
An Easy Completeness Proof for the Modal

µ-Calculus on Finite Trees

Balder ten Cate1,∗ and Gaëlle Fontaine2,�
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Abstract. We give a complete axiomatization for the modal μ-calculus
on finite trees. While the completeness of our axiomatization already
follows from a more powerful result by Igor Walukiewicz in [11], our
proof is easier and uses very different tools, inspired from model theory.
We show that our approach generalizes to certain axiomatic extensions,
and to the extension of the μ-calculus with graded modalities. We hope
that the method might be helpful for other completeness proofs as well.

The μ-calculus is an extension of modal logic with a fixpoint operator. In
1983, Dexter Kozen suggested an axiomatization and showed completeness for
the aconjunctive fragment of the μ-calculus (see, e.g., [7]). It took more than
ten years to prove completeness. This proof is due to Igor Walukiewicz [11] and
is quite involved. It uses tableaux and the notion of disjunctive formula. We
propose here a simpler proof in a particular case. More precisely, we prove the
completeness of the Kozen axiomatization Kμ extended with the axiom μx.�x
with respect to the class of finite tree models. Finite trees are a fundamental
data structure in computer science, and logics on finite trees have received con-
siderable attention in recent literature, motivated by applications in areas such
as XML [1,8].

Our argument consists of three steps. The first step consists of defining a
notion of rank which plays the same role as the modal depth for modal formulas.
One of the main properties of the rank is the following. In order to know whether
a formula ϕ of rank n is true at a node w, it is enough to know which proposition
letters are true at w and which formulas of rank at most n are true at the
successor nodes of w. Another key property of the rank is that there are only
finitely many formulas of a given rank (up to logical equivalence).

The second step is to prove completeness of the μ-calculus with respect to
generalized models, which are basically Kripke models augmented with a set of
admissible subsets, in the style of Henkin semantics for second order logic.
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The last step is inspired by the work of Kees Doets (see, e.g., [3]). Let us call
a node in a generalized model n-good if there is a node in a finite tree model
which satisfies exactly the same formulas of rank at most n. Using an induction
principle, we show that every node in a generalized model satisfying μx.�x is
n-good. It is here that we use the main property of the rank. Finally, putting this
together with the completeness for generalized models, we obtain completeness
for the class of finite tree models.

This argument can also be applied to some extensions of the logic Kμ+μx.�x.
More precisely, we prove that when we add finitely many shallow axioms (as
defined in [10]), we obtain a complete axiomatization for the corresponding class
of finite trees. We also show that we can adapt our proof to show completeness
for the graded μ-calculus extended with the axiom μx.�x. Let us also mention
that a similar method has been used for other completeness proofs in [6].

The paper is organized as follows. In section 1, we recall what is the Kozen
axiomatization for the μ-calculus Kμ and what is the intended semantics. In
section 2, we define the notion of rank for a formula. In section 3, we give a
definition for the generalized models and we show completeness of Kμ with
respect to the class of generalized models. In section 4, we use Kees Doets’
argument to obtain completeness of Kμ + μx.�x with respect to the class of
finite tree models. In the last two sections, we give some examples of extensions
of Kμ+μx.�x to which we can apply our method in order to prove completeness.

1 Syntax, Semantics and Axiomatization

We introduce the language and the Kripke semantics for the μ-calculus. We also
recall the axiomatization given by Dexter Kozen.

Definition 1. The μ-formulas over a set Prop of proposition letters and a set
V ar of variables are given by

ϕ ::= � | p | x | ϕ ∨ ϕ | ¬ϕ | ♦ϕ | μx.ϕ,
where p ranges over the set Prop and x ranges over the set V ar of variables.
In μx.ϕ, we require that the variable x appears only under an even number of
negations in ϕ. We will assume that V ar is infinite.

As usual, we let φ∧ψ, �ϕ and νx.ϕ be abbreviations for ¬(¬ϕ∨¬ψ), ¬♦¬ϕ
and ¬μx.¬[¬x/x]. The notions of subformula, bound variable, free variable and
substitution are defined in the usual way. If ϕ and ψ are μ-formulas and if p is a
proposition letter, we denote by ϕ[ψ/p] the formula obtained by replacing in ϕ
each occurrence of p by ψ. Similarly, if x is a variable, we define ϕ[ψ/x].

A μ-sentence is a formula in which all the variables are bound. A μ-formula
is a modal formula if it does not contain any subformula of the form μx.ϕ.

Definition 2. A Kripke frame is a pair (W,R), where W is a set and R a binary
relation on W . A Kripke model is a triple (W,R, V ) where (W,R) is a Kripke
frame and V : Prop → P(W ) a valuation. If (w, v) belongs to R, we say that w
is a predecessor of v and v is a successor of w.
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Given a formula ϕ, a Kripke model M = (W,R, V ) and an assignment τ : V ar →
P(W ), we define a subset [[ϕ]]M,τ that is interpreted as the set of points at which
ϕ is true. The subset is defined by induction in the usual way. We only recall
that

[[μx.ϕ]]M,τ =
⋂

{U ⊆W : [[ϕ]]M,τ [x:=U ] ⊆ U},
where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ ′(y) = τ(y),
for all y �= x. Observe that the set [[μx.ϕ]]M,τ is the least fixpoint of the map
ϕx : P(W ) → P(W ) defined by ϕx(U) := [[ϕ]]M,τ [x:=U ], for all U ⊆W .

