
Credential Authenticated Identification and Key

Exchange

Jan Camenisch1, Nathalie Casati1, Thomas Gross1, and Victor Shoup2

1 IBM Research, work funded by the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 216483

2 NYU, work done while visiting IBM Research, supported by NSF grant
CNS-0716690

Abstract. This paper initiates a study of two-party identification and
key-exchange protocols in which users authenticate themselves by prov-
ing possession of credentials satisfying arbitrary policies, instead of using
the more traditional mechanism of a public-key infrastructure. Defini-
tions in the universal composability framework are given, and practical
protocols satisfying these definitions, for policies of practical interest,
are presented. All protocols are analyzed in the common reference string
model, assuming adaptive corruptions with erasures, and no random or-
acles. The new security notion includes password-authenticated key ex-
change as a special case, and new, practical protocols for this problem
are presented as well, including the first such protocol that provides re-
silience against server compromise (without random oracles).

1 Introduction

Secure two-party authentication and key exchange are fundamental problems.
Traditionally, the parties authenticate each other by means of their identities,
using a public-key infrastructure (PKI). However, this is not always feasible or
desirable: an appropriate PKI may not be available, or the parties may want to
remain anonymous, and not reveal their identities.

To address these needs, we introduce the notion of credential-authenticated
identification (CAID) and key exchange key exchange (CAKE), where the com-
patibility of the parties’ credentials is the criteria for authentication, rather than
the parties’ identities relative to some PKI.

We assume that prior to the protocol, the parties agree upon a policy, which
specifies the types of credentials they each should hold, along with additional
constraints that each credential should satisfy, and (possibly) relationships that
should hold between the two credentials. The protocol should then determine
whether or not the two parties have credentials that satisfy the policy, and in
the CAKE case, should generate a session key, which could then be used to
implement a secure communication session between the two parties. In any case,
neither party should learn anything else about the other party’s credentials,
other than whether or not they satisfied the policy.

T. Rabin (Ed.): CRYPTO 2010, LNCS 6223, pp. 255–276, 2010.
c© International Association for Cryptologic Research 2010

256 J. Camenisch et al.

For example, Alice and Bob may agree on a policy that says that Alice should
hold an electronic ID card that says her age is at least 18, and that Bob should
hold a valid electronic library card. If Alice then inputs an appropriate ID card
and Bob inputs an appropriate library card, the protocol should succeed, and,
in the CAKE case, both parties should obtain a session key. However, if, say,
Alice tries to run the protocol without an appropriate ID card, the protocol
should fail; moreover, Alice should not learn anything at all about Bob’s input;
in particular, Alice should not even be able to tell whether Bob had a library
card or not.

As mentioned above, we may even consider policies that require that certain
relationships hold between the two credentials. For example, Alice and Bob may
agree upon a policy that says that they both should have national ID cards, and
that they should live in the same state.

Both of the two previous examples illustrate that the CAKE problem is closely
related to the “secret handshake” problem. In the latter problem, two parties
wish to determine if they belong to the same group, so that neither party’s status
as a group member is revealed to the other, unless both parties belong to the
same group. There are many papers on secret handshakes (see [12] for a recent
paper, and the references therein). The system setup assumptions and security
requirements vary significantly among the papers in the secret handshakes lit-
erature, and so we do not attempt a formal comparison of CAKE with secret
handshakes. Nevertheless, the two problems share a common motivation, and to
the extent that one can view owning a credential as belonging to a group, the
two problems are very similar.

We also observe that the CAKE problem essentially includes the PAKE
(password-authenticated key exchange) problem as a special case: the credentials
are just passwords, and the policy says that the two passwords must be equal.

Our Contributions. So that our results are as general as possible, we work
in the Universal Composability (UC) framework of Canetti [7]. We give natural
ideal functionalities for CAID and CAKE, and give efficient, modularly designed
protocols that realize these functionalities. If the underlying credential system is
practical and comes equipped with practical proof-of-ownership protocols (such
as the IDEMIX system, based on Camenisch and Lysyanskaya [5]), and if the
policies are not too complex, the resulting CAKE protocols are fairly practical.
In addition, if the credential system provides extra features such as traceability
or revocability, or other mechanisms that mitigate against unwanted “credential
sharing”, then our protocols inherit these features as well.

All of our protocols are proved UC-secure in the adaptive corruption model,
assuming parties can effectively erase internal data. Our protocols require a com-
mon reference string (CRS), but otherwise make use of standard cryptographic
assumptions, and do not rely on random oracles.

As mentioned above, CAKE includes PAKE, and we also obtain two new
practical PAKE protocols. The first is a practical PAKE protocol that is secure in
the adaptive corruption model (with erasures); this is not the first such protocol
(this was achieved recently by Abdalla, Chevalier, and Pointcheval [1], using

Credential Authenticated Identification and Key Exchange 257

completely different techniques). The second PAKE protocol is a simple variant
of the first, but provides security against server compromise: the protocol is an
asymmetric protocol run between a client, who knows the password, and a server,
who only stores a function of the password; if the server is compromised, it is still
hard to recover the password. Our new protocol is the first fairly practical PAKE
protocol (UC-secure or otherwise) that is secure against server compromise and
that does not rely on random oracles. Previous practical PAKE protocols that
provide security against server compromise (such as Gentry, MacKenzie, and
Ramzan [11]) all relied on random oracles (and also were analyzed only in the
static corruption model).

Outline of the paper. In §2, we provide some background on the UC frame-
work; in addition, we provide some recommendations for improving some of the
low-level mechanics of the UC framework, to address some minor problems with
the existing formulation in [7] that were uncovered in the course of this work. In
any case, our results can be understood independently of these recommendations.

In §3, we introduce ideal functionalities for strong CAID and CAKE. These
ideal functionalities are stronger than we want, as they can only be realized by
protocols that use authenticated channels. Nevertheless, they serve as a useful
building block. We also discuss there the types of policies that will be of interest
to us here, as we want to restrict our attention to policies that are useful and
that admit practical protocols.

In §4, we show how a protocol that realizes the strong CAID or CAKE func-
tionalities can be easily and efficiently transformed into a protocol that realizes
the CAID and CAKE functionality. The resulting protocol does not rely on au-
thenticated channels. To this end, we utilize the idea of “split functionalities”,
introduced in [2]. Although the idea of using split functionalities for nonstan-
dard authentication mechanisms was briefly mentioned in [2], it was not pursued
there, and no new types of authentication protocols were presented. In this sec-
tion, we review the basic notions introduced in [2], adjusting the definitions and
results slightly to better meet our needs. We also give some new constructions,
which are simpler and more efficient in the two-party setting.

In §5 we review definitions of UC zero knowledge (UCZK), and provide some
new definitions that will be useful to us. UCZK will be a critical building block
in the design of our CAID/CAKE protocols. In this section, we discuss a general
language of statements we will want to be able to prove, as well as practical
implementations of UCZK protocols for proving such statements. In a companion
paper, we plan on fleshing out the details of this general framework, but it should
be clear, based on these discussions, that there are, in fact, practical UCZK
protocols for all the statements we need to prove in our CAID/CAKE protocols.

