
Revisiting P2P Content Sharing in Wireless

Ad Hoc Networks�

Mohamed Karim Sbai and Chadi Barakat

EPI Planète, INRIA, France
{mksbai,cbarakat}@sophia.inria.fr

Abstract. Classical content sharing applications like BitTorrent are not
designed to run over wireless networks. When adapting them to these
constrained networks, two main problems arise. On one hand, exchang-
ing content pieces with far nodes results in an important routing over-
head. On the other hand, it is necessary to send some content pieces to
far nodes to increase the diversity of information in the network, which
fosters reciprocity and parallel exchanges. In this paper, we study both of
these problems and propose a joint solution for them. Unlike uni-metric
approaches, our solution considers relevant performance metrics together
as throughput, sharing and routing overhead. We define a new neighbor
selection strategy that balances sharing and diversification efforts and
decides on the optimal neighboring scope of a node. We also consider
the diversification incentives problem and evaluates the impact of nodes’
mobility on the P2P strategy to be adopted. Through extensive simu-
lations, we prove that our solution achieves both better download time
and sharing ratio than uni-metric solutions.

1 Introduction

The proliferation of wireless devices (Laptops, PDAs, Smartphones, etc) moti-
vates end users to connect to each other to form spontaneous communities. A
wireless multi-hop network of devices, rendered possible by the use of ad hoc
routing protocols, can be a good opportunity to share some contents (data, au-
dio, video, etc) among the members of the same community without using any
established infrastructure. As the resources of a wireless ad hoc network are
scarce and shared among nodes, the application used for content sharing should
not rely on any central service and should divide the replication effort fairly
among the members of the community while reducing the overhead on the inter-
mediate nodes serving as relays. Considering this, file sharing applications based
on the peer-to-peer (P2P) paradigm are the best candidate solutions. First, in
a few years, they have become the most popular applications on the Internet
and users are familiar with their functionalities and features. Second, a P2P
file sharing solution like BitTorrent [1] decentralizes the data transfer plane us-
ing the multi-sourcing concept and provides enough incentives to encourage fair
� This work was supported by the ITEA European project on experience sharing in

mobile communities (ExpeShare).

T. Spyropoulos and K.A. Hummel (Eds.): IWSOS 2009, LNCS 5918, pp. 13–25, 2009.
c© IFIP International Federation for Information Processing 2009

14 M.K. Sbai and C. Barakat

sharing. It is thus very beneficial to have the same principles applied in a wire-
less environment because nodes will tend to save capacity and energy. Multi-hop
wireless communications consume resources in intermediate nodes and so there
is a strong need for reducing the routing overhead.

Whereas efficient content localization in wireless ad hoc networks has at-
tracted considerable research interest [4][5], the content replication problem is
still in its first steps. BitTorrent [1] is the best known P2P content replication
protocol that optimizes the data transfer plane. Previous studies focus on tuning
BitTorrent algorithms to wireless networks to ameliorate a specific performance
metric without considering all the metrics jointly. Some of them [2] aim to im-
prove the global download time by reducing the routing overhead. In fact, the
idea proposed is to make peers only concentrate on their nearby neighbors. We
show in this paper that if this is done, the replication burden is unequally dis-
tributed among peers and that there is a poor transmission parallelism in the
network. This is contradictory to the goals of BitTorrent and is not suitable for
wireless ad hoc networks. In another previous work [3], we propose replicating
the initial seed of the content at the edge of the network in order to increase
the diversity and improve the parallelism. Although these policies recofd bet-
ter download times and point to some new directions, they are limited to some
specific cases that need to be generalized to clearly illustrate the relationship
between content replication, user performance, fairness and overhead on the un-
derlying network. On one side there is a need to diversify the content in the
network to improve user perceived quality and enforce fairness, and on the other
side, any diversification is costly because of the multi-hop routing. Optimal bal-
ance and how to achieve it are still not clear.

In this paper, we make an in-depth study of the routing overhead and con-
tent diversity problems in P2P applications run over wireless ad hoc networks.
We observe the following dilemma: How can the download time be reduced while
maintaining sufficient parallel transmissions in the network and a fair distribu-
tion of replication load? How can fair sharing be boosted by diversifying pieces of
the content without increasing the routing overhead? Our objective is to come up
with a joint solution for the routing overhead and content diversity problems. We
mainly want to increase the sharing opportunities and have a minimum down-
load time without overloading the network. In our ivestigation, we respect the
natural tendency that peers, unless they have the entire content (called leechers
in the former case and seeds in the latter case), have no incentives to participate
in content diversification. Indeed, as in BitTorrent philosophy, leechers are only
interested in sharing content with other peers who have new parts of the con-
tent to reciprocate. Only seeds are generous enough to participate in diversifying
content for improving global performance.