If w ∈ [[ϕ]]M,τ , we write M, w �τ ϕ and we say that ϕ is true at w under the
assignment τ . If ϕ is a sentence, we simply write M, w � ϕ.

A formula ϕ is true in M under an assignment τ if for all w ∈ W , we have
M, w �τ ϕ. In this case, we write M �τ ϕ. A set Φ of formulas is true in a
model M under an assignment τ , notation: M �τ Φ, if for all ϕ in Φ, ϕ is true
in M under τ . Finally, if (W,R) is a Kripke frame and for all valuations V and
all assignments τ , ϕ is true in (W,R, V ) under the assignment τ , we say that ϕ
is valid in (W,R) and we write (W,R) � ϕ.

Definition 3. The axiomatization of the Kozen system Kμ consists of the fol-
lowing axioms and rules

propositional tautologies,
If 	 ϕ→ ψ and 	 ϕ, then 	 ψ (Modus ponens),
If 	 ϕ, then 	 ϕ[p/ψ] (Substitution),
	 �(p→ q) → (�p→ �q) (K-axiom),
If 	 ϕ, then 	 �ϕ (Necessitation),
	 ϕ[x/μx.ϕ] → μx.ϕ (Fixpoint axiom),
If 	 ϕ[x/ψ] → ψ, then 	 μx.ϕ→ ψ (Fixpoint rule),

where x is not a bound variable of ϕ and no free variable of ψ is bound in ϕ.

Definition 4. If Φ is a set of modal formulas, we write K + Φ for the smallest
set of modal formulas which contains the propositional tautologies, the K-axiom
and is closed under the Modus Ponens, Substitution and Necessitation rules. We
say that K + Φ is the extension of K by Φ. Note that if Φ is empty, we simply
write K.

Next, if Φ is a set of modal formulas, we denote by K+r Φ the smallest set of
formulas which contains both K and Φ and is closed under the Modus Ponens
and Necessitation rules. We call K +r Φ the restricted extension of K by Φ.

Finally, if Φ is a set of μ-formulas, we write Kμ + Φ for the smallest set of
formulas which contains both Kμ and Φ and is closed under the Modus Po-
nens, Substitution, Necessitation and Fixpoint rules. We say that Kμ +Φ is the
extension of Kμ by Φ.

Definition 5. Let (W,R) be a Kripke frame. A point r in W is a root if for all
w in W , there is a sequence w0, . . . , wn such that w0 = r, wn = w and (wi, wi+1)
belongs to R, for all i ∈ {0, . . . , n − 1}. The frame (W,R) is a tree if it has a
root, every point distinct from the root has a unique predecessor and there is no
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sequence w0, . . . , wn+1 in W such that wn+1 = w0 and (wi, wi+1) belongs to R,
for all i ∈ {0, . . . , n}.

The frame (W,R) is a finite tree if it is a tree and W is finite. Finally, a finite
tree Kripke model is a Kripke model (W,R, V ) such that (W,R) is a finite tree.

Proposition 1. Let M = (W,R, V ) be a Kripke model. The formula μx.�x is
true at a point w in M iff there is no infinite sequence w0, w1 . . . in W such
that w0 = w and (wi, wi+1) belongs to R, for all i ∈ N.

In particular, the formula μx.�x is true in M iff there is no infinite sequence
w0, w1, . . . such that (wi, wi+1) belongs to R, for all i ∈ N. That is, iff M is
conversely well-founded.

We prove the completeness of the logic Kμ + μx.�x with respect to the class of
finite tree Kripke models. That is, a formula ϕ is provable in Kμ + μx.�x iff it
is valid in any finite tree Kripke model. In fact, this result can be derived from
the completeness result proved by Igor Walukiewicz in [11]. We will give more
details at the end of Section 4.

2 Rank of a Formula

The goal of this section is to come up with a definition of rank that would be
the analogue of the depth of a modal formula. For modal logics, it is not hard
to see that the truth of an arbitrary formula ϕ at some world w only depends of
the truth of the proposition letters at w and of the truth of formulas ψ at the
successors of w, where the depth of ψ is at most the depth of ϕ. In our proof,
we will need something similar for the μ-calculus.

The most natural idea would be to look at the nesting depth of modal and
fixpoint operators. However, this definition does not have the required properties.
The notion of rank that we develop here is in fact related to the closure of a
formula, which has been introduced by Michael Fischer and Robert Ladner in [5].

Definition 6. The closure Cl(ϕ) of a formula ϕ is the smallest set of formulas
such that

ϕ ∈ Cl(ϕ), if ψ ∨ χ ∈ Cl(ϕ), then {ψ, χ} ⊆ Cl(ϕ),
if ¬ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ), if μx.ψ ∈ Cl(ϕ), then ψ[x/μx.ψ] ∈ Cl(ϕ).
if ♦ψ ∈ Cl(ϕ), then ψ ∈ Cl(ϕ),

It is also proved in [7] that the closure Cl(ϕ) of a formula ϕ is finite. In order to
define the rank, we also need to recall the notion of the depth of a formula.

