
one-way functions do not exist then F has a UC-secure protocol in the Fcoin-
hybrid model in the PPT setting, if and only if F is a publicly-selectable source.

Theorem 5. The following three statements are equivalent:
1. There exists a semi-honest OT protocol.
2. ∃ (possibly randomized) 2-party SSFE F with bidirectional influence : F is

UC securely-realizable in Fcoin-hybrid world.
3. ∀ (possibly randomized) 2-party SSFE F with bidirectional influence : F is

UC securely-realizable in Fcoin-hybrid world.

The main task in proving the above is to show that (2) ⇒ (1), which shown in the
full version. (1) ⇒ (3) follows from a result proven in [9,17] on the completeness
of Fcoin. (3) ⇒ (2) is trivial.

7 Conclusion and Future Work

Recently, [16] made a case for “cryptographic complexity theory,” trying to un-
derstand the qualitative difference between different multiparty functionalities.
However, the results there were confined to deterministic functionalities; the
universe of randomized functionalities is vastly more complex, and is little un-
derstood. Among other things, this work initiates a systematic study of random-
ized functionalities, by proving the low-complexity nature of certain classes of
randomized functionalities. In this work we do not consider randomized func-
tionalities of higher levels of complexity, nor do we seek to classify all kinds of
randomized functionalities. Nevertheless, we believe that our proof techniques
— both for the computationally unbounded setting and for the PPT setting —
will be useful in such a study. We leave this for future work.

References

1. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J., Merritt,
M. (eds.) Proceedings of DIMACS Workshop on Distributed Computing and Cryp-
tography, vol. 2, pp. 65–77. American Mathematical Society, Providence (1989)

2. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.)
CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

Exploring the Limits of Common Coins Using Frontier Analysis of Protocols 503

3. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: STOC, pp. 103–112. ACM, New York (1988)

4. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Electronic Colloquium on Computational Complexity (ECCC) TR01-
016 (2001); Previous version “A unified framework for analyzing security of proto-
cols” availabe at the ECCC archive TR01-016, Extended abstract in FOCS 2001

5. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
computation. In: Proc. 34th STOC, pp. 494–503. ACM, New York (2002)

6. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy (extended abstract).
In: STOC, pp. 62–72. ACM, New York (1989)

7. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: STOC, pp. 364–369. ACM, New York (1986)

8. Cleve, R., Impagliazzo, R.: Martingales, collective coin flipping and discrete control
processes (1993) (manuscript),
http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps

9. Damg̊ard, I., Nielsen, J.B., Orlandi, C.: On the necessary and sufficient assump-
tions for UC computation. Cryptology ePrint Archive, Report 2009/247 (2009),
http://eprint.iacr.org/

10. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based
cryptography. In: Proc. 30th FOCS, pp. 230–235. IEEE, Los Alamitos (1989)

11. Kilian, J.: More general completeness theorems for secure two-party computation.
In: Proc. 32th STOC, pp. 316–324. ACM, New York (2000)

12. Künzler, R., Müller-Quade, J., Raub, D.: Secure computability of functions in
the it setting with dishonest majority and applications to long-term security. In:
Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 238–255. Springer, Heidelberg
(2009)

13. Kushilevitz, E.: Privacy and communication complexity. In: FOCS, pp. 416–421.
IEEE, Los Alamitos (1989)

14. Maji, H.K., Ouppaphan, P., Prabhakaran, M., Rosulek, M.: Exploring the limits
of common coins using frontier analysis of protocols. In: Ishai, Y. (ed.) TCC 2011.
LNCS, vol. 6597, pp. 486–503. Springer, Heidelberg (2011),
http://eprint.iacr.org/

15. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of multi-party computation
problems: The case of 2-party symmetric secure function evaluation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–273. Springer, Heidelberg (2009)

16. Maji, H.K., Prabhakaran, M., Rosulek, M.: Cryptographic complexity classes and
computational intractability assumptions. In: Yao, A.C.-C. (ed.) ICS, pp. 266–289.
Tsinghua University Press, Beijing (2010)

17. Maji, H.K., Prabhakaran, M., Rosulek, M.: A zero-one law for cryptographic
complexity with respect to computational UC security. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 595–612. Springer, Heidelberg (2010)

18. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 1–18. Springer, Heidelberg (2009)

19. Prabhakaran, M., Rosulek, M.: Cryptographic complexity of multi-party com-
putation problems: Classifications and separations. In: Wagner, D. (ed.)
CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg (2008)

20. Yao, A.C.: Protocols for secure computation. In: Proc. 23rd FOCS, pp. 160–164.
IEEE, Los Alamitos (1982)

http://www.cpsc.ucalgary.ca/~cleve/pubs/martingales.ps
http://eprint.iacr.org/
http://eprint.iacr.org/

	Exploring the Limits of Common Coins Using Frontier Analysis of Protocols
	Introduction
	Overview

	Preliminaries
	Functionalities
	Frontier Analysis

	Handling General SFE Functionalities
	Selectable Sources Are Useless for Deterministic SFE
	Coins Are Useless for Randomized SFE
	Randomized Functionalities and Computational Intractability
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