We propose a new neighbor selection strategy that distinguishes between two
main efforts of peer-to-peer file sharing application: the sharing effort and the
diversification effort. First, we try to answer the following question: What must
be the importance of the sharing and diversification efforts? We study in this
work the best scope of sharing that minimizes the routing overhead. Our first

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 15

finding is that the sharing effort must be made in a narrow area around each
peer, otherwise this results in an important routing overhead. On the other
side, the diversification effort aims to increase the entropy of information in the
network to boost parallelism. That is why the diversification area should be taken
wider than the sharing area. Clearly, diversifying content pieces in the network
is very costly, thus this effort must be made less frequently than the sharing
effort. In this paper, we study the impact of the diversification area around
each seeding node and propose an efficient strategy for scheduling sharing and
diversification connections of a peer. Another important question we address is
the appropriate neighbor selection strategy while the diversification effort. By
comparing different strategies, we prove that randomly choosing a peer in the
diversification scope is the best approach. Our solution pays attention to balance
the load equally among the different seeds in a diversification area. We also study
the impact of node mobility on the diversity of pieces in the network and prove
that the diversification effort must be slowed down in this case. The sharing
area, however should be always limited to close physical neighbors, whatever the
mobility pattern is.

Using our extension of the NS-2 network simulator [7] and realistic network
realizations, we prove through extensive simulations that when using our neigh-
bor selection strategy, BitTorrent achieves both better download time and better
sharing ratio than its classical Internet version. It outperforms in all regards other
solutions limiting the scope of the neighborhood without diversifying pieces. We
can also achieve a better download time and better sharing ratio than when
replicating the content at the edge of the network.

The remainder of this paper is organized as follows. Section 2 presents the
background of our work and the methodology of our investigation. Section 3
studies the routing overhead problem and Section 4 mitigates the content diver-
sity problem. Section 5 presents our solution in details. Section 7 summarizes
our contribution and gives some future directions.

2 Background and Methodology

2.1 Background

BitTorrent [1] is a scalable and efficient P2P content replication protocol. Each
peer shares some of its upload capacity with other peers in order to increase
the global system capacity. Peers cooperating together to download a content
form a sharing overlay called Torrent. To facilitate the replication of content in
the network and to ensure multi-sourcing, each file is subdivided into a set of
pieces. A peer who has all pieces of the file is called a seed. When the peer is
downloading pieces, it is called a leecher. Among the members of the torrent,
neighbors are those with whom a peer can open a TCP connection to exchange
data and information. Only four simultaneous outgoing active TCP connections
are allowed by the protocol. The corresponding neighbors are called effective
neighbors. They are selected according to the choking algorithm of BitTorrent.

16 M.K. Sbai and C. Barakat

This algorithm is executed periodically and aims at identifying the best upload-
ers. Once the choking period expires, a peer chooses to unchoke the 3 peers
uploading to him at the highest rate. This strategy, called tit-for-tat, ensures
reciprocity and enforces collaboration among peers. Now, to discover new up-
load capacities, a peer randomly chooses a fourth peer to unchoke. All other
neighbors are left choked. When unchoked, a peer selects a piece to download
using a specific piece selection strategy. This strategy is called local rarest first.
When selecting a piece, a peer chooses the piece with the least redundancy in
its neighborhood. Rarest first is supposed to increase the diversity of pieces [6].

2.2 Scenario and Methodology

We start from the BitTorrent protocol and consider the interesting case where
all nodes of a wireless ad hoc network are interested in sharing the same content.
We want to understand the performance of BitTorrent in this challenging dense
case before moving to more sparse torrents. Indeed, when the torrent is dense,
the routing overhead on peers is at its maximum, since on one hand, the volume
of exchanged data is large, and on the other hand any packet sent over multiple
hops will steal bandwidth from all intermediate nodes, which are also peers.
Note that a packet relayed by a node at the routing layer is not seen by the
applications running in this node, in particular the BitTorrent application. We
first consider that nodes are fixed and randomly distributed in the plane so that
they form a big connected network. This means that content diversity cannot be
obtained without sending data to far away nodes. Then, we extend the study in
Section 6 to mobile scenarios and prove that if nodes are mobile, their movements
help to increase the entropy of information in the network, hence making the
scenario less challenging and more reciprocal.