Definition 7. The depth d(ϕ) of a formula ϕ is defined by induction as follows

d(�) = d(p) = d(x) = 0, d(ϕ ∨ ψ) = max{d(ϕ), d(ψ)},
d(¬ϕ) = d(ϕ), d(♦ϕ) = d(μx.ϕ) = d(ϕ) + 1.

Definition 8. The rank of a formula ϕ is defined as follows

rank(ϕ) = max{d(ψ) | ψ ∈ Cl(ϕ)}.
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Remark that since Cl(ϕ) is finite, rank(ϕ) is always a natural number. All we
will use later are the following properties of the rank.

Proposition 2. If the set Prop of proposition letters is finite, then for all nat-
ural numbers k, there are only finitely many sentences of rank k (up to logical
equivalence).

Proof. Fix a natural number k. Note first that if rank(ϕ) = k, then in particular,
d(ϕ) ≤ k. Hence, it is enough to show that there only finitely many sentences
of depth below k (up to logical equivalence). If d(ϕ) ≤ k, we may assume that
the only variables occurring in ϕ are some x1, . . . , xk. It is routine to prove by
induction on l that there are finitely many formulas of depth l with variables
x1, . . . , xk, up to logical equivalence. ��
Proposition 3. The rank is closed under boolean combination. That is, for any
n, a boolean combination of formulas of rank at most n is a formula of rank at
most n.

Proposition 4. Every formula ϕ is provably equivalent to a boolean combina-
tion of proposition letters and formulas of the form ♦ψ, with rank(ψ) ≤ rank(ϕ).

Proof. A formula is guarded if every bound variable is in the scope of a modal
operator. Each formula ϕ is provably equivalent to a guarded formula of rank
less or equal to the rank of ϕ (see, e.g., [11]) . Therefore, let ϕ be a guarded
formula. We define a map G by induction as follows:

G(�) = �, G(p) = p, if p is a free variable of ϕ,
G(¬ψ) = ¬G(ψ), G(ψ ∨ ψ′) = G(ψ) ∨G(ψ′),
G(♦ψ) = ♦ψ, G(μx.ψ) = G(ψ[x/μx.ψ]).

We note that G is not defined for a bound variable x of ϕ. Using the fact that
ϕ is guarded, one can show that the computation of G(ϕ) is well-defined and
does terminate. It is not hard to see that G(ϕ) is equivalent to ϕ. We remark
now that if ψ belongs to Cl(ϕ), then Cl(ψ) is a subset of Cl(ϕ). It follows that
G(ϕ) is a boolean combination of proposition letters and formulas of the form
♦ψ, with rank(ψ) ≤ rank(ϕ). ��

3 Completeness for Generalized Models

We introduce generalized models which are the analogue for the μ-calculus of
the general models for second order logic. We prove completeness of Kμ with
respect to the class of generalized models.

Definition 9. Consider a quadruple M = (W,R, V,A) where (W,R) is a Kripke
frame, A is a subset of P(W ) and V : Prop→ A a valuation. A set which belongs
to A is called admissible.

We define the truth of a formula ϕ under an assignment τ : V ar → A by
induction. All the clauses are the same as usual, except the one defining the
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truth of μx.ϕ. Normally, we define the set [[μx.ϕ]]M,τ as the least pre-fixpoint of
the map ϕx (see Definition 2). But here, we define it as the intersection of all
the admissible pre-fixpoints of ϕx.

[[�]]M,τ = W,
[[p]]M,τ = V (p),
[[x]]M,τ = τ(x),
[[¬ϕ]]M,τ = W\[[ϕ]]M,τ ,
[[ϕ ∨ ψ]]M,τ = [[ϕ]]M,τ ∪ [[ψ]]M,τ ,
[[♦ϕ]]M,τ = {w ∈W : ∃v ∈W s.t. wRv and v ∈ [[ϕ]]M,τ},
[[μx.ϕ]]M,τ =

⋂{U ∈ A : [[ϕ]]M,τ [x:=U ] ⊆ U},

where τ [x := U ] is the assignment τ ′ such that τ ′(x) = U and τ(y) = τ(y), for
all y �= x. If w ∈ [[ϕ]]M,τ , we write M, w �τ ϕ and we say that ϕ is true at w
under the assignment τ . If ϕ is a sentence, we simply write M, w � ϕ. A formula
ϕ is true in M under an assignment τ if for all w ∈ W , we have M, w �τ ϕ. In
this case, we write M �τ ϕ.

The quadruple M = (W,R, V,A) is a generalized model if for all formulas
ϕ and all assignments τ : V ar → A, the set [[ϕ]]M,τ belongs to A. A triple
F = (W,R,A) is a generalized frame if for every valuation V : Prop → A, the
quadruple (W,R, V,A) is a generalized model.

If F = (W,R,A) is a generalized frame, we call (W,R) the underlying Kripke
frame of F . A formula ϕ is valid in a generalized frame F = (W,R,A), notation:
F � ϕ, if for all valuations V : Prop→ A and all assignments τ : V ar → A, the
formula ϕ is true in (W,R, V,A) under the assignment τ .

Any Kripke model M = (W,R, V ) can be seen as the generalized model M ′ =
(W,R, V,P(W )). It follows easily from our definition that for all formulas ϕ and
all points w ∈ W ,

M,w � ϕ iff M ′, w � ϕ.

