
Truly Efficient String Oblivious Transfer Using
Resettable Tamper-Proof Tokens

Vladimir Kolesnikov

Alcatel-Lucent Bell Laboratories, Murray Hill, NJ 07974, USA
kolesnikov@research.bell-labs.com

Abstract. SFE requires expensive public key operations for each input
bit of the function. This cost can be avoided by using tamper-proof hard-
ware. However, all known efficient techniques require the hardware to
have long-term secure storage and to be resistant to reset or duplication
attacks. This is due to the intrinsic use of counters or erasures. Known
techniques that use resettable tokens rely on expensive primitives, such
as generic concurrent ZK, and are out of reach of practice.

We propose a truly efficient String Oblivious Transfer (OT) technique
relying on resettable (actually, stateless) tamper-proof token. Our proto-
cols require between 6 and 27 symmetric key operations, depending on
the model. Our OT is secure against covert sender and malicious receiver,
and is sequentially composable.

If the token is semi-honest (e.g. if it is provided by a trusted entity,
but adversarily initialized), then our protocol is secure against malicious
adversaries in concurrent execution setting.

Only one party is required to provide the token, which makes it ap-
propriate for typical asymmetric client-server scenarios (banking, TV,
etc.)

1 Introduction

We propose efficiency improvements of two-party Secure Function Evaluation
(SFE). We take advantage of tamper-proof hardware issued by one of the par-
ticipants of the computation. We restrict ourselves to stateless (thus resettable)
tokens to avoid the cost of adding long-term secure storage and to protect against
a class of physical attacks on the hardware.

Two-party general (SFE) allows two parties to evaluate any function on their
respective inputs x and y, while maintaining privacy of both x and y. SFE is
(justifiably) a subject of an immense amount of research, e.g. [28,29,23]. Efficient
SFE algorithms enable a variety of electronic transactions, previously impossible
due to mutual mistrust of participants. Examples include auctions [27,8,12], con-
tract signing [11], set intersection [18], etc. As computation and communication
resources have increased, SFE of many useful functions has become practical for
common use.

Still, SFE of most of today’s functions of interest is either completely out of
reach of practicality, or carries costs sufficient to deter would-be adopters, who

D. Micciancio (Ed.): TCC 2010, LNCS 5978, pp. 327–342, 2010.
c Springer-Verlag Berlin Heidelberg 2010

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-11799-2_36

http://dx.doi.org/10.1007/978-3-642-11799-2_36


328 V. Kolesnikov

instead choose stronger trust models, entice users to give up their privacy with
incentives, or use similar crypto-workarounds. We believe that truly practical
efficiency is required for SFE to see more use in real-life applications.

To achieve this, in addition to improving protocols in the standard model,
it is useful to “give ourselves” some help in the form of less demanding (yet
acceptable) security properties, such as the recently proposed covert adversaries
model [3]. When it fits the setting, we could also rely on additional assumptions
that the world has been long using, such as simple tamper-proof (or tamper-
resistant) tokens. We note that token-supported protocols received a lot of at-
tention recently, e.g., [21,7, 18, 14, 9, 10, 15]. To allow cheaper tokens and higher
confidence in the security of the system, it is desired to minimize the assumptions
on the hardware, while still reaping the performance benefit.

A weaker hardware model that recently received a lot of attention, e.g. [7,
17, 15], is that of resettable token. Here, the adversary, e.g., by interrupting
power supply or applying highly targeted laser or electro-magnetic radiation, is
able to manipulate the token and reset its internal variables (e.g., a counter)
to the initial state1. This realistic capability trivially breaks most of currently
known protocols taking advantage of secure tokens. Similar effect is achieved if
an attacker is able to obtain a clone of the card, e.g. by insider attacks during
manufacturing process, etc. From another perspective, it may be convenient to
allow legitimate clone cards to allow the user operate several instances of itself
independently. For example, a person may sign up for a telephone, wireless, and
TV services from the same provider. It may be convenient to simply provide
him with several identical tokens, which he can use interchangeably in all of his
devices. It is easy to see that such deployment clearly requires resettable tokens.

We consider even weaker stateless tokens. This gives an important advantage
of avoiding the manufacturing cost of long-term secure storage.

Our setting, goals and approach. We consider two-party SFE aided by state-
less tamper-proof tokens. In fact, our protocols work in the very important
client-server setting, where only one party has the capability to issue tokens.
In practice, this occurs in TV, phone, cellular and internet service provision,
banking, etc. We aim to enable efficient computation of a variety of functions on
moderate-size inputs. On the client side, for example, inputs could be viewing
preferences, browsing history, etc. Server’s inputs may include content or other
digital rights to be transferred to the client. We stress that our solutions are
general and can be used to compute any function.

We note the inherently asymmetric trust model in the client-server setting.
Servers are usually established businesses who are likely unwilling to cheat, espe-
cially if there is a chance of being caught. The risk of loss of business and public
embarrassment is a strong deterrent. Therefore, it is natural and sufficient to
model servers as covert adversaries. Also, servers are capable of issuing tamper-
proof tokens, and, in many cases, already routinely do. Clients, on the other

1 Not all is necessarily lost with this adversarial capability. For example, it is much
harder to reprogram the token, simply by resetting certain bits, to, e.g., output its
keys. Thus the resettable token model appears reasonable.