In our investigation, we proceed with an experimental approach using the NS-
2 network simulator [7]. To do this, we extend NS-2 by implementing a tunable
BitTorrent-like module that allows content sharing in wireless ad hoc networks.
With our module, the neighbor selection and piece selection strategies of the
BitTorrent client can be changed and the resulting performance measured. In
addition to the data transfer plane, our module implements a peer discovery
mechanism on each peer. This mechanism emulates for the BitTorrent client the
existence of a centralized tracker providing it with the list of torrent members.
Since this work focuses on the data transfer plane, the optimization of the mem-
bership management mechanism is out of the scope of this paper. Furthermore,
our module profits from the existing NS-2 modules to ensure wireless communi-
cation and multi-hop routing of packets. The wireless ad hoc network that we
are simulating consists of 50 nodes randomly distributed in a 500m×80m square
area. When nodes are taken fixed, we discard all realizations where the topology
is not connected. Nodes connect to each other using the 802.11 MAC Layer with
the RTS/CTS-Data/ACK mechanism enabled. The data rate is set to 11 Mb/s
and the wireless range to 50m. The ad hoc routing service is ensured thanks to
the DSDV proactive protocol [8]. At the beginning of each simulation, a ran-
dom node is chosen as the seed of the content and the other nodes are leechers.

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 17

The content is a 100 Mbytes data file that is subdivided into 1000 pieces. All
peers start downloading the file at the same time (a flash crowd scenario). The
BitTorrent choking period is set to 40s.

3 The Routing Overhead Problem

The first question we address regards the optimal neighbor selection strategy for
P2P content sharing in wireless ad hoc networks. In our investigation, we start
from the classical version of BitTorrent and we vary the scope of the sharing area
of the peers. This scope represents the maximum number of hops between peers
authorized to exchange pieces. The version deployed in the Internet, called later
classical version for short, corresponds to a sharing scope equal to the maximum
number of hops in the network.

Figure 1 plots the average download time of the content per peer as a function
of the number of hops of that peer to the initial seed for different values of the
sharing scope. On one hand, the download time increases with the number of
hops to the seed for all values of the sharing scope. This is mainly due to the
fact that the achievable throughput of TCP decreases considerably with the
number of hops in a wireless ad hoc network. Peers far from the seed get most,
if not all, of the pieces of the content in multi-hop via other peers. On the other
hand, the classical version of BitTorrent has the largest download time because
of the routing overhead and the degradation of TCP performance in a multi-hop
environment. For the best performances, the sharing scope needs to be limited to
a small value, e.g. one or two. Figure 2 consolidates this observation by showing
the average download time over all nodes as a function of the scope of sharing.
This figure shows an amelioration in the download time when this sharing scope
is reduced. In fact, the routing overhead is minimal when the scope is small,
otherwise pieces of content are forwarded by intermediate nodes at the routing
layer without profiting from them at the BitTorrent layer, which incurs a lot
of overhead on these nodes. Moreover, additional transmissions are needed later
to send the same pieces to these intermediate nodes. Another important factor
is that the throughput of TCP is better over short distances and in this case,
more pieces of data can be sent during the choking time slot. Figures show a

Fig. 1. Download time per peer vs. num-
ber of hops to the initial seed

Fig. 2. Download time per peer vs. scope
of sharing

18 M.K. Sbai and C. Barakat

slightly better gain for a scope of two hops, compared to a scope of one hop,
even though there is some routing overhead in the former case. In fact, the two-
hop case allows more neighbors, which leads to a better sharing and a better
forwarding of pieces. At the same time, the routing overhead is still small, so that
we can notice an overall gain. Unfortunately, for scopes larger than two hops,
the routing overhead becomes big enough to counteract any gain from having
more neighbors.

4 The Piece Diversity Problem

In the previous section, we showed that decreasing the scope of sharing ame-
liorates the download time. In this paragraph, we try to answer the following
questions: By limiting the scope of sharing, are we limiting the sharing oppor-
tunities between nodes? Is there fair sharing among them in this case? Is there
a piece diversity problem? When sharing scope is very limited, the pieces of the
content most likely propagate from the initial seed to the farthest nodes in a
unique direction via other nodes in between. Far nodes do not have original
pieces to provide to upstream nodes that are closer to the initial seed. That is
why nodes fail to reciprocate data with each other, and hence, the load of sharing
is not equally divided among them. In general, the farther the nodes are from
the initial seed, the fewer packets they will have to send. Moreover, there will be
no diversity of pieces in the network. The same pieces will propagate from one
neighborhood to another, which cannot result in a fair exchange.