Now we show that for all sets Φ of formulas, the logic Kμ + Φ is complete
with respect to a particular generalized model. If we were only interested in
showing that Kμ+μx.�x is complete, we would restrict ourselves to prove that
Kμ+μx.�x is complete with respect to a particular generalized model. But later,
we will also show completeness for some extensions of Kμ and it will become
handy to suppose that Φ contains other additional axioms.

First we introduce some definitions and recall some results of modal logic.

Theorem 1 ([9]). Let Φ be a set of modal formulas. There exists a model M
such that for all modal formulas ϕ, ϕ is provable in K +r Φ iff M � ϕ.

This theorems says that every (restricted) extension of K is complete with re-
spect to a class of Kripke models. However, all of these extensions might not be
complete with respect to a class of Kripke frames. Indeed, there is no guarantee
that the formulas in Φ are valid in the frame corresponding to the model given
by Theorem 1.
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Definition 10. Let Prop be a set of proposition letters and V ar a set of vari-
ables. We let μFL be the set of sentences of the form μx.ϕ or νx.ϕ, for some
μ-formula ϕ over Prop. We denote by Prop+ the set Prop ∪ {pϕ : ϕ ∈ μFL}.

If ϕ is a μ-formula over Prop+, we define s(ϕ) as the formula obtained by
replacing each proposition letter of the form pψ (ψ ∈ μFL), by the formula ψ.
We call s(ϕ) the source of ϕ.

Next, if ϕ is a μ-formula over Prop+, we say that a modal formula ψ over
Prop+ is the replacement of ϕ if ψ is obtained by replacing in the formula s(ϕ)
all maximal subformulas χ in μFL, by the proposition letter pχ. In this case, we
use the notation repl(ϕ). Finally, if Σ is a set of μ-formulas over Prop, we let
repl(Σ) be the set {repl(ϕ) : ϕ ∈ Σ}.
For example, let ϕ be the formula ♦(μx.pνy.x∧y). Then s(ϕ) is the formula
♦(μx.νy.(x ∧ y)) and repl(ϕ) is the formula ♦pμx.νy.(x∧y). We remark also that
for all formulas ψ, repl(ψ) is a modal formula over Prop+.

Now we will prove that for all sets of formulas Φ, the logic Kμ+Φ is complete
with respect to the class of generalized models which make Φ true. An easy way
to show this would be to do a standard canonical model construction (inspired
by the one used for the completeness of the modal logic K).

However, we give here another proof. The idea is to use the replacement map
introduced previously in order to translate the completeness result for modal
logic into a completeness result for generalized Kripke models. This proof might
seem a bit more tedious. In fact, it will make our result easier to extend to other
settings (like graded μ-calculus).

Theorem 2. Let Φ be a set of μ-formulas over a set Prop. There is a generalized
model M = (W,R, V,A) such that for all sentences ϕ, ϕ is provable in Kμ + Φ
iff M � ϕ.

In particular, the logic Kμ + Φ is complete with respect to the class of gener-
alized models which make Φ true. That is, for all sentences ϕ, ϕ is provable in
Kμ + Φ iff for all generalized models M such that M � Φ, we have M � ϕ.

Proof. By Theorem 1, there is a Kripke model N = (W,R, V +) (over Prop+)
such that for all modal formulas α over Prop+, α is provable in K+rrepl(Kμ+Φ)
iff N � α. Now let A be the set {[[δ]]N : δ modal formula over Prop+}. We define
M as the quadruple (W,R, V +,A).

First, we show that for all μ-formulas ϕ over Prop+, all v in W and all
assignments τ : V ar → A, we have

N , v �τ repl(ϕ) iff M, v �τ ϕ. (1)

The proof is by induction on the complexity of ψ. We skip the details by lack of
space. Next, we prove that for all μ-sentences ϕ (over Prop), we have

M � ϕ iff ϕ is provable in Kμ + Φ.

For the direction from left to right, suppose that ϕ is not provable in Kμ+Φ.
This implies that repl(ϕ) is not provable in K +r repl(Kμ + Φ). Therefore, the
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formula repl(ϕ) is not true in N . By equivalence (1), this means that ϕ is not
true in M.

For the direction from right to left, assume that ϕ is provable in Kμ + Φ. It
is routine to show that for all generalized models M′ such that M′ � Φ, we
have that M′ � ϕ. Moreover, using equivalence (1) together with the fact that
repl(Φ) is true in N , we obtain that Φ is true in M. Putting everything together,
we get that ϕ is true in M.

To finish the proof, it remains to show that M is a generalized model. That
is, for all μ-formulas ϕ over Prop, the set [[ϕ]]M belongs to A. Fix a μ-formula ϕ
over Prop. By equivalence (1), the set [[ϕ]]M is equal to [[repl(ϕ)]]N . By definition
of A, this set belongs to A.

4 Completeness for Finite Tree Models

In the style of Kees Doets [3], we prove completeness of Kμ+μx.�x with respect
to the class of finite tree Kripke models. The argument is as follows. First, we say
that a point w in a generalized model is n-good if there is a point v in a finite
tree Kripke model such that no formula of rank at most n can distinguish w
from v. Next, we show that “being n-good” is a property that can be expressed
by a formula γn of rank at most n. Afterwards, we prove that each point (in a
generalized model) satisfying μx.�x, is n-good. Finally, using completeness for
generalized models, we obtain completeness of Kμ + μx.�x with respect to the
class of finite tree Kripke models.