Truly Efficient String Oblivious Transfer 329

hand, have much less credibility, and may be more willing to attempt interfering
with the protocol and the provided token. Therefore, it is appropriate to view
them as malicious adversaries, and to aim to reduce the trust assumptions on
the token.

Oblivious Transfer (OT) is often a bottleneck in SFE, due to the high cost of
the required public key operations. Our main contribution is, we believe, the first
truly efficient protocol to use a resettable token to replace public key operations
in OT (and SFE) with symmetric primitives.

The hardware assumption: costs and security comparison with
number-theoretic OT. At first, it may seem that the cost of deployment of
tokens is greater than that of using standard OT based on public key primitives.
We argue that this is often not the case. As noted above, tamper-resistant tokens
are often already deployed in the form of cell phones’ SIM cards, TV cable smart
cards, etc. In these important scenarios, tokens are “free”. Otherwise, they cost
from $2 in retail (e.g., [1]). At the same time, using standard OT may neces-
sitate much higher costs in terms of increased CPU requirements, much slower
processing, and decreased battery life (in mobile devices). Further, evaluating
garbled circuits (our main application) involves transferring them (megabytes or
gigabytes of data, especially in the malicious model) to the client. In large-scale
deployment of SFE (e.g., by banks and service providers), these communication
costs cannot be afforded; fortunately, they can be avoided by generating circuits
from a seed by the server-issued token [20]. This solution requires reliance on
tamper-proof/tamper-resistant tokens, forces their use, fits well with our setting,
and further justifies it.

One may also question the hardware assumption and rightfully presume that a
sufficiently strong attacker can always break into the token. We argue that in many
applications we envision, the cost of the break far exceeds the gain (e.g., free cable
TV for one user). Therefore, the barrier raised by even weak tamper resistance is
high enough for typical applications, and constitutes a reasonable assumption.

1.1 Our Contributions and Outline of the Work

We consider two-party SFE, where one party (Sender S) is able to issue a token
T to the receiver R. T is assumed to be tamper-proof, but resettable. Our main
contribution is a new efficient string OT protocol in the covert adversaries model
[3], which takes advantage of T . To our knowledge, ours is the first truly efficient
protocol that gets rid of public key operations in this setting. Our protocol
requires a total of 6 symmetric key operations if the token is semi-honest and S
and R are malicious, and 27 such operations in the covert adversaries model (with
deterrence ε = 1/2). This immediately leads to corresponding improvements in
2-party SFE.

We start with the overview of related work in Sect. 2 and preliminaries in
Sect. 3. For clarity of presentation, we first present the semi-honest variant of
the OT scheme in Sect. 4. We then show how to achieve security against covert
sender and fully malicious receiver in Sect. 4.1. In Sect. 4.2, we discuss aspects



330 V. Kolesnikov

of simultaneous execution and sequential composition, and show security in this
case.

Under an additional reasonable assumption that the tokens are trusted to run
the specified code (e.g. when standard tokens are provided by a trusted manu-
facturer), our protocol is composable concurrently and secure against malicious
S and R (Sect. 4.3).

1.2 Main Idea of Our Approach

Our main tool is Strong Pseudorandom Permutation Generators (SPRPG). We
capitalize on the observation that it is difficult to find a collision in a SPRPG F
under independent secret keys k0, k1. At the same time, a value in the range of
F does not reveal which key was used to arrive at this value (via the evaluation
of F ). That is, R can know a preimage of the (random to S) value under (only
one) key of R’s choice. This is naturally used to construct efficient OT protocols.
We use T to securely store the keys and provide R the evaluation interface to F
(but not F−1).

We stress that the use of SPRPG (vs PRPG) does not introduce additional
assumptions, and has no performance impact (Sect. 3.2).

We give additional intuition for semi-honest and covert setting protocols in
Sect. 4 and 4.1, before presenting corresponding protocols.

2 Related Work

There is a massive body of work on SFE, and, in particular, two-party SFE,
of which most relevant to this work is Yao’s garbled circuit [28,29,23] and the
techniques of its implementation in the malicious setting. The complete solutions
are excellently presented in [24,3,16]. We work in the recently introduced security
model of covert adversaries [3], which we find to help significantly in design of
efficient protocols. SFE solutions of [3,16] are presented in this model. Our work
is an improvement of an important building block used by above (and many
other) solutions.

There has been a recent surge of interest in SFE supported by tamper-proof
tokens [21, 7, 18, 14, 10, 15], and, specifically, resettable tokens [7, 15]. Our work
is different from the above, as follows.

Firstly, of the above, only [7,15] consider resettable tokens. Work of Katz [21]
was the first to formalize tamper-proof token model, and show sufficiency for Uni-
versally Composable (UC) security. This is mainly a feasibility and definitional
result. Chandran et al. [7] extended the results of Katz, considered resettable
tokens, and constructed UC-secure protocols. Goyal and Sahai [17] constructed
protocols secure against resettable adversaries (and not just tokens). Very re-
cently, Goyal et al. [15] considered the general question of basing cryptography
on tamper-proof tokens, under minimal computational assumptions. As one of
their results, they showed that stateless tokens and one-way functions are suffi-
cient for UC-secure computation. Damg̊ard et al. [10] consider the setting where



Truly Efficient String Oblivious Transfer 331

the tamper-proof token may leak a limited amount of information back to its
issuer. They show how to achieve UC-secure computation in this setting. We
remark that the protocols of [21,7, 10, 17, 15] achieve stronger UC security. Our
protocols either have weaker security guarantee, or rely on a semi-honest token.
In exchange, we use only a few (6 to 27) symmetric key operations and thus offer
truly practical performance.