In §6, we present practical strong CAID/CAKE protocols for some fairly gen-
eral policies of interest, and prove their security in the UC-framework, assuming
secure channels. Using the split functionalities ideal in §4, these protocols can be
transformed into practical CAID/CAKE protocols, which do not assume secure
channels.

258 J. Camenisch et al.

In §7, we present practical strong CAID/CAKE protocols for the equality
relation and an interesting relation related to discrete logarithms. The former
gives rise to our first new PAKE protocol, while the latter gives rise to our second
new PAKE protocol (which provides resilience against server compromise).

Due to space limitations, many details, and all proofs, are left to the full
paper [4].

2 Some UC Background

Our corruption model is always adaptive corruptions with erasures. We believe
that allowing adaptive corruptions is important — there are known examples of
protocols that are secure with respect to static corruptions, but trivially insecure
if adaptive corruptions are allowed. Allowing erasures is a bit of a compromise:
on the one hand, properly implementing secure erasures is difficult — but not
impossible; on the other hand, if erasures are not allowed, then it becomes very
difficult to obtain truly practical protocols, leading to results that are of theo-
retical interest only.

To streamline the descriptions of ideal functionalities, we assume the following
convention in any two-party ideal functionality: the adversary may at any time
tell the ideal functionality to abort the protocol for one of the parties — the
ideal functionality sends the special message abort to that party, and does not
communicate any further with that party.

In an actual protocol, an abort output would be generated when a “time out”
or “error” condition was detected; the aborting party will also erase all inter-
nal data, and all future incoming messages will be ignored. While not essential
for modeling security, it does allow us to distinguish between detectable and
undetectable unfairness in protocols.

We clarify here a number of issues regarding terminology and notation in
the UC framework. By a party we always mean an interactive Turing machine
(ITM). A party P is addressed by party ID (PID) and session ID (SID).
So if P has PID Ppid and SID Psid, then the PID/SID pair (Ppid, Psid) uniquely
identifies the party: no two parties in the system may have the same PID/SID
pair. The convention is that the participants of any single protocol instance share
the same SID, and conversely, if two parties share the same SID, then they are
regarded as participants in the same protocol.

In [7] there are no semantics associated with PIDs, other than their role to
distinguish participants in a protocol instance. Some authors (sometimes implic-
itly) tend to use the term “party” to refer to all ITMs that share a PID. We
shall not do this: a party is just a single ITM (but see §2.2 below).

In describing protocols and ideal functionalities, we generally omit SIDs in
messages — these can always be assumed to be implicitly defined.

2.1 Notions of Security

We recall some basic security notions from [7], with some extensions in [10] and
[2]. We will not be too formal here.

Credential Authenticated Identification and Key Exchange 259

We say that a protocol Π realizes a protocol Π∗, if for every adversary A,
there exists an adversary (i.e., simulator) A∗, such that for every environment
Z, Z cannot distinguish an attack of A on Π from an attack of A∗ on Π∗.
Here, Z is allowed to interact directly with the adversary and (via subroutine
input/output) with parties (running the code for Π or Π∗) that share the same
SID.

If we like, we can remove the restriction that parties must share the same
SID, which effectively allows Z to interact with multiple, concurrently running
instances of a single protocol in the above experiment. With this relaxation, we
say that Π multi-realizes Π∗. If these multiple instances of Π access a common
instance of a setup functionality G, then we say that Π multi-realizes Π∗ with
joint access to G. In applications, G is typically a common reference string
(CRS).

The UC Theorem [7] implies that if Π realizes Π∗, then Π multi-realizes Π∗.
However, if Π makes use of a setup functionality G, then it does not necessarily
follow that Π multi-realizes Π∗ with joint access to G: one typically has to
analyze the multiple-instance experiment directly.

In the above definitions, if Π∗ is the ideal protocol associated with an ideal
functionality F , then we simply say that Π (multi-)realizes F (with joint access
to G). We also have some simple transitivity properties: if Π1 realizes Π2, and
Π2 realizes Π3, then Π1 realizes Π3; also, if Π1 multi-realizes Π2 with joint
access to G, and Π2 realizes Π3, then Π1 multi-realizes Π3 with joint access
to G.

A protocol Π may itself make use of an ideal functionality F ′ as a subroutine
(where an instance of Π may make use of multiple, independent instances of
F ′). In this case, we call Π an F ′-hybrid protocol. We may modify Π by
instantiating each instance of F ′ with an instance of a protocol Π ′, and we
denote the modified version of Π by Π [F ′/Π ′]. The UC Theorem implies that
if Π ′ realizes F ′, then Π [F ′/Π ′] realizes Π . Also, if Π ′ multi-realizes F ′ with
joint access to G, then Π [F ′/Π ′] multi-realizes Π with joint access to G.

This last statement is essentially a reformulation of a special case of the JUC
Theorem [10], but in a form that is more convenient to apply. The notion of multi-
realization (introduced, somewhat informally, in [2], and which can be easily
expressed in the Generalized UC (GUC) framework [8]) seems a more elegant
and direct way of modeling joint access to a CRS or similar setup functionality.

2.2 Conventions Regarding SIDs

We shall assume that an SID is structured as a pathname:
name0/name1/ · · · /namek. These pathnames reflect the subroutine call
stack: when an honest party invokes an instance of subprotocol as a separate
party, the new party has the same PID of the invoking party, and the SID
is extended on the right by one element. Furthermore, we shall assume for
two-party protocols, the rightmost element namek, called the basename, has
the form ext : Ppid : Qpid : data, where ext is a “local name” used to ensure
unique basenames, Ppid and Qpid are the PIDs of the participants P and Q,

260 J. Camenisch et al.

and data represents shared public parameters. The ordering of these PIDs can
be important in protocols where the two participants play different roles.

These conventions streamline and clarify a number of things. In application
of the UC Theorem, we will be interested exclusively in protocols that act as
subroutines: they are explicitly invoked by a single caller, who provides all inputs,
and who receives all outputs.

The main points here are: (i) a subroutine is explicitly invoked by the caller,
and (ii) the callee implicitly knows where to write its output. We can (and will)
design protocols that deviate from this simple subroutine structure, although
the UC Theorem will not directly apply in these cases.

With these restrictions, it also is convenient to make some restrictions on
ideal functionalities: we shall assume that an ideal functionality only delivers
an output to a party that has previously supplied the ideal functionality with an
input.

These conventions are simply self-imposed restrictions, and do not represent
a modification of the UC framework itself. However, in the full paper, we discuss
some modifications to the UC framework that strictly impose these restrictions,
along with a few other rules. Our rules guarantee that if P is a party with PID
pid and SID sid , and if P ′ is a party with PID pid and SID sid/basename,
then P ′ is a subroutine of P that was created by P , and moreover, so long as
P remains honest, then so does P ′. As discussed in the full paper, we believe
that without some type of restrictions such as these, there are some fundamental
problems with the UC framework itself.