In this section, we will assume that the set Prop of proposition letters is finite.
Often we write “finite tree” instead of “finite tree Kripke model”.

Definition 11. Fix a natural number n. Let M and M′ be two generalized
models. A world w ∈ M is rank n-indistinguishable to a world w′ ∈ M′ if for all
formulas ϕ of rank at most n, we have

M, w � ϕ iff M′, w′ � ϕ.

In case this happens, we write (M, w) ∼n (M′, w′). Finally, we say that w ∈ M
is n-good if there exists a finite tree N and some v ∈ N such that (M, w) ∼n
(N , v).

Definition 12. Let n be a natural number and let Φn be the set of formulas of
rank at most n. For any generalized model M and any w ∈ M, we define the
n-type θn(w) as the set of formulas in Φn which are true at w.

By Proposition 2, Φn is finite (up to logical equivalence) and in particular, there
are only finitely many distinct n-types.

Lemma 1. Let n be a natural number. There exists a formula γn of rank n such
that for any generalized model M and any w ∈ M, we have

M, w � γn iff (M, w) is n-good.
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Proof. Let n be a natural number and let γn be the formula defined by

γn =
∨

{
∧
θn(w) |w is n-good},

where w a point in a generalized model M and
∧
θn(w) is shorthand for

∧{ϕ :
ϕ ∈ θn(w)}. Since there are only finitely many distinct n-types, the formula γn
is well-defined. Moreover, from Proposition 3, it follows that the rank of γn is n.

It remains to check that γn has the required properties. It is immediate to see
that if a point w in a generalized model is n-good, then γn is true at w. For the
other direction, assume that γn is true at a point w in a generalized model M.
Therefore, there is a point w′ in a generalized model M′ such that w′ is n-good
and θn(w′) is true at w. Since w′ is n-good, there is a point v in a model N such
that w′ and v are rank n-indistinguishable. Using the fact that w and w′ have
the same n-type, we obtain that w and v are also rank n-indistinguishable. That
is, w is n-good. ��
Lemma 2. For all natural numbers n, 	Kµ �γn → γn.

Proof. Let n be a natural number. By Theorem 2, it is enough to show that the
formula �γn → γn is valid in all generalized models. Let M be a generalized
model and let w ∈ M. We have to show M, w � �γn → γn. So suppose
M, w � �γn. If w is a reflexive point, we immediately obtain M, w � γn and
this finishes the proof. Assume now that w is irreflexive. We have to prove that
(M, w) is n-good. That is, we have to find a finite tree N and some v ∈ M such
that (M, w) ∼n (N , v).

Now for any successor u of w, we have M, u � γn. Therefore, (M, u) is n-good
and there exists a finite tree Mu = (Wu, Ru, Vu) and some wu ∈ Wu such that
(M, u) ∼n (Mu, wu). Without loss of generality, we may assume that wu is the
root of Mu.

The idea is now to look at the disjoint union of these models and to add
a root v (that would be rank n-indistinguishable from w). However, this new
model might not be a finite tree (w might have infinitely many successors). The
solution is to restrict ourselves to finitely many successors of w. More precisely,
for each n-type, we pick at most one successor of w.

So let U be a set of successors of w such that for any successor u of w, there
is exactly one point u′ of U satisfying θn(u) = θn(u′). Remark that since there
are only finitely many distinct n-types, U is finite. Let N = (W,R, V ) be the
model defined by

W = {v} ∪
⊎

{Wu : u ∈ U},
R = {(v, wu) : u ∈ U} ∪

⋃
{Ru : u ∈ U},

V (p) =

{
{v} ∪ ⋃{Vu(p) : u ∈ U} if M, w � p,⋃{Vu(p) : u ∈ U} otherwise,

for all proposition letters p. Since U is finite, N is a finite tree. Thus, it is enough
to check that for any formula ϕ of rank at most n, we have

M, w � ϕ iff N , v � ϕ.
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By Proposition 4, ϕ is provably equivalent to a boolean combination of proposi-
tion letters and formulas of the form ♦ψ, where rank(ψ) is at most n. Thus, it
is enough to show that w and v satisfy exactly the same proposition letters and
the same formulas ♦ψ with rank(ψ) ≤ n.

By definition of V , it is immediate that w and v satisfy the same proposition
letters. Now let ψ be a formula of rank at most n. We have to show that

M, w � ♦ψ iff N , v � ♦ψ.
For the direction from left to right, suppose that M, w � ♦ψ. Thus, there exists
a successor u of w such that M, u � ψ. By definition of U , there is u′ ∈ U
such that (M, u) ∼n (M, u′). Thus, (M, u) ∼n (Mu′ , wu′ ) and in particular,
Mu′ , wu′ � ψ. By definition of R, it follows that N , v � ♦ψ. The direction from
right to left is similar. ��
Proposition 5. For all natural numbers n, 	Kµ μx.�x→ γn.