Hazay and Lindell [18] give a very practical protocol which takes advantage
of secure tokens (standard smart cards). As compared to our work, they solve a
specific problem, using a much stronger assumption (non-resettable semi-honest
smart card) than we do.

Goldwasser et al. [14] consider one-time (or, generally, k-time) programs and
proofs, and rely on tamper-proof tokens to achieve it. Their token security model
is different from ours – it is non-resettable, but it is assumed that data that is ever
accessed by the token’s program may be leaked to the adversary. This assumption
makes impossible the use of pseudorandomness in their construction, and all the
random values (i.e. wire keys used by garbled circuit) ever used by the program
need to be preloaded explicitly. While opening a significant new application of
secure hardware, these tokens can only be used for a predetermined number of
executions. The most important difference, however, is that we achieve security
with resettable token.

3 Preliminaries

3.1 Notation and Security Model

We will use Pseudorandom Permutation Generators (PRPG) and Strong PRPG
(SPRPG). While we don’t need SPRPG properties in all uses of PRPG, for
simplicity we refer to all of them as SPRPG, and denote by F . We denote the
domain and range of F by D, and the key space of F by K. For simplicity, we
set K = D = {0, 1}n, where n is the security parameter. We denote OT Sender
by S, OT Receiver by R and the token by T . In our protocols, R will be testing
the correctness of the actions of S and T . Objects associated with testing would
often have subscript t, for example, Dt is the subdomain of D, reserved for test
queries. By “OT” we mean “string OT”.

We prove security against covert adversaries. Aumann and Lindell [3] propose
several definitions of security in this setting, with various guarantees. Our pro-
tocols are secure in their strongest model (strong explicit cheat formulation).
Informally, this guarantees that covert adversary does not learn anything about
honest party’s input if he is caught.

We stress that this notion of security requires full simulation in the ideal
world (where cheating attempts are modeled by a designated query). Further,
this notion is modularly sequentially composable [3]. In particular, this means
that our OT can be composed, e.g., with a garbled circuit protocol, and result
in a corresponding SFE protocol in the covert model.

For simplicity of presentation, we often omit the introduction of the deterrence
parameter ε (probability of being caught when cheating) in our calculation. Our



332 V. Kolesnikov

constructions are given w.r.t. ε = 1/2, but are readily generalized to ε polyno-
mially close to 1.

We assume that tokens cannot be internally observed or tampered with; we
only allow R to reset the token at will. We leave it as an interesting direction to
investigate efficient security in presence of both resets and tampering (perhaps
using the techniques of Gennaro et al. [13]).

3.2 Strong Pseudorandom Permutation Generators (SPRPG)

We assume reader’s familiarity with PRPG. SPRPG (sometimes also referred to
as Super PRPG) is a natural extension of the notion of PRPG which considers
efficiently invertible permutations. Informally, in terms of security, the difference
between the two notions is that while PRPG allows the adversary to query the
“forward evaluation” oracle, SPRPG allows to query both “forward evaluation”
and “inversion” oracles. Luby and Rackoff [25] showed how to construct SPRPG
from PRFG. Therefore, our use of SPRPG does not require an additional as-
sumption. Further, invertibility has been a design requirement of almost all block
ciphers, notably, of AES. It appears that the trend will continue in the future as
well. Therefore, in practical terms, our reliance on SPRPG does not incur any
performance penalty. We envision instantiation of SPRPG in our constructions
with AES.

We note thatmost of cryptographicprotocols literature relies onPRFG/PRPG,
and largely ignores SPRPG. The novelty of our approach is in part in using tools
just outside of standard “crypto toolbox”. Use of invertible PRPG seems to be
promising in tamper-proof token designs.

3.3 Oblivious Transfer

Garbled Circuit (GC), excellently presented in [23], is the standard and the most
efficient method of two-party SFE of boolean circuits. An important (and often
the most computationally expensive) step of GC and other SFE techniques is the
oblivious transfer (OT) of a secret (one of the two held by the sender), depending
on the choice of the receiver.

The 1-out-of-2 OT is a two-party protocol. The sender S has two secrets s0, s1,
and the receiver R has an selection bit i ∈ {0, 1}. Upon completion, R learns si,
but nothing about s1−i, and S learns nothing about i. OT is a widely studied
primitive in the standard model [5, 2], with improved implementations in the
Random Oracle model [26,6].

OT Using Tamper-Proof Hardware. While existing OT constructions are
simple, they are not very efficient due to use of several public key operations
for each OT. If parties possess tamper-proof hardware tokens, such as smart
cards, the use of public key operations can be avoided as follows (shown in the
semi-honest model).