2.3 System Parameters

A common reference string, or CRS, is sometimes very useful. Sometimes, how-
ever, a different, but related notion is useful: a system parameter. Like a CRS,
a system parameter is assumed to be generated by a trusted party, but unlike a
system parameter, a CRS is visible to all parties, including the environment. A
nice way to model this is using some elements of the GUC framework (although
we do not attempt to design any protocols that achieve full GUC security here).

In designing a protocol that realizes some ideal functionality, a system pa-
rameter is a much better type of setup functionality than a CRS, as the security
properties of protocols that use a CRS are not always so clear (e.g., “deniability”
— see discussion in [8]). These problems do not arise with system parameters.
Moreover, if a protocol Π realizes an ideal functionality F using a system pa-
rameter, then it is easy to see that Π multi-realizes F as well — there is no need
to separately analyze a multi-instance experiment. A system parameter can also
be used to parameterize an ideal functionality — a CRS cannot be used for this
purpose, as that would conflate specification and implementation.

We can distinguish between two types of system parameters: public coin and
private coin. In a public-coin system parameter, even the random bits used to
generate the system parameter are visible to the environment (but no one else).
In a private-coin system parameter, the random bits used to generate the system
parameter remain hidden from all parties.

Credential Authenticated Identification and Key Exchange 261

2.4 Authenticated Channels

We present here an ideal functionality for an authenticated channel. We have
tuned this functionality to adhere to our conventions. We call this ideal func-
tionality Fach.

For an SID is of the form sid := parent/ext : Ppid : Qpid : , where P is the sender
and Q is the receiver, and for an adversary A, the ideal functionality Fach runs
as follows:

1. Wait for both: (a) an input message (send, x) from P , then send (send, x)
to A; (b) an input message ready from Q, then send ready to A.

2. Wait for the message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is allowed
to change the value of x (at any time before Step 2).

NOTES: (i) Like the corresponding functionality in [7], this one allows delivery
of a single message per session. Multiple sessions should be used to send multiple
messages. Alternatively, one could also define a multi-message functionality. (ii)
Unlike the corresponding functionality in [7], the receiver here must explicitly
initialize the channel before receiving a message. This design conforms to our
conventions stated above, and is further discussed in the full paper.

2.5 Secure Channels

Secure channels provide both authentication and secrecy. We present a ideal
functionality that is tuned to adhere to our conventions, and to our adaptive
corruptions with erasures assumption.

One way to define secure channels is to modify Fach as follows: in Step 1,
send (send, len(x)) to A, and in the corruption rule, A is given x and allowed to
modify it x as well. Here, len(x) is the length of x. However, it turns out that a
different functionality can be implemented more efficiently:

1. Wait for both: (a) an input message (send, x) from P , then send the message
(send, len(x)) to A; (b) an input message (ready,maxlen) from Q, then
send the message (ready,maxlen) to A.

2. Wait for the message lock from A; verify that len(x) ≤ maxlen; if not, halt.
3. Wait for both: (a) a message done from A, then send the output message

done to P ; (b) a message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given x
and is allowed to change the value of x (at any time before Step 2).

We call this ideal functionality Fsch. Here, the receiver specifies the maximum
length message he is prepared to accept. This functionality reflects the fact that
most of the time, the receiver knows the general “size and shape” of the message
it is expecting, and so no additional interaction is required. In the cases where
this information is not known in advance, the sender can transmit the length
information to the receiver ahead of time on an authenticated channel.

262 J. Camenisch et al.

3 Ideal Functionalities for Strong CAID and CAKE

In this section, we present ideal functionalities for strong CAID and CAKE.
These ideal functionalities are stronger than we want, as they can only be realized
by protocols that use authenticated channels. However, in the next section, we
discuss how to we can very easily modify such protocols to obtain protocols that
realize the desired CAID/CAKE functionalities (which will be defined in terms
of strong CAID/CAKE).

We start with strong CAID. At a high level, the ideal functionality for strong
CAID, denoted F∗

caid, works as follows. We have two parties, P and Q. P and
Q agree (somehow) on a binary relation R, which consists of a set of pairs (s, t).
Then P and Q submit values to the ideal functionality: P submits a value s and
Q a value t. The ideal functionality then checks if (s, t) ∈ R; if so, it sends P and
Q the value 1, and otherwise the value 0. The relation R represents the “policy”,
discussed in §1.

The above description is lacking in details: some essential, and others not. We
now describe some detailed variants of the above general idea. We assume that
party P has PID Ppid and SID Psid. Likewise, we assume that party Q has PID
Qpid and SID Qsid.

3.1 Ideal Functionality F∗
caid

We assume that the SIDs of the two parties are of the form
parent/ext : Ppid : Qpid : 〈R 〉, where 〈R 〉 is a description of the relation R. In
principle, any efficiently computable family of relations is allowable, but specific
realizations may implement only relations from some specific family of relations.
It will convenient to assume that the special symbol ⊥ has the following seman-
tics: for all s, t, neither (⊥, t) nor (s,⊥) are in R.

An instance of F∗
caid with SID parent/ext : Ppid : Qpid : 〈R 〉 runs as follows.

1. Wait for both: (a) an input message (left-input, s) from P , then send
left-input to A; (b) an input message (right-input, t) from Q, then
send right-input to A.

2. Wait for a message lock from A; set res to 1 if (s, t) ∈ R, and 0 otherwise.
3. Wait for both: (a) a message deliver-left from A, then send the output

message (return, res) to P ; (b) a message deliver-right from A, then
send the output message (return, res) to Q.

Corruption rules: (i) If P (resp., Q) is corrupted between Steps 1a (resp., 1b)
and 2, then A is given s (resp., t), and is allowed to change the value of s
(resp., t) at any time before Step 2. (ii) If P (resp., Q) is corrupted between
Steps 2 and Steps 3a (resp., 3b), then A is given s (resp., t).

Note that the inclusion of Ppid, Qpid in the SID serves to break symmetry, and
establish P as the “left” party and Q as the “right” party. The above ideal func-
tionality captures the inherent “unfairness” in any such protocol: if one party
is corrupt, they may learn that the relation holds, while the other may not.

Credential Authenticated Identification and Key Exchange 263

However, such unfairness is at least detectable: since we do not conflate abort
with a result of 0, if any party is being treated unfairly, this will at least be
detected by an abort message. One could consider a weaker notion of security,
in which 0 and abort were represented by the same value. While this may allow
for more efficient protocols, such protocols may allow “undetectable unfairness”.
With our present formulation, a result of abort may indicate an unfair run of
the protocol (or it may just indicate that there are network problems). The func-
tionality F∗

caid does not provide as much privacy as one might like; in particular,
if P and Q are honest, then A still learns the relation R. In the full version of
the paper, we discuss variations that prevent this.

3.2 From Authentication to Key Exchange

Functionality F∗
caid may be extended to provide key exchange in addition to

authentication modifying Step 2 as follows:

2. Wait for a message (lock, Kadv) from A; then set res to (1, K) if (s, t) ∈ R,
and 0 otherwise, where the key K is determined as follows: if either P or Q
are currently corrupted, set K := Kadv; otherwise, generate K at random
(according to some prescribed distribution).

Corruption rules are unchanged. We call this ideal functionality F∗
cake.