Proof. By Lemma 2, we know that �γn → γn is provable in Kμ. By the Fixpoint
rule, we obtain that μx.�x→ γn is provable in Kμ. ��
Theorem 3. Kμ + μx.�x is complete with respect to the class of finite tree
Kripke models.

Proof. For any finite tree M, we have M � Kμ and M � μx.�x. Thus, it is
sufficient to show that if ϕ is not provable in Kμ+μx.�x, there exists a finite tree
N such that N � ϕ. Let ϕ be such a formula. In particular, �Kµ μx.�x → ϕ.
By Theorem 2, we have M, w � μx.�x→ ϕ, for some generalized model M and
some w ∈ M.

Let n be the rank of ϕ. By Theorem 2 and Proposition 5, we get that M, w �
μx.�x → γn. Since M, w � μx.�x, it follows that M, w � γn. Therefore, there
exists a finite tree N and some v ∈ N such that (M, w) ∼n (N , v). Since
M, w � ϕ, we have N , v � ϕ.

As mentioned before, this result also follows from the completeness of Kμ showed
by Igor Walukiewicz in [11]. We briefly explain how to derive Theorem 3 from
the completeness of Kμ. Recall that in [11], Igor Walukiewicz showed that a
sentence ϕ is provable in Kμ iff it is valid in all trees.

Suppose that a sentence ϕ is not provable in Kμ + μx.�x. In particular, the
formula μx.�x → ϕ is not provable in Kμ. It follows from the completeness of
Kμ that there is a model M = (W,R.V ) and a point w in W such that (W,R)
is a tree and μx.�x → ϕ is not true at w. We may assume that w is the root
of (W,R).

Since μx.�x is true at w and since w is the root, it follows from Fact 1 that
the tree (W,R) is conversely well-founded. Let n be the rank of ϕ. Now, if a
point v in W has more than one successor of a given n-type θ, we can pick one
successor of n-type θ and delete all the other successors of n-type θ. This would
not modify the fact that ϕ is not true at w. By doing this operation inductively
and using the fact that (W,R) is well-founded, we can prove that the tree (W,R)
may be assumed to be finite. Therefore, there is a finite tree (W,R) in which ϕ
is not valid.
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5 Adding Shallow Axioms to Kµ + µx.�x

By slightly modifying our method, it is also possible to prove that when we
extend the logic Kμ + μx.�x with axioms that are shallow (defined below), we
obtain complete axiomatizations for the corresponding class of finite trees.

Definition 13 ([10]). A formula is Prop-free if it is a sentence that does not
contain any proposition letter. A formula is propositional if it is a sentence of
the μ-calculus that contains neither ♦ nor μ.

A formula is shallow if no occurrence of a proposition letter is in the scope of
a fixpoint operator and each occurrence of a proposition letter is in the scope
of at most one modality. In other words, the shallow formulas is the language
defined by

ϕ ::= ψ | ♦ψ | ϕ ∨ ϕ | ¬ϕ,
where ψ is either a Prop-free formula or a propositional formula.

For example, ♦p → �p is a shallow formula. Other examples are formulas ex-
pressing that each point has at most two successors (♦p∧♦(q∨¬p) → �(p∨q)),
or that each point has at most one blind successor (♦(p ∧ �⊥) ∧ �(�⊥ → p)).

The remaining of the section is devoted to the proof of the following com-
pleteness result. Recall that a formula ϕ defines a class C of finite trees if C is
exactly the class of trees which make ϕ valid.

Theorem 4. Let ϕ be a shallow formula. Then the logic Kμ + μx.�x + ϕ is
complete with respect to the class of finite trees defined by ϕ.

In order to prove this result, as for the logic Kμ + μx.�x, we first show that
the logic is complete with respect to a class of generalized frames. To do so, we
combine the completeness of the logic Kμ with respect to the class of generalized
frames together with a property of shallow formulas, which was proved in [10].
We first recall this property.

Definition 14. A generalized frame F = (W,R,A) is differentiated if for all
w, v ∈W with w �= v, there exists A ∈ A such that w ∈ A and v /∈ A.

A generalized model F = (W,R,A) is tight if for all w, v ∈ W such that
(w, v) /∈ R, there exists A ∈ A such that v ∈ A and for all u ∈ A, (w, u) /∈ R.

A generalized frame is refined if it is differentiated and tight.

Definition 15. A formula ϕ is persistent with respect to refined frames if for
all refined frame F such that F � ϕ, the formula ϕ is valid on the underlying
Kripke frame of F .

Theorem 5 ([10]). Every shallow formula is persistent with respect to refined
frames.

Theorem 6. Let ϕ be a shallow formula. The logic Kμ + ϕ is complete with
respect to the class of generalized frames whose underlying Kripke frames make
ϕ valid.
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Proof. By Theorem 2, we know that the logic Kμ+ϕ is complete with respect to
a generalized model N = (W,R, V,A). Moreover, it follows from the proof of this
theorem, that we may assume A to be the set {[[ψ]]N : ψ sentence }. Therefore,
it is enough to show that in the underlying Kripke frame (W,R), ϕ is valid.