Suppose, S creates and gives R the following token T . Equipped with a non-
resettable counter (initially set to 0), and seeded with the secret key k chosen



Truly Efficient String Oblivious Transfer 333

by S, T has the following interface. Let F be a PRPG. On input i, where
i ∈ {0, 1}, T sets counter = counter + 2 and outputs Fk(counter + i − 2).
Now, to execute the j-th instance of OT, the sender sends to the receiver
(Fk(counterj) ⊕ sj

0, Fk(counterj + 1) ⊕ sj
1), where counterj is the value of the

counter used for evaluation of j-th OT. Receiver obtains Fk(counterj + i) by
calling T with argument i, and obtains sj

i . Because of the properties of PRPG
and since the token guarantees that Fk will not be evaluated on both counterj

and counterj + 1, the receiver will be able to obtain only one of s0, s1. Further,
S does not learn the receiver’s input i, since nothing is sent to S.

This efficient protocol can be naturally modified to withstand covert adver-
saries, but it (and other natural protocols) fails trivially if T is reset.

4 OT with Resettable Tamper-Proof Cards

We build our presentation incrementally. We find it instructive to first present
the protocol for a hybrid semi-honest model, where the only allowed malicious
behavior is for R to arbitrarily query the token T , and to reset T to the state
T was in when it was received by R. (This additional power is necessary to
exclude trivial solutions secure in the semi-honest model, such as relying on the
semi-honest parties to not reset the token.) We show how to efficiently handle
malicious behavior in Sect. 4.1.

In our construction, we use Strong PRPG (SPRPG), i.e. a PRPG that allows
efficient inversion. As discussed in Sect. 3.2, this does not constitute an addi-
tional assumption and causes no performance penalty (we envision using AES
as SPRPG).

The main idea of our construction is to limit the functionality of the token
to evaluate the SPRPG F in the forward direction only, to keep no state, and to
have S load two random SPRPG keys on the token. Then, the simple but crucial
observation is that it is infeasible for the token receiver to find two preimages
(under the two keys) of any element in the range D of F . (In fact at least one
of the preimages will look random to him.) At the same time, he can trivially
generate a random element on the range with the preimage under either of the
keys. The token creator S, who knows both keys, can invert F and compute both
preimages. If he uses them to encrypt the respective input secrets, the receiver
can recover the secret of his choice. We discuss the intuition for protection against
malicious actions before presenting our main protocol in Sect. 4.1.

Construction 1. (OT, stateless token, augmented semi-honest model)

1. Initialization. The token T is created by sender S, seeded with keys k0, k1,
randomly chosen by S, and given to receiver R. T answers any number of
queries of the form Q(i, x) = Fki(x).

2. OT Protocol execution. S has inputs s0, s1 ∈ D. R has input i ∈ {0, 1}.
(a) R chooses x ∈R D, and queries the token v = Q(i, x) = Fki(x). R sends

v to S.



334 V. Kolesnikov

(b) S computes encryption keys ek0 = F−1
k0

(v), and ek1 = F−1
k1

(v). He then
sends (e0, e1) = (Fek0 (s0), Fek1 (s1)) to R.

(c) R computes and outputs si = F−1
x (ei).

Observation 1. We need to be careful with the choice of the encryption scheme
used to encrypt Sender’s secrets s0, s1, since R has access to the forward eval-
uation oracle Fki(x). For example, the random pad would not work here, since
this would allow R to check the unknown secret (also transferred, but masked)
for equality to constants of his choice. Jumping ahead, we note that to efficiently
handle malicious attacks (e.g. R reusing x for different executions) and multiple
executions of the protocol, we need a stronger primitive, such as semantically
secure encryption (which, e.g., can be implemented simply by allocating some of
the PRPG domain for randomness used for encryption).

Theorem 1. Assume F is a SPRPG. Then the protocol of Construction 1 eval-
uates the String OT functionality securely in the semi-honest model, where R
is additionally allowed to arbitrarily query and reset the token T to its original
state (i.e. as received by R).

Proof (Sketch). Correctness is straightforward. To prove security, we first show
the simulator SimS which simulates the view of the semi-honest S. It is easy to
see that all S sees is a uniformly distributed element in D, which is trivial to
simulate.

We now show the simulator SimR of the view of semi-honest R, who ad-
ditionally has oracle access to T . Given input i and output s, SimS outputs
(i, x′, (e′0, e′1)), where x′ ∈R D, e′i = Fx′(s), and e′1−i ∈R D. It is easy to see that
the output of SimS is computationally indistinguishable from the real execution.
Indeed, the only “fake” part is e′1−i. In the real execution, e1−i = FF−1

k1−i

(s1−i). A

hybrid argument shows that existence of a distinguisher implies a distinguisher
for F . ��

4.1 Protocols for Malicious (Covert) Setting

The most practical solution to move to malicious model would be to use to-
kens manufactured by a third party, which are trusted to run the specified
functionality (loading the keys, and answering queries as above), and be non-
reprogrammable. In this semi-honest token case, Construction 1 works, with the
small modification of using semantically secure encryption to transfer secrets in
Step 2b (see also Observation 1). In fact, the resulting protocol is concurrently
secure (see Sect. 4.3).

However, it is highly desirable to avoid this trust assumption. With the ex-
ception of Sect. 4.3, we consider tokens running arbitrary code.