3.3 Some Relations of Interest

One type of relation that is of particular interest is a simple product relation,
where R = S × T . For example, we may have S = {s : (x, s) ∈ E}, for a given
x and a fixed relation E. Here, s might be an “anonymous credential” issued by
some authority whose public key is x; the relation E would assert that s is a
valid credential relative to x, possibly satisfying some other constraints as well.

A well-known example of an anonymous credential system of this type is the
IDEMIX system [5]. This system comes with efficient zero-knowledge protocols
for proofs of possession of credentials that we will be able to exploit. IDEMIX
may also be equipped with mechanisms for identity escrow, revocation, etc.,
which automatically enhances the functionality of any strong CAID/CAKE pro-
tocol.

Similarly, we may have T = {t : (y, t) ∈ F}, for a given y and fixed relation
F . In this case the description 〈R 〉 of R is the pair (x, y).

Two generalizations of potential interest are as follows. First, suppose we have
binary relations R1, . . . , Rk. We can define their vectored union as the binary
relation R = {((s1, . . . , sk), (t1, . . . , tk)) : (si, ti) ∈ Ri for some i = 1 . . k}. For
example, each relation Ri may represent a pair of “compatible” credentials,
and the protocol should succeed if the two parties hold one such pair between
them. Or more simply, the two parties may agree on a list of “clubs”, and then
determine if there is any one club to which they both belong.

Second, we might consider the intersection of a product relation with a par-
tial equality relation: {(s, t) : σ(s) = τ(t)}, where σ and τ are appropriate

264 J. Camenisch et al.

functions. Such relations can usefully model the “secret handshake” scenario,
where σ(s) and τ(t) perhaps represent “group names”. A special case of this,
of course, is the equality relation. A CAKE protocol for equality is essentially a
PAKE protocol — this is discussed in §7.

One might even combine the above, considering vectored unions of such in-
tersections. The reason for singling out these types of relations is that they are
of potential practical interest, and admit efficient protocols.

4 Bootstrapping an Authentication Protocol

We shall presently give efficient protocols that realize strong CAID/CAKE func-
tionalities for various relations of interest. All of these protocols work assuming
secure channels. Of course, this is not interesting by itself, since we really want to
use these protocols to establish secure channels in a setting without any existing
authentication mechanism.

Without at least authenticated channels, it is impossible to realize strong
CAID/CAKE. The solution is to weaken the notion of security, using the idea
of “split functionalities”, introduced in [2]. Our definitions of the CAID/CAKE
functionalities are simply the split versions of the strong CAID/CAKE function-
alities.

Although the idea of using split functionalities for nonstandard authentication
mechanisms was briefly mentioned in [2], it was not pursued there, and no new
types of authentication protocols were presented. In this section, we review the
basic notions introduced in [2], adjusting the definitions and results slightly to
better meet our needs, and give some new constructions, as well.

4.1 Details: Split Functionalities

We give a slight reformulation of the definitions and results in [2]: we focus on
the two-party case, and we also make a few small syntactic changes that will
allow us to apply the results in a more convenient way.

The basic idea is the same as in [2]. If F is a two-party ideal functionality
involving two parties, P and Q, then the split functionality sF works roughly as
follows. Before any computation begins, the adversary partitions the set {P, Q}
into authentication sets: in the two-party case, the authentication sets are
either {P} and {Q}, or the single authentication set {P, Q}. The parties within
an authentication set access a common instance of F , while parties in different
authentication sets access independent instances of F . This is achieved by “man-
gling” SIDs appropriately: each authentication set is assigned a unique “channel
ID” chid , which is used to “mangle” the SIDs of the instances of F . Thus, the
most damage an adversary can do is to make P and Q run two independent
instances of F .

As we shall see, one can transform any protocol Π that realizes F , where Π
relies on authenticated and/or secure channels, into a protocol sΠ that realizes
sF , where sΠ relies on neither authenticated nor secure channels. Moreover, sΠ

Credential Authenticated Identification and Key Exchange 265

is almost as efficient as Π . This result was first proved in [2]; however, we give a
more efficient transformation — based on Diffie-Hellman key exchange — that
is better suited to the two-party case.

Our CAID/CAKE functionalities are simply defined as the split versions of
the strong CAID/CAKE functionalities: sF∗

caid and sF∗
cake. Protocols for these

functionalities may be obtained by applying the split transformation to the pro-
tocols for the corresponding strong functionalities.

4.2 General Split Functionalities

Now we give the general split functionality in more detail. Let F be an ideal
functionality for a two party protocol. As in §2.2, we assume that the SID for
F is of the form parent/ext : Ppid : Qpid : data, and that F never generates an
output for a party before receiving an input from that party.

The split functionality sF has an SID s := parent/ext :Ppid : Qpid : data of
the same form as F , and for an adversary A runs as follows.

– Upon receiving a message init from a party X ∈ {P, Q}: record
(init, Xpid), send (init, Xpid) to A.

– Upon receiving a message (authorize, Xpid,H, chid) from A, such that
(1) Xpid is the PID of some X ∈ {P, Q}; (2) {Xpid} ⊆ H ⊆ {Ppid, Qpid};
(3) (init, Xpid) has been recorded; (4) no tuple (authorize, Xpid, . . .)
has been recorded; and (5) if a tuple (authorize, X ′

pid,H′, chid ′) has

been recorded, then either (a)H′ = H and chid ′ = chid or (b)H′∩H = ∅
and chid ′
= chid

do the following:
(1) if no tuple of the form (authorize, ·,H, chid) has already been
recorded, then initialize a “virtual” instance of F with SID sidH :=
chid/sid ; we denote this instance FH and define chidH := chid ; in
addition, for each Y ∈ {P, Q}, if Ypid /∈ H or Y is corrupt, then no-
tify FH that the party with PID Ypid and SID sidH is corrupt, and
forward to A the response of FH to this notification; (2) record
the tuple (authorize, Xpid,H, chid); (3) send the output message
(authorize, chid) to X .

– Upon receiving a message (input, v) from X ∈ {P, Q}, such that a tuple
(authorize, Xpid,H, chid) has been recorded: send the message v to FH, as
if coming as an input from the party with PID Xpid and SID sidH.

– Upon receiving a message (input, Xpid,H, v) from A, such that
(1) Xpid is the PID of some X ∈ {P, Q}, (2) a (uniquely determined)
instance FH with Xpid ∈ H has been initialized; and, (3) Xpid /∈ H

send the message v to FH, as if coming as an input from the party with PID
Xpid and SID sidH.

– Whenever an instance FH delivers an output v to a party with PID Xpid,
where Xpid is the PID of some X ∈ {P, Q}, do the following: if Xpid ∈ H,
then send the output message (output, v) to X , else send the output message
(output, Xpid, v) to A.

266 J. Camenisch et al.

– Upon receiving notification that a party X ∈ {P, Q} is corrupted, such that
a (uniquely determined) instance FH with Xpid ∈ H has been initialized:
notify FH that the party with PID Xpid and SID sidH is corrupted, and
forward to A the response of FH to this notification.