First we prove that ϕ is valid in the generalized Kripke frame (W,R,A). Let
V ′ : Prop → A be a valuation and let N ′ be the generalized model (W,R, V ′,A).
We have to show that N � ϕ. It follows from the definition of A that for all
proposition letters p, there is a formula ϕp such that V (p) = [[ϕp]]N . Now it is
routine to show that

N ′ � ϕ iff N � ψ,

where ψ is a formula obtained by replacing each proposition letter p occurring
in ϕ by the formula ϕp. Using Theorem 2, we obtain that N � ψ iff ψ belongs
to the logic Kμ+ϕ. Clearly, ψ belongs to Kμ+ϕ since this logic is closed under
substitution and this finished the proof that ϕ is valid in the generalized Kripke
frame (W,R,A).

Now, in Theorem 1, we could make the extra assumption that the model
M = (WM, RM, VM) is such that the generalized frame (WM, RM,AM) is
refined, where AM is the set {[[ψ]]M : ψ modal formula }. This is a standard
result and follows from the proof of Theorem 1. By looking at the proof of
Theorem 2, we can see that this implies that the generalized frame (W,R,A)
(as defined in the first paragraph of this proof) is refined. Recall also that we
proved that ϕ is valid in this generalized frame. It follows from Theorem 5 that
the formula ϕ is valid in the Kripke frame (W,R).

Definition 16. Let ϕ be a formula and let M be a generalized model. A point
w ∈ M is n-good for ϕ if there exist a finite tree G, a Kripke model N based on
G such that G � ϕ and (M, w) ∼n (N , v), for some v ∈ G.

Lemma 3. Let ϕ be a formula and let n be a natural number strictly greater than
the rank of ϕ. There exists a formula δn of rank n such that for all generalized
models M and all w ∈ M, we have

M, w � γn iff (M, w) is n-good for ϕ.

Proof. Let γn be the formula given by Lemma 1. We can define δn as the formula
γn ∧ μx.ϕ ∧ �x.

The proof of the next lemma is an easy adaptation of the proof of Lemma 2.
Details are omitted.

Lemma 4. Let ϕ be a shallow formula and let n be a natural number strictly
greater than the rank of ϕ. If δn is the formula given by Lemma 3, then 	Kµ+ϕ

�δn → δn.

Proposition 6. Let ϕ be a shallow formula and let n be a natural number
strictly greater than the rank of ϕ. If δn is the formula given by Lemma 3,
	Kµ μx.�x→ γn.



An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees 173

Proof. By Lemma 4, we know that �δn → δn is provable in Kμ + ϕ. By the
Fixpoint rule, we obtain that μx.�x→ δn is provable in Kμ + ϕ.

Theorem 7. Let ϕ be a shallow formula. The logic Kμ+μx.�x+ϕ is complete
with respect to the class of finite tree defined by ϕ.

Proof. It is easy to see that every formula of the logic Kμ + μx.�x+ ϕ is valid
on all finite trees of the class defined by ϕ. Thus, it is sufficient to show that if
ψ is not provable in Kμ+μx.�x+ϕ, there exists a finite tree G such that G � ϕ
and G � ψ. Let ψ be such a formula. In particular, �Kµ+ϕ μx.�x → ψ. By
Theorem 6, there exist a generalized frame F and generalized model M based
on F such that F � ϕ and M, w � μx.�x→ ϕ, for some w ∈ F .

Let n be a natural number strictly greater than the rank of ϕ and greater or
equal to the rank of ψ. By Theorem 6 and Proposition 6, we get that M, w �
μx.�x → δn. Since M, w � μx.�x, it follows that M, w � δn. Therefore, there
exist a finite tree G, a Kripke model N based on G and v ∈ G such that G � ϕ
and (M, w) ∼n (N , v). Since M, w � ψ, we have N , v � ψ.

6 Graded µ-Calculus

By adapting the definition of rank for the graded μ-formulas, we can use the
same proof to show that the graded μ-calculus together with the axiom μx.�x
is complete with respect to the class of finite trees. We start by recalling the
definition of the graded μ-calculus.

Definition 17. The formulas of the graded μ-calculus are given by

ϕ ::= � | p | x | ϕ ∨ ϕ | ¬ϕ | ♦kϕ | μx.ϕ,
where p ranges over the set Prop of proposition letters, x ranges over the set
V ar of variables and k is a natural number. In μx.ϕ, we require that the variable
x appears only under an even number of negations in ϕ. As before, we assume
that V ar is infinite and a graded modal formula is a formula which does not have
any subformula of the form μx.ϕ.

For all natural numbers k, we let �kϕ be an abbreviation for ¬♦k¬ϕ. More-
over, for all k > 0, we denote by ♦!kϕ the formula ¬♦kϕ ∧ ♦k−1ϕ. We also let
♦!0ϕ be the formula ¬♦0ϕ.

Definition 18. Given a formula ϕ, a Kripke model M = (W,R, V ) and an
assignment τ : V ar → P(W ), we define a subset [[ϕ]]M,τ that is interpreted as
the set of points at which ϕ is true. The subset is defined by induction as before,
with the extra requirement that

[[♦kϕ]]M,τ = {w ∈W : ∃ U ⊆ [[ϕ]]M,τ ∩ {u ∈ W : wRu}
s.t. U has at least k + 1 elements}.