Intuition. The main avenue of attack for S and T is to try to combine their
views. This is done by T incorporating a side-channel in its answers to R (recall,
Construction 1 provides no channel from S to T ). We note that R never knows
when this attack occurs, so he must continuously check on T . We handle this by



Truly Efficient String Oblivious Transfer 335

a strong variant of a cut-and-choose technique, which we introduce in this work.
The main avenue of attack for R is to adversarily choose his queries to T . We
handle this by using semantic encryption to encrypt secrets being passed back
(see Observation 1).

We start with Construction 1, and extend it as follows. First, we embed an
exponentially large number of keys in the token, by pseudorandomly generating
them. This allows R to test keys of his choice at any time in the lifetime of T , a
what we call continuous cut-and-choose. To achieve this, the keys k0, k1, as used
in Construction 1, will be replaced with derived keys Fk0(y), Fk1 (y), where y is
chosen by R. The token query function Q would now take an extra argument
and return Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x)). To test T ’s response, R will ask S
to reveal Fk0(y), Fk1(y). Of course this y cannot be used for “live” OT transfer.
To avoid S storing large history, R and S agree, after the token has been received
by R, on the test domain Dt ⊂ D. Now, S will only reveal keys for test queries
yt ∈ Dt, and will only use y ∈ D \ Dt for “live” OT. Of course, Dt must be
unpredictable to T . This is easily achieved by R defining it pseudorandomly, e.g.
by R choosing kD and setting Dt = {FkD (x)|x ∈ D, x is even}.

Further, we unconditionally hide the input i of R from T by having R choose
a random bit b and flipping i iff b = 1. S is notified of b to allow for the
corresponding flip of his inputs s0, s1.

The above changes are sufficient. After presenting the protocol, we give addi-
tional intuition of why security holds, and then state and prove the corresponding
theorem. Our construction is for deterrence factor ε = 1/2, since the probability
of catching the attempted cheat is 1/2. This probability can be naturally mod-
ified for any ε polynomially close to 1, simply by performing more test queries.
Namely, k test queries provide for ε = 1 − 1/k.

Let E = (Gen, Enc, Dec) be a CPA-secure encryption scheme, such that every
element of the ciphertext domain is uniquely decrypted. Such schemes can be
easily constructed from a SPRPG.

Construction 2. (OT using resettable tokens, covert adversaries model, deter-
rence ε = 1/2)

1. Initialization. Let Enc be an encryption scheme as described above. The to-
ken T is created by sender S, seeded with keys k0, k1, randomly chosen by
S, and given to receiver R. T answers any number of queries of the form
Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x)). R chooses a random string kD ∈R {0, 1}n

and sends to S. Parties set Dt = {FkD (x)|x ∈ D, x is even}.
2. OT Protocol execution. S has inputs s0, s1 ∈ D.R has input i ∈ {0, 1}.

(a) R chooses yt ∈R Dt and sends to S.
(b) S checks that yt ∈ Dt and if so, responds with k0

t = Fk0(yt) and k1
t =

Fk1(yt). Otherwise, S outputs corruptedR and halts.
(c) R chooses b ∈R {0, 1}, x, xt ∈R D, y ∈R D \ Dt. Then R queries T , in

random order
(v0, v1) = Q(y, x) = (FFk0 (y)(x), FFk1 (y)(x))
(c0, c1) = Q(yt, xt) = (FFk0 (yt)(xt), FFk1 (yt)(xt))

R checks whether the check values c0, c1 match the evaluation of F based



336 V. Kolesnikov

on keys received from S. If so, R sends b, y, vi⊕b to S. Otherwise, R
outputs corruptedS and halts.

(d) S checks that y �∈ Dt. If not, S outputs corruptedR and halts. If so, S
computes encryption keys ek0 = F−1

Fk0 (y)(vi⊕b), and ek1 = F−1
Fk1 (y)(vi⊕b),

and sends (e0, e1) = (Encek0 (s0⊕b), Encek1 (s1⊕b)) to R.
(e) R computes and outputs si = Decx(ei+b).

Note, only R’s (selective) check is related to catching the possible covert cheating
by S and T . The protocol is secure against malicious R.

Intuition for security. Observe that T only sees two Q queries with easily
simulatable random-looking arguments. While S receives one message from T ,
T does not know which of the two queries it sees is the test one, and which is
safe to attack. If T guesses the test query, then it can pass information with
the other query, and S learns R’s input and can set R’s output. However, if
T guesses incorrectly and attempts to pass information in the test query, he is
caught w.h.p., and without revealing R’s input. (This is because S “fixes” the
test SPRPs by revealing their keys, and T must answer the query according to
the fixed keys not to be caught.) Since the two queries are indistinguishable for
T , the deterrence factor is ε = 1/2. We stress that T /S cannot base their decision
to cheat on R’s input, since they commit to this decision (and are checked by
R) before R sends any input-dependent messages.

If T behaves semi-honestly, S learns no information from seeing vi⊕b, since this
value could have been generated with either of the k0, k1 since F is a permutation.
Other than the above attack, S and T are limited to oblivious input substitution.

Security against malicious R’s attempts to manipulate his queries follows from
the use of semantically secure scheme in Step 2d. Now even if S sends back
multiple encryptions under the same key (e.g., when OT is composed), R will
not be able to relate them without knowing the key. As before, T keeps no state,
and thus resetting T does not help.