We have a slightly different formulation of split functionalities than in [2], but
the differences are mainly syntactic — our method of mangling the SIDs fits
nicely in to our set of conventions on SIDs. In addition, in [2], a party is allowed
to send an input as long as its authentication set is defined, whereas we require
that a party wait for its explicit authorization notification before proceeding.
This seems to avoid some potential confusion.

4.3 A Multi-session Secure Channels Functionality

We need a “multi-session extension” of our ideal functionality for secure channels.
One approach would be to use the definition in [10]. However, a direct application
of that definition would be unworkable, for two reasons: first, it would require
that any implementation keep track of all subsession IDs that were ever used;
second, the multi-session extension applies to all possible parties, whereas, we
can really only deal with the same two parties in all subsessions. So for these
reasons, we present our own multi-session extension, which we denote Fmsc. Note
that in addition to secure channels (corresponding to the functionality Fsch), it
also provides for channels that only provide authentication (corresponding to the
functionality Fach). It is quite tedious, and not very enlightening. The details
are in the full paper.

4.4 Split Key Exchange

We now discuss a simple, low-level primitive: split key exchange. Let K be a
key set. The ideal functionality Fske (parameterized by K) has an SID of the
form parent/ext : Ppid : Qpid : , and for an adversary A, runs as follows:

– Upon receiving a message init from a party X ∈ {P, Q}: record
(init, Xpid), send (init, Xpid) to A.

– Upon receiving a message (authorize, Xpid,H, chid , K) from A, such that

(1) Xpid is the PID of some X ∈ {P, Q}; (2) {Xpid} ⊆ H ⊆
{Ppid, Qpid}; (3) K ∈ K; (4) (init, Xpid) has been recorded; (5)
no tuple (authorize, Xpid, . . .) has been recorded; and, (6) if a tu-
ple (authorize, X ′

pid,H′, chid ′, K ′) has been recorded, then either (a)

H′ = H and chid ′ = chid or (b) H′ ∩H = ∅ and chid ′
= chid

do the following:

(1) record the tuple (authorize, Xpid,H, chid , K); (2) if KH is not yet
defined, then define it as follows: if H = {Xpid}, then KH ← K, else
KH ←R K; (3) send the output message (key, chid , KH) to X .

Credential Authenticated Identification and Key Exchange 267

We now present a simple protocol, Πske, that realizes the functionality Fske,
under the decisional Diffie-Hellman (DDH) assumption. Assume a group G of
prime order q generated by g ∈ G where the DDH holds. The description of G,
q, and g is viewed here as a system parameter. We also assume a PRG that maps
a random w ∈ G to a pair of keys (K, Kauth) ∈ K ×Kauth, where Kauth is some
large set.

For two parties P and Q with SID sid := parent/ext : Ppid : Qpid : , protocol
Πske runs as follows. The roles played by P and Q are asymmetric. The protocol
for P runs as follows:

1. P waits for an input init; then it computes x←R Zq, u← gx, and sends u
to Q.

2. P waits for v ∈ G from Q; then it computes w ← vx, derives keys K, Kauth

from w using the PRG, sets chid ← 〈u, v 〉, sends the key Kauth to Q (after
erasing all internal state other than chid and K).

3. P waits for a continuation signal, and then outputs and outputs
(key, chid , K) (after erasing all internal state).

Note that in the UC framework, a party is allowed to only send one message at a
time; therefore, P first sends a message to Q (via the adversary, of course), and
then waits for a continuation signal (provided by the adversary) before delivering
its own output.

The protocol for Q runs as follows:

1. Q waits for an input init; then it then does nothing, except to notify the
network (i.e., adversary) that it is ready.

2. Q waits for u ∈ G from P ; then it computes y ←R Zq, v ← gy, w ← uy,
derives keys K, Kauth from w, erases y, w, sets chid ← 〈u, v 〉, and sends v
to P .

3. Q waits for K ′
auth ∈ Kauth from P ; then it tests if Kauth = K ′

auth; if so, it
outputs (key, chid , K) (after erasing all internal state).

Theorem 1. Assuming the DDH for G, an appropriate PRG, and assuming the
set Kauth is large, protocol Πske realizes the ideal functionality Fske.

4.5 Realizing Split Multi-session Secure Channels

Our goal now is to realize the split version sFmsc of the multi-session secure chan-
nels functionality Fmsc presented in §4.3. This will be done with an Fske-hybrid
protocol Πsmsc, where Fske is the split key exchange functionality discussed in
§4.4. At a high-level, protocol Πsmsc works as follows:

1. Wait for an input message init, then send the message init to Fske.
2. Wait for a message (key, chid , K) from Fske; then do the following:

(a) derive subkeys required to implement bidirectional secure channels,
erasing the key K; these channels will be implemented using a variant
of Beaver and Haber’s technique [3] (see full paper). (b) generate the
output message (authorize, chid).

268 J. Camenisch et al.

3. Now use the keys derived in the previous step to process the secure channels
logic.

Theorem 2. The Fske-hybrid protocol Πsmsc realizes the ideal functionality
sFmsc, assuming a secure PRG and secure MAC.

4.6 Realizing General Split Functionalities

Let F be an arbitrary two-party ideal functionality. Let G be a setup functional-
ity, such as a CRS. Let Π be an (Fach,Fsch)-hybrid protocol that multi-realizes
F with joint access to G (where Fach is defined in §2.4 and Fsch is defined in
§2.5).

Our goal is to use Π to design an sFmsc-hybrid protocol sΠ that multi-
realizes sF with joint access to G. The point is, sΠ does not require secure
channels. Moreover, instantiating sFmsc with Πsmsc, we obtain the a protocol
sΠ [sFmsc/Πsmsc] that multi-realizes sF with joint access to G.

At a high level, protocol sΠ works as follows:

1. Wait for an input message init, then send the message init to sFmsc.
2. Wait for a message (authorze, chid) from sFmsc; then do the following: (a)

initialize a “virtual” instance of Π , assigning it a PID and SID that are
the same as that of this protocol instance, except that the SID pathname is
prefixed chid ; (b) generate the output message (authorize, chid).

3. Proceed as follows: (a) process input requests by passing them to the virtual
instance of Π ; (b) pass along outputs of the virtual instance of Π as outputs
of this protocol instance; (c) use sFmsc to implement the secure channels
used by the virtual instance of Π .

Theorem 3. If Π is an (Fach,Fsch)-hybrid protocol that multi-realizes F with
joint access to G, then sΠ is an sFmsc-hybrid protocol that multi-realizes sF with
joint access to G.
This is essentially the same as the main technical result (Lemma 4.1) of [2], but
there are some technical differences — see full paper for more discussion.

5 Practical UC Zero Knowledge

Before getting into strong CAID/CAKE protocols, we need to discuss an essen-
tial building block: practical protocols for UC ZK (zero knowledge). We will need
a slightly stronger version of ZK, which we call “enhanced ZK”. In the adaptive
corruptions with erasures model, this is no more difficult to realize than ordinary
ZK.

Let R be a binary relation, consisting of pairs (x, w): for such a pair, x is
called the “statement” and w is called the “witness”.