The notions of truth and validity are defined as in Definition 2.
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Definition 19. The axiomatization of the system GKμ consists of the following
axioms and rules

propositional tautologies,
If 	 ϕ→ ψ and 	 ϕ, then 	 ψ (Modus ponens),
If 	 ϕ, then 	 ϕ[p/ψ] (Substitution),
If 	 ϕ, then 	 �0ϕ (Necessitation),
	 ϕ[x/μx.ϕ] → μx.ϕ (Fixpoint rule),
♦k+1p→ ♦kp (axiom G1),
�0(p→ q) → (♦np→ ♦nq) (axiom G2),
♦!0(p ∧ q) → ((♦!kp ∧ ♦!lq) → ♦!k+l(p ∨ q)) (axiom G3),
	 ϕ[x/μx.ϕ] → μx.ϕ (Fixpoint axiom),
If 	 ϕ[x/ψ] → ψ, then 	 μx.ϕ→ ψ (Fixpoint rule),

where x is not a bound variable of ϕ and no free variable of ψ is bound in ϕ.
The logic GK is the smallest set of formulas which contains the propositional

tautologies, the axioms G1, G2 and G3 and is closed under the Substitution, the
Modus ponens and the Necessitation rules.

Theorem 8 ([4]). The logic GK is complete with respect to a single model.
That is, there is a Kripke model M such that a graded modal formula is provable
in GK iff it is true in M.

Theorem 9. The logic GKμ + μx.�0x is complete with respect to the class of
finite trees. That is, a graded μ-formula is provable in GKμ + μx.�0x iff it is
valid in all finite trees.

Proof (sketch). The structure of the proof is the same as the one for the proof of
Theorem 3. So first, we need to define a notion of rank for graded μ-formulas. As
before, we start by defining the closure and the depth of a formula. The closure
of graded formula is defined as in Definition 6, except that we replace ♦ by ♦k.
The depth of a graded μ-formula is defined by induction as follows

d(�) = d(p) = d(x) = 0, d(ϕ ∨ ψ) = max{d(ϕ), d(ψ)},
d(¬ϕ) = d(ϕ), d(♦kϕ) = d(ϕ) + k + 1,
d(μx.ϕ) = d(ϕ) + 1.

Finally, we can define the rank of a graded μ-formula as in Definition 8.
The second step is to prove completeness of GKμ with respect to the class of

generalized frames. Using Theorem 8, it is possible to show this by using a proof
that is completely similar to the proof of Theorem 2. We do not give details.

We can do so easily this step because we gave a proof of Theorem 2 which
uses directly the completeness result for the modal case, instead of adapting the
canonical model construction for the modal case to the μ-calculus. Indeed, the
canonical model construction for graded modal logic is rather difficult and it
would not be immediate to adapt it when fixpoints are added.

The last step is to show the completeness of GKμ + μx.�0x with respect to
the class of finite trees. This is done by extending all the notions and results of
section 4 to the setting of the graded μ-calculus. It is immediate how to proceed.
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7 Further Work

We believe that this method could be adapted to other cases. In the last section,
we considered the fixpoint version of graded modal logic. Graded modal logic is
an extension of modal logic with some sort of counting. We could look at fixpoint
versions of modal logic extended with richer form of counting. An example would
be Presburger modal logic (see, e.g., [2]). Finally, we would like to mention that
Stéphane Demri (p.c.) raised the question to which class of coalgebras this proof
could be adapted.
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1. Bojańczyk, M.: Effective characterizations of tree logics. In: PODS 2008: Pro-
ceedings of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pp. 53–66. ACM, New York (2008)

2. Demri, S., Lugiez, D.: Presburger modal logic is only PSPACE-complete. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 541–556.
Springer, Heidelberg (2006)

3. Doets, K.: Monadic Π1
1 -theories of Π1

1 -properties. Notre Dame Journal of Formal
Logic 30(2) (1989)

4. Fattorosi-Barnaba, M., Cerrato, C.: Graded modalities I. Studia Logica, 47 (1988)
5. Fischer, M., Ladner, R.: Propositional dynamic logic of regular programs. Journal

of Computer and System Sciences 18(2) (1979)
6. Gheerbrant, A., ten Cate, B.: Complete axiomatizations of MSO, FO(TC1) and

FO(LFP1) on finite trees. In: LFCS (2009)
7. Kozen, D.: Results on the propositional μ-calculus. In: Lee, I., Smolka, S.A. (eds.)

CONCUR 1995. LNCS, vol. 962, Springer, Heidelberg (1995)
8. Libkin, L.: Logics for unranked trees: An overview. Logical Methods in Computer

Science 2(3) (2006)
9. de Rijke, M., Blackburn, P., Venema, Y.: Modal Logic. Cambridge University Press

(1991)
10. ten Cate, B.: Model theory for extended modal languages. PhD thesis, University

of Amsterdam, ILLC Dissertation Series DS-2005-01 (2005)
11. Walukiewicz, I.: A note on the completeness of Kozen’s axiomatization of the

propositional μ-calculus. The Bulletin of Symbolic Logic 2(3) (1996)


	An Easy Completeness Proof for the Modal μ-Calculus on Finite Trees
	Syntax, Semantics and Axiomatization
	Rank of a Formula
	Completeness for Generalized Models
	Completeness for Finite Tree Models
	Adding Shallow Axioms to $K^{\mu} + {\mu}x.{\box}x$
	Graded $\mu$-Calculus
	Further Work
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