Theorem 2. Assume that F is a SPRPG. Then Construction 2 evaluates the
String OT function securely against malicious receiver R and covert sender S
with deterrence factor ε = 1/2. The security against S is in the strongest covert
setting (strong explicit cheat formulation).

Proof (Sketch). We treat each corruption case separately. We give detailed de-
scription of the simulator of the protocol of Construction 2 against covert ad-
versaries.

The OT Sender S is corrupted. We construct an ideal-model simulator SimS of
the view of S that works with a trusted party computing the OT functionality.
Let AS and AT be (arbitrary polytime) adversaries controlling S and T respec-
tively. (We consider AS and AT in full generality. In particular, in contrast with,
e.g., [18], we do not assume that AS initializes AT , and thus do not allow SimS

to intercept the corresponding initialization message sent by AS . Further, AS

may not even know the code of AT .) In its execution, SimS interacts with AS

and AT in a black-box manner. We model the physical separation of S and T



Truly Efficient String Oblivious Transfer 337

by the fact that AS and AT cannot exchange messages with each other once
protocol execution begins.

1. SimS will determine whether AT wants to cheat. For this, SimS first obtains
both opening keys from AS , by rewinding AS and setting up different test
domains. More specifically:

(a) SimS chooses two random strings k′
D and k′′

D, which define two testing
domains D′

t, D
′′
t ⊂ D. SimS chooses b′ ∈R {0, 1}, x′, y′, x′

t,
y′

t ∈R D, such that y′ ∈ D′′
t \ D′

t and y′
t ∈ D′

t \ D′′
t .

(b) SimS gives k′′
D, and then y′ to AS , and receives two keys from AS .

(c) SimS rewinds AS , gives him k′
D, then y′

t, and receives another two keys
from AS .

2. SimS calls AT with queries (v′0, v
′
1) = Q(y′, x′), (c′0, c

′
1) = Q(y′

t, x
′
t), in ran-

dom order. (Recall, SimS has obtained from AS keys to verify both of AT ’s
responses.)
(a) If neither of AT ’s two responses are valid (where by validity we mean

a response that would not cause R to output corruptedS), SimS sends
corruptedS to the trusted party, simulates the honest R aborting due to
detected cheating, and outputs whatever AS outputs. Since so far SimS

only sent y′
t to AS , it is easy to see that the simulation is statistical.

(b) If AT sends exactly one valid response, SimS sends cheatS to the trusted
party.
i. If the trusted party replies with corruptedS , then SimS rewinds AS ,

and hands it the query for which AT ’s invalid response could legally
be the test query. SimS then simulates honest R aborting due to
detecting cheating, and outputs whatever AS outputs.

ii. If the trusted party replies with undetectedS and the honest R’s
input i, then SimS rewinds AS , and hands it the query for which
AT ’s valid response could legally be the test query. In the remainder
of execution, SimS plays honest R with input i. At the conclusion,
SimS outputs whatever AS outputs.

(c) If both of AS ’ responses are valid, then we know that AT is not pass-
ing any information to S. Then SimS proceeds with the simulation by
playing honest R on a randomly chosen input i ∈R {0, 1}. That is, SimS

sends b′, y′, v′i⊕b′ to AS (recall, y′ �∈ D′
t, so this message looks proper to

AS). Once SimS receives the final message from AS , using the extracted
keys, SimS correctly recovers both of AS ’s inputs, and sends them to
the trusted party. SimS outputs whatever AS outputs. This simulation
is also statistical.

This completes the description of SimS. It is not hard to see that SimS simulates
the ideal view of covert S with the (ideal model) deterrent factor ε = 1/2. In par-
ticular, ε is equal to 1/2, since the probability of the honest R catching cheating
in the real execution is 1/2. The simulation is computational since, especially in



338 V. Kolesnikov

a batched execution, an unbounded T can compute extra information on the test
domain, and have better than 1/2 guess of which one is the test query.

The OT Receiver R is corrupted. We construct an ideal-model simulator SimR

that works with a trusted party computing the OT functionality. Let AR be the
adversary controlling R. In its execution, SimR plays honest S and T in their
interaction with AR in a black-box manner. SimR does not need to rewind AR,
since AR’s input can be extracted from the messages sent to S and T (in real
execution, S and T don’t communicate, so the privacy of R’s input is preserved).

1. SimR runs AR and acts as honest S and T until the computation of e0, e1
in Step 2d of Construction 2. (SimR honestly answers as many queries to T
as AR requests.) At this point, SimR needs to provide the right answer to
AR in its message of Step 2d.

2. If v′ output by AR in simulation of Step 2c was computed as v′i by SimR

while answering a query Q(y′, x′) to T , then SimR can compute the input
i used by AR. SimR sets i = i′ ⊕ b′ (where b′ was sent by AR in Step 2c),
calls the trusted party with input i, and receives output s. SimR randomly
chooses encryption key r, computes random encryptions ei⊕b′ = Encx′(s),
ei⊕b′⊕1 = Encr(0) and sends e0, e1 to AR. SimR outputs whatever AR

outputs.
3. If v′ was never computed by SimR in his simulation of T , AR w.h.p. cannot

know its preimage. SimR chooses two random encryptions of 0 under random
keys, sends to AR, and outputs whatever AR outputs. ��

4.2 Discussion: Protocol Composition and Practical Considerations

In this section, we discuss the issues that arise in OT protocol composition and
its use in SFE.