Let � : {0, 1}∗ → {0, 1}∗ be an “information leakage” function. The SID for
an enhanced ZK protocol is of the form parent/ext : Ppid : Qpid : , where P is the
prover and Q the verifier. For an adversary A, an instance of ideal functionality
Fezk with SID sid := parent/ext :Ppid : Qpid : runs as follows:

Credential Authenticated Identification and Key Exchange 269

1. Wait for both: (a) an input message (send, x, w) from P such that (x, w) ∈ R,
then send the message (send, �(x)) to A; (b) an input message ready from
Q, then send ready to A.

2. Wait for the message lock from A.
3. Wait for both: (a) a message done from A, then send the output message

done to P ; (b) a message deliver from A, then send the output message
(deliver, x) to Q.

Corruption rule: If P is corrupted between Steps 1a and 2, then A is given
(x, w) and is allowed to change the value of (x, w) to any value (x′, w′) ∈ R
(at any time before Step 2).

Note the similarity with our secure channels functionality. Here, the functionality
is parameterized by the information leakage function �, which is used to model
the fact that some information about x may be leaked to an eavesdropping
adversary. Typically, this information will be some rough information about the
“size and shape” of x that ultimately determines the lengths of the ciphertexts
that must be sent in an implementation.

Parameterized relations. In the above discussion, the relation R was consid-
ered to be a fixed relation. However, for many applications, it is convenient to let
R be parameterized by a some system parameter (see §2.3). To realize the ZK
(or extended ZK) functionality, it may be necessary to assume that the system
parameter was generated in a certain way.

For example, a ZK protocol might require that the system parameter contains
an RSA modulus N that is the product of two primes. To realize the ZK ideal
functionality, it might not even be necessary that the factorization of N remain
hidden. In such a case, the system parameter might be profitably viewed as a
public-coin system parameter. This means that the environment may know the
factorization of N , which may be useful to model situations where the factoriza-
tion of N is used, say, to sign messages in higher-level protocols that use a ZK
protocol as a subprotocol.

5.1 Practical Protocols

Practical ZK protocols exist for the types of relations that we will be needed in
our strong CAID/CAKE protocols — indeed, our protocols were designed with
such protocols specifically in mind. In a companion paper, we give a detailed
account of the current state of the art for such protocols. Here, we give a very
brief sketch — see the full paper for more details.

We will be proving statements of the form

Kw1 ∈ D1, . . . , wn ∈ Dn : φ(w1, . . . , wn). (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving “knowl-
edge” of a witness, rather than just its existence. The Di’s are domains which are
finite intervals of integers centered around 0. φ is a predicate — we will presently

270 J. Camenisch et al.

place restrictions on the form of the domains and the predicate. A witness for a
statement of the form (1) is a tuple (w1, . . . , wn) of integers such that wi ∈ Di for
i = 1 . . n and φ(w1, . . . , wn). In cases where only the residue class of wi modulo
m is important, we may write the corresponding domain as Zm.

The predicate φ(w1, . . . , wn) is given by a formula that is built up from
“atoms” using arbitrary combinations of ANDs and ORs. An atom may express
several types of relations among the wi’s: (i) integer relations, such as F = 0,
F ≥ 0, F ≡ 0 (mod m), or gcd(F, m) = 1, where F is an integer polynomial
in the variables w1, . . . , wn, and m is a positive integer; (ii) group relations,
such as

∏k
j=1 g

Fj

j = 1, where the gj ’s are elements of an abelian group, and the
Fj ’s are integer polynomials in the variables w1, . . . , wn; the descriptions of the
groups appearing in such atoms will in general be given as system parameters
(see 2.3); the group order need not be known, but certain technical restrictions
apply.

It is known how to construct efficient protocols for these types of statements
that, under reasonable assumptions, multi-realize Fezk with joint access to a
CRS. (As discussed in the full paper, we actually allow corrupt provers to submit
witnesses lying in somewhat larger intervals; the ideal functionality has to be
modified to allow for this.) The computational complexity of these proof systems
can be easily related to the arithmetic circuit complexity of the polynomials that
appear in the description of φ: the number of exponentiations is proportional
to the sum of the circuit complexities; a more precise running time estimate
depends on the types of groups and domains.

In some cases, we will write statements that quantify over certain variables
using ∃ rather than K. Roughly speaking, witnesses quantified under ∃ are as-
serted just to exist, rather than to be explicitly “known” by the prover. Making
sense of this formally requires some effort; however, the effort pays off in that
the resulting ZK protocols may be substantially more efficient.

6 Strong CAID/CAKE Protocols

6.1 A Protocol for Vectored Unions of Product Relations

We present here a protocol Π0 for F∗
caid that works for a vectored union of

product relations (see §3.3).
We assume the relation is described by values x1, . . . , xk and y1, . . . , yk. Party

P has inputs s1 ∈ S∗
1 , . . . , sk ∈ S∗

k , and Q has inputs t1 ∈ T ∗
1 , . . . , tk ∈ T ∗

k . They
are trying to determine if

∨k
i=1

[
(xi, si) ∈ Ei ∧ (yi, ti) ∈ Fi

]
, for fixed relations

E1, . . . , Ek and F1, . . . , Fk.
We assume that as system parameters, we have a group G of prime order q,

and random generator g. We will need to assume that the computational Diffie-
Hellman (CDH) assumption holds in this group. This protocol also requires some
extra machinery, described below.

Credential Authenticated Identification and Key Exchange 271

1a. P computes hL ←R G and sends hL to Q over a secure channel.
1b. Q computes hR ←R G and sends hR to P over a secure channel.
2a. P waits for hR, and then computes:

for i = 1 . . k:

{
αi ←R Zq, α′

i ←R Zq

if (xi, si) ∈ Ei then ei ← gαi else ei ← hR/gα′
i

Using Fezk, P proves to Q:

K{si ∈ S∗
i , α′

i ∈ Zq}ki=1 :
[k∧

i=1

(
(xi, si) ∈ Ei ∨ gα′

i = hR/ei

)]

.

Note that e1, . . . , ek are delivered to Q via the Fezk functionality after P
erases α′

1, . . . , α
′
k.

2b. Q waits for hL, and then computes:

for i = 1 . . k:

{
βi ←R Zq, β′

i ←R Zq

if (yi, ti) ∈ Fi then fi ← gβi else fi ← hL/gβ′
i

Using Fezk, Q proves to P :

K{ti ∈ T ∗
i , β′

i ∈ Zq}ki=1 :
[k∧

i=1

(
(yi, ti) ∈ Fi ∨ gβ′

i = hL/fi

)]

.

Note that f1, . . . , fk are delivered to P via the Fezk functionality after Q
erases β′

1, . . . , β
′
k.

3a. P computes: for i = 1 . . k: if (xi, si) ∈ Ei then ui ← fαi

i else ui ←R G

3b. Q computes: for i = 1 . . k: if (yi, ti) ∈ Fi then vi ← eβi

i else vi ←R G

4. P and Q run a strong CAID subprotocol to evaluate the predicate
∨k

i=1(ui =
vi), and output the result of this computation after erasing all local data.

NOTES: (i) We have reduced our original strong CAID problem to a simpler
strong CAID problem in Step 4. We discuss implementations of Step 4 below.
(ii) The intuition for the main idea of the protocol runs as follows. Suppose, for
example, that P is honest and Q is corrupt. In Step 2b, Q intuitively proves for
each i = 1 . . k, either that it knows ti such that (yi, ti) ∈ Ei or that it does not
know βi; in the latter case, Q will not be able to predict the value gαiβi when
it comes to Step 4. (iii) Assuming the Ei’s and Fi’s are relations based on an
anonymous credential system like IDEMIX, then all of the ZK protocols have
relatively efficient implementations (see §5.1).

6.2 Security Analysis

Our goal now is to show that protocol Π0 realizes F∗
caid. Note that Π0 is a

hybrid protocol that uses the following ideal functionalities as subroutines: secure
channels (i.e., Fsch), enhanced ZK (i.e., Fezk) for relations of the form appearing
in Steps 2a and 2b of the protocol, and F∗

caid for relations of the form appearing
in Step 4 of the protocol.

Theorem 4. Under the CDH assumption for G, protocol Π0 realizes F∗
caid.

272 J. Camenisch et al.

6.3 Implementing Step 4

In the case where k = 1, one can use the equality test protocol in §7. As an
alternative to protocol Π0, in the case where k = 1 one can use a different
protocol altogether, described in the full paper.

In the general case where k ≥ 1, we suggest the following method. Assume
we have a UC protocol for evaluating an arithmetic circuit mod N , where N is
a system parameter that is the product of two large primes. Then to evaluate
the boolean expression

∨k
i=1(ui = vi), P chooses a0 ∈ ZN at random, and for

i = 1 . . k, encodes ui as an element ai of ZN ; similarly, Q chooses b0 ∈ ZN at
random, and for i = 1 . . k, encodes vi as an element bi of ZN . Then P and Q
jointly evaluate in the expression

∏k
i=0(ai−bi) over ZN . If the boolean expression

is true, then the expression over ZN is zero; otherwise, the expression over ZN

evaluates to a random element of ZN .
Thus, we reduce the original strong CAID problem to a strong CAID problem

for a simpler predicate, namely, boolean expressions of the form
∨k

i=1(ui = vi),
and the latter is easily reduced to a simple circuit evaluation problem for expres-
sions of the form

∏k
i=0(ai − bi) over ZN . There are quite practical protocols for

circuit evaluation, which we discuss in detail in a companion paper. The basic
idea is to use known techniques for circuit evaluation based on homomorphic en-
cryption, making use of a semantically secure variant of Camenisch and Shoup’s
encryption scheme [6], which has the advantage that generating public keys is
very inexpensive (making security with adaptive corruptions and erasures more
practical) and proofs about plaintexts fit very nicely into the framework for ZK
proofs discussed in §5.1. These protocols (and hence the resulting strong CAID
protocols) require O(k) exponentiations, and O(log k) (the circuit depth) rounds
of communication, and O(k) total communication complexity.

6.4 Adding Key Exchange

Adding key exchange is simple, especially since we are already assuming secure
channels. We simply modify the protocol so that P generates a random key, and
sends it to Q over a secure channel at the beginning of the protocol. In addition,
whenever either party would output 1, it instead outputs (1, K). This is a generic
transformation that converts any F∗

caid protocol into an F∗
cake protocol. Some

other variations of protocol Π0, including one that deals with partial equality
relations, are discussed in the full paper.

6.5 From Strong CAID/CAKE to CAID/CAKE

We can instantiate protocol Π0 to get a practical Fsch-hybrid protocol Π ′
0 that

multi-realizes F∗
caid (or any of the variations discussed above) with joint access

to a CRS — the crucial building block is Fezk, discussed in §5. Then using
the split functionalities techniques in §4, we can turn Π ′

0 into a protocol sΠ ′
0

that multi-realizes sF∗
caid with joint access to a CRS. The resulting protocol is a

CAID/CAKE protocol that works without secure channels.

Credential Authenticated Identification and Key Exchange 273

Typically, the purpose of running a CAKE protocol is to use the session key
to implement a secure session. If, in fact, this is the goal, a more straightforward
way of achieving it is as follows. Simply design a Fsch-hybrid protocol that
works as follows: first, it runs a strong CAID protocol, and if that succeeds, the
parties continue to communicate, using the secure channels provided by the Fsch

functionality. Now apply the split functionalities techniques in §4 to this protocol,
obtaining a protocol that essentially provides a “credential authenticated secure
channel”.

7 A Protocol for Equality Testing and a Related Problem

Here is a simple protocol for equality testing, called protocol Πeq. We assume
that a group G of prime order q, along with a generator g ∈ G, are given as
system parameters. We will need to assume the DDH for G. We assume the
inputs to the two parties are encoded as elements of Zq. Again, we use Fezk as
a subprotocol. The protocol runs as follows, where P has input a ∈ Zq, and Q
has input b ∈ Zq:

1. P computes: h ←R G, x1, x2, r ←R Zq, c ← gx1hx2 , u1 ← gr, u2 ← hr,
e ← gacr, and using Fezk proves to Q: Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧
hr = u2 ∧ gacr = e; note that h, c, u1, u2, e are delivered to Q via the Fezk

functionality after erasing r.
2. Q computes: s ←R Z∗

q , t ←R Zq, ũ1 ← us
1g

t, ũ2 ← us
2h

t, ẽ ← esg−bsct,
and using Fezk proves to P : Kb ∈ Zq ∃ s, t ∈ Zq : us

1g
t = ũ1 ∧ us

2h
t =

ũ2 ∧ esg−bsct = ẽ ∧ gcd(s, q) = 1; note that ũ1, ũ2, ẽ are delivered to P via
the Fezk functionality after erasing s, t.

3. P computes: z ←R Z∗
q , d ← ẽz(ũ1)−zx1(ũ2)−zx2 , and using Fezk proves to

Q: ∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;
here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. After erasing all local data, both parties output 1 if d = 1, and output 0
otherwise.

NOTES: (i) We are using ∃ as well as Kquantifiers here. This allows for certain
optimizations, since values quantified under ∃ are never explicitly needed in
the simulator in the security proof below, other than to verify the that the
corresponding relation holds. (ii) In Step 1, (h, c) is the public key and (x1, x2)
the private key for “Cramer-Shoup Ultra-Lite” — the semantically secure version
of Cramer-Shoup encryption. (u1, u2, e) is an encryption of ga. We will exploit
the fact that this scheme is “receiver non-committing”, as was demonstrated by
Jarecki and Lysyanskaya [13]. This property will allow us to simulate adaptive
corruptions. (iii) In Step 2, assuming (u1, u2, e) encrypts ga, then (ũ1, ũ2, ẽ) is
a random encryption of gs(a−b). (iv) In Step 3, P is decrypting (ũ1, ũ2, ẽ), and
raising it to the power z, so that d = gzs(a−b) (v) All of the ZK protocols have
practical implementations, as discussed in §5.1.

Theorem 5. Assuming the DDH for G, protocol Πeq realizes functionality F∗
caid

for the equality relation.