Reuse of the token. We have argued that in many settings (especially in
established client-server commercial relationships, such as TV and banking) it
is realistic for a player (e.g., a service provider) to provide a token to the other
party. At the same time, the same token must be sent only once, and then reused
for multiple invocation of the protocol, for it to be cost-effective. In case of
SFE, “multiple invocation” usually means sequential execution of simultaneous
executions of OT. This is easy to achieve with our protocol, as discussed below.

Simultaneous OT. As in [3], we define simultaneous OT functionality naturally
as

((s1
0, s

1
1), .., (s

m
0 , sm

1 ), (i1, .., im)) #→ (⊥, (si1 , .., sim)) (1)

It is easy to see that natural self-composition of Construction 2 works. Further,
efficiency may be improved, as compared to independent parallel execution, by
choosing y and yt once for the entire simultaneous OT execution (This saves
about a half of computation by both S and T since Fki(y) and Fki(yt) can be
precomputed and reused.) The resulting protocol is a secure implementation of



Truly Efficient String Oblivious Transfer 339

simultaneous OT secure against covert adversaries. The proof is almost identical
to the proof of Theorem 2.

Sequential composition. Even though the token is resettable, it may still
maintain state across executions. That means that if the token successfully
cheats, it may be able to help S compute R’s input in a previous OT execu-
tion. Furthermore, since T in this case is able to transfer a whole element of
D to S, several bit inputs of R may be compromised. In Section 4.2, we argue
that the compromise is limited. However, to simplify the claims and arguments,
we “give up everything” in case of successful cheat, and allow the adversary
to learn the entire previous input of R. The following discussion of sequential
composition and the reuse of the token are with respect to this ideal model.

Even with the above simplification, it is not immediately clear how to prove
sequential composition, since the simulator needs to rewind all the way to the
initialization phase to obtain the second opening key. Therefore, an easy way to
achieve sequential composition is to amend the protocol to run the test domain
selection for each (simultaneous) OT execution. Clearly, this would create a
problem if the keys k0, k1 are reused and R chooses a different test domain. To
prevent this, we instead derive k0, k1 for each execution. This can be done, e.g.
by using kj

0 = Fk0(j), k
j
1 = Fk1 (j) in the j-th batch in place of k0, k1. Of course,

S would need to keep track of the counter, and T would then take an additional
input j. It is easy to see that sequential composition holds in this case, since the
simulator now only needs to rewind to the beginning of the current execution.
It is also clear that T holds no state, and as such is still resettable.

Practical implications andconsiderations. Clearly, the ability of the token to
leak a few bits of information (at the risk of being caught) on a previous execution is
undesirable. This means, for example, that S and R cannot have both “high-cheat-
consequence” and “low-cheat-consequence” transactions, since T could conceiv-
ably help leak high-consequence inputs in low-consequence transactions.

Still, we believe that our protocols are applicable in the majority of practical
situations where the covert model is applicable, namely, where the value of the
privacy of the inputs is not worth the risk associated with being caught. This
is the case especially often in the settings we consider, i.e. where it is cost-
effective for one party to provide a token to the other. Usually, this is a Client-
Server setting, with a long-term association of parties. Examples include Client’s
relationships with Banks, Internet, TV, phone and cellular service providers. In
these settings, there is need in protecting client’s input such as browsing history,
TV channel preferences, list of movies watched, and in general, the profile of
user’s habits and preferences. While Service Providers are interested in obtaining
this information, the potential loss of business far outweighs the benefit.

Amount of the leak. Even though, for the ease of analysis, we generously
“gave up” R’s entire input in case of a successful cheat, this is clearly not the
case in real execution. The amount of data transferred from T to S in this case
is roughly the security parameter, say 128 bits. Recall, T never learns R’s input,
so it can only help S by transferring (compressed) parts of the history of queries



340 V. Kolesnikov

T saw. Observe that T must compress random values provided by R, since this
is what the query history consists of from the point of view of S. Therefore, S
must spend at least “a few” bits to reasonably let S match the information and
recover a bit of R’s input with some degree of confidence. Therefore, with all
on the attacker’s side, S can potentially recover ≈ 20 input bits of R per each
cheating attempt.

Leak reduction. Our protocol allows querying T out-of-synch with protocol
executions. Further, T can be queried by R arbitrarily, with only a small fraction
of these queries being used for the actual protocol execution. Thus, essentially
for free, R can overwhelm T with queries (which are not seen by S and may not
be even tested by R), so that T is likely to send information on unused queries,
and thus effectively would be able to transfer little beyond a single bit.

Precomputation and OT extension. It is easy to see that much of the work
of R can be precomputed. Further, as shown by Beaver [4], almost all of OT
computation can be shifted to a setup phase. Additionally, the efficient technique
of Ishai at al. [19] can be used to implement an arbitrary number of OT’s, given
a small (security parameter) number of OT’s2.

Deterrence factor. If we allow R the option to request additional test keys,
this effectively increases ε, even if the option not used, since R can test-query T
and delay the verification request.

4.3 Concurrent Composition with the Semi-honest Token

We observe that a realistic change in the setup assumptions adds security in
concurrent executions. This stronger security property holds if both parties trust
that the token executes the prescribed code. This could be the case, e.g. if the
token is supplied by a third party, and S is limited to loading the keys k0, k1 onto
the token. This is a reasonable setting in practice, and this assumption was used,
e.g., by Hazay and Lindell [18], to efficiently achieve concurrent composition.

The simpler Construction 1, modified as discussed in Observation 1, is secure
against malicious S and R. Recall, the modification simply requires using a
semantically secure scheme, instead of direct application of SPRPG, to encrypt
messages e0, e1 in Step 2b of Construction 1.

Theorem 3. Assume that F is a SPRPG. Then modified Construction 1, as
described above, evaluates the String OT function securely against malicious re-
ceiver R and sender S. The security against S is statistical.

We explicate this construction and prove Theorem 3 in the full version.
Further, security holds for concurrent composition. Intuitively, this is because

the simulator will not need to rewind. Indeed, the simulator of the covert case
rewinds twice – to extract the keys loaded into token T , and in relation with
2 [19] requires the use of correlation-robust functions (a weak form of random oracle).

In practice, even the RO assumption seems to be much more solid than that of
tamper-resistance. Thus, its use will not have effect on security.



Truly Efficient String Oblivious Transfer 341

testing T . Now, however, the token is modeled as a separate entity from S, and
S must explicitly output the keys loaded into T . Then the need for the first
rewinding disappears, since SimS simply receives the keys from S as the first
step of the simulation. Since T is semi-honest, we do not test it, and thus there
is no need for second rewinding. Then, as shown in [22], this is sufficient to
achieve concurrent general composition (equivalently, universal composability).
In [22], this is only shown for protocols that have additional property of initial
synchronization. Informally, a protocol is said to have initial synchronization if
all parties announce that they are ready to start before they actually start. As
pointed out in [18], this property always holds for two-party protocols.

Acknowledgements. I would like to thank the anonymous referees of this paper
for their valuable comments.

References

1. http://www.scdeveloper.com/cards.htm (retrieved on August 28, 2009)
2. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital

goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135.
Springer, Heidelberg (2001)

3. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols
for realistic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
137–156. Springer, Heidelberg (2007)

4. Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO
1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995)

5. Bellare, M., Micali, S.: Non-interactive oblivious transfer and applications. In: Bras-
sard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 547–557. Springer, Heidelberg
(1990)

6. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS, pp. 62–73 (1993)

7. Chandran, N., Goyal, V., Sahai, A.: New constructions for uc secure computation
using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 545–562. Springer, Heidelberg (2008)

8. Di Crescenzo, G.: Private selective payment protocols. In: Frankel, Y. (ed.) FC
2000. LNCS, vol. 1962, pp. 72–89. Springer, Heidelberg (2001)

9. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated
zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
509–526. Springer, Heidelberg (2008)

10. Damg̊ard, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty com-
putation with partially isolated parties. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 315–331. Springer, Heidelberg (2009)

11. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

12. Fischlin, M.: A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471.
Springer, Heidelberg (2001)

13. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: Theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004)

http://www.scdeveloper.com/cards.htm


342 V. Kolesnikov

14. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)

15. Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptogra-
phy on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 308–326. Springer, Heidelberg (2010)

16. Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computa-
tion against covert adversaries. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

17. Goyal, V., Sahai, A.: Resettably secure computation. In: Joux, A. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 54–71. Springer, Heidelberg (2009)

18. Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols using stan-
dard smartcards. In: ACM Conference on Computer and Communications Security,
pp. 491–500 (2008)

19. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003)

20. Järvinen, K., Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Embedded SFE: Of-
floading server and network using hardware tokens. In: FC 2010 (2010)

21. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007)

22. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: Proc. 38th ACM Symp. on Theory of Com-
puting, pp. 109–118 (2006)

23. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
Cryptology ePrint Archive, Report 2004/175 (2004), http://eprint.iacr.org/

24. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007)

25. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

26. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001: Pro-
ceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,
Philadelphia, PA, USA. Society for Industrial and Applied Mathematics (2001)

27. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: 1st ACM Conf. on Electronic Commerce, pp. 129–139 (1999)

28. Yao, A.C.: Protocols for secure computations. In: Proc. 23rd IEEE Symp. on Foun-
dations of Comp. Science, Chicago, pp. 160–164. IEEE, Los Alamitos (1982)

29. Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th IEEE Symp. on
Foundations of Comp. Science, Toronto, pp. 162–167. IEEE, Los Alamitos (1986)

http://eprint.iacr.org/

	Truly Efficient String Oblivious Transfer Using Resettable Tamper-Proof Tokens
	Introduction
	Our Contributions and Outline of the Work
	Main Idea of Our Approach

	Related Work
	Preliminaries
	Notation and Security Model
	Strong Pseudorandom Permutation Generators (SPRPG)
	Oblivious Transfer

	OT with Resettable Tamper-Proof Cards
	Protocols for Malicious (Covert) Setting
	Discussion: Protocol Composition and Practical Considerations
	Concurrent Composition with the Semi-honest Token

	References