274 J. Camenisch et al.

Applications. One application of protocol Πeq is in the implementation of
Step 4 of protocol Π0 (see §6.3). However, in this situation, a specialized protocol
in the full paper is more efficient.

Another application is to PAKE protocols. We can efficiently implement Fezk

for the necessary relations using secure channels and a common reference string,
and augment the protocol to share a random key over a secure channel. This
gives us a fairly efficient strong CAKE protocol for the equality relation that uses
secure channels. We then derive the split version of the protocol, using a simple
Diffie-Hellman key exchange as in §4, which realizes the CAKE functionality
(more precisely, it multi-realizes the CAKE functionality with joint access to
a CRS). As observed in [2], a protocol that realizes this functionality in fact
realizes the PAKE functionality (as defined in [9]). Our particular protocol is
probably a bit less efficient than the one in [9]; however, our protocol has the
advantage of being secure against adaptive corruptions (assuming erasures). A
very different PAKE protocol, with a structure similar to that in [9], that is
secure against adaptive corruptions was recently presented in [1].

7.1 A Variation

A variation on the above protocol gives a strong CAID protocol for the relation
DL := {(a, ga) : a ∈ Zq}. That is, it tests if ga = v, where a is the input to
P and v is the input to Q. The idea is to have Q “verifiably encrypt” v. The
protocol, which we call protocol Πdl, runs as follows:

1. P computes: h ←R G, x1, x2, r ←R Zq, c ← gx1hx2 , u1 ← gr, u2 ← hr,
e ← gacr, and using Fezk proves to Q: Ka ∈ Zq ∃ r ∈ Zq : gr = u1 ∧
hr = u2 ∧ gacr = e; note that h, c, u1, u2, e are delivered to Q via the Fezk

functionality after erasing r.
2. Q computes: s←R Z∗

q , t←R Zq, y ←R Zq, ṽ ← gyv, ũ1 ← us
1g

t, ũ2 ← us
2h

t,
ẽ ← esv−sct and using Fezk proves to P : Ky ∈ Zq ∃ s, t ∈ Zq : us

1g
t =

ũ1 ∧ us
2h

t = ũ2 ∧ esṽ−sgysct = ẽ ∧ gcd(s, q) = 1; note that ṽ, ũ1, ũ2, ẽ are
delivered to P via the Fezk functionality after erasing y, s, t.

3. P computes: z ←R Z∗
q , d ← ẽz(ũ1)−zx1(ũ2)−zx2 , and using Fezk proves to

Q: ∃x1, x2, z ∈ Zq : gx1hx2 = c ∧ ẽz(ũ1)−zx1(ũ2)−zx2 = d ∧ gcd(z, q) = 1;
here, d is delivered to Q via the Fezk functionality after erasing x1, x2, z.

4. Both parties output 1 if d = 1, and output 0 otherwise.

NOTES: (i) Step 1 is exactly the same as before. (ii) In Step 2, Q is generating
a random encryption of (ga/v)s. Moreover, by giving ṽ and y to Fezk, Q is
effectively giving v to Fezk. (iii) Step 3 is the same as before, but now d =
(ga/v)sz .

Theorem 6. Assuming the DDH for G, protocol Πdl realizes functionality F∗
caid

for the relation DL.

Applications. This protocol, when augmented with a key sharing step over a
secure channel, and “split” as in §4, gives us a practical PAKE protocol that is

Credential Authenticated Identification and Key Exchange 275

secure against adaptive corruptions and server compromise. That is, the client
stores the password a, while the server stores ga. If the password file on the
server is compromised, then it will not be easy to an attacker to login to the
server as the client.

Unlike previous protocols, such as in [11], our protocol does not rely on ran-
dom oracles. To be fair, the definition of security in [11] is so strong that it
probably cannot be achieved without random oracles: the security definition in
[11] requires that in the event of a server compromise, an attacker must carry
out an offline dictionary attack in order to guess the password. Also, note that
the protocol in [11] is proved secure only in the static corruption model.

In a complete PAKE protocol, one would likely set a :=
H(pw , clientID , serverID), where H is a cryptographic hash, pw is the
actual password, and clientID and serverID are the names of the client and
server, respectively. If H is entropy preserving, pw is a high-entropy password,
and the discrete logarithm problem in G is hard, then it will be infeasible to
login as the client, even if the server is compromised. Moreover, if H is modeled
as a random oracle, and the discrete logarithm problem in G is hard, then even
in the event of a server compromise, an attacker must still carry out an offline
dictionary attack in order to login as the client. Thus, our new protocol is the
first fairly practical PAKE protocol (UC-secure or otherwise) that is secure
against server compromise and does not rely on random oracles; as a bonus, it
is also secure against adaptive corruptions.

References

1. Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for con-
ditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS,
vol. 5677, pp. 671–689. Springer, Heidelberg (2009)

2. Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computation without
authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 361–377.
Springer, Heidelberg (2005), http://eprint.iacr.org/2007/464

3. Beaver, D., Haber, S.: Cryptographic protocols provably secure against dynamic
adversaries. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 307–
323. Springer, Heidelberg (1993)

4. Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential authenticated identifi-
cation and key exchange. Cryptology ePrint Archive, Report 2010/055 (2010),
http://eprint.iacr.org/

5. Camenisch, J., Lysyanskaya, L.: Efficient non-transferable anonymous multi-show
credential system with optional anonymity revocation. In: Crypto 2001, pp. 93–118
(2001)

6. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003), http://eprint.iacr.org/2002/161

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (December 14, 2005 ver-
sion) (2005), http://eprint.iacr.org

http://eprint.iacr.org/2007/464
http://eprint.iacr.org/
http://eprint.iacr.org/2002/161
http://eprint.iacr.org

276 J. Camenisch et al.

8. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with
global setup. In: Theory of Cryptography 2007, pp. 61–85 (2007), Full version at
http://eprint.iacr.org/2006/432

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

10. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003),
http://eprint.iacr.org/2002/047

11. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

12. Jarecki, S., Kim, J., Tsudik, G.: Beyond secret handshakes: affiliation-hiding au-
thenticated key agreement. In: Malkin, T.G. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 352–369. Springer, Heidelberg (2008)

13. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introduc-
ing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000)

http://eprint.iacr.org/2006/432
http://eprint.iacr.org/2002/047

	Credential Authenticated Identification and Key Exchange
	Introduction
	Some UC Background
	Notions of Security
	Conventions Regarding SIDs
	System Parameters
	Authenticated Channels
	Secure Channels

	Ideal Functionalities for Strong CAID and CAKE
	From Authentication to Key Exchange
	Some Relations of Interest

	Bootstrapping an Authentication Protocol
	Details: Split Functionalities
	General Split Functionalities
	A Multi-session Secure Channels Functionality
	Split Key Exchange
	Realizing Split Multi-session Secure Channels
	Realizing General Split Functionalities

	Practical UC Zero Knowledge
	Practical Protocols

	Strong CAID/CAKE Protocols
	A Protocol for Vectored Unions of Product Relations
	Security Analysis
	Implementing Step 4
	Adding Key Exchange
	From Strong CAID/CAKE to CAID/CAKE

	A Protocol for Equality Testing and a Related Problem
	A Variation

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