To strengthen this claim, we plot in Figure 3 the sharing ratio as a function
of the number of hops to the initial seed for the same simulations used in the
previous section. The sharing ratio between a couple (i, j) of peers is defined as:
Rij = min(Dij ,Dji)

max(Dij ,Dji)
, where Dij is the amount of data that node i has downloaded

from node j during the torrent lifetime. This ratio measures the magnitude of
the reciprocity between two nodes. A value nearing null means a one-way prop-
agation of data. The ideal fair sharing case is obtained when the sharing ratio is
equal to 1. From Figure 3, one can observe the following:

– The sharing ratio increases slightly with the number of hops to the initial seed.
In fact, far peers can reciprocate some data with other far peers because they

Fig. 3. Sharing ratio as a function of the
number of hops to the initial seed

Fig. 4. Sharing ratio as a function of the
scope of sharing

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 19

can both receive different pieces on different paths. The farther the nodes are
from the initial seed, the more of these different paths exist. But the diversity
of pieces is still low, as the dissemination is done in a unique direction.

– When the scope of sharing is decreased, the sharing ratio goes down dramat-
ically. The cases where the scope is set to one or two hops yield the lowest
sharing ratios, which can be explained by the fact that pieces propagate like a
wave from the initial seed to the farthest nodes. The resources of the network
are not fully used since nodes wait for pieces to arrive to their neighborhood
and rarely have original pieces to reciprocate with their neighbors. The P2P
file sharing application then behaves like a simple piece relaying protocol that
ignores the parallel transmission capabilities of the network and the distribu-
tion of the load among peers.

– For large scopes of sharing, for instance the classical BitTorrent case, the
sharing ratio is still lower than 1

2 because the routing overhead is big and
very few pieces can be downloaded during a choking slot, mainly when the
number of hops between neighbors is high.

So, there is a trade-off between diminishing the routing overhead and increasing
piece diversity in the network. Figure 4 plots both the sharing ratio and download
time averaged over all nodes vs. the scope of sharing. From sharing perspectives,
we can see that it is useless to increase the scope beyond 5 in our settings,
because of the degradation of TCP throughput with the number of hops. From
download time perspectives, the best solution is to limit the scope to a very low
value, such as two hops to limit the routing overhead. Can we do better? In the
following section, we prove that this is possible by decoupling the sharing effort
from the diversification effort. Mainly, we introduce a new algorithm to increase
the diversity of pieces in the network at a limited routing cost, and in parallel
we limit the sharing scope to two hops in order not to overload the network. In
this way, we can do better than the simple small scope case by having a better
diversity of pieces, and hence more parallel transmissions and better reciprocity.
At the same time, we are better than the simple large scope case in terms
of sharing, because we can diversify pieces in the network to improve sharing,
without suffering from the routing overhead problem.

5 Solving the Dilemma

In the two previous sections, we presented two problems related to content shar-
ing in wireless ad hoc networks. We now face the following dilemma. On one
hand, decreasing the scope of sharing ameliorates the download time but leads
to very weak parallelism in the network due to the lack of piece diversity. On
the other hand, increasing the scope of sharing increases the diversity of pieces
in the network, but at the cost of more routing overhead and worse download
time. In this paragraph, we present our solution to this dilemma. Our objective
is to come up with a joint solution for the routing overhead and piece diver-
sity problems. In designing our new neighbor selection strategy, we took into
consideration the following points:

20 M.K. Sbai and C. Barakat

– Data transfers between distant peers suffer from very poor performances in
wireless ad hoc networks. Hence, a leecher has no incentives to send pieces of
the content to far nodes, as they will not be able to serve him back with a
high throughput. Moreover, leechers that are far from the initial seed have less
original pieces to reciprocate them with their nearer leechers. Considering this,
we decided that in our neighbor selection strategy, only seeds send pieces to far
peers. Indeed, a seed is a volunteer peer that serves others without expecting
any return from them. The leechers have more incentives to concentrate on
peers located in their close neighborhood, provided that there are original
pieces to share with them.

– If all seeds send pieces to far nodes at the same time, the routing overhead will
be large again and performance will decrease. In our solution, we subdivide
the piece diversification effort among seeds both in space and time.

– If a seed cannot send a complete piece to the selected peer during the choking
slot, the gain in diversity will be null since the smallest unit that a peer can
share with others is the piece. In our solution, we limit the scope of diversi-
fication of seeds to the number of hops allowing the transfer of a complete
piece. Pieces are spread in other parts of the network by other peers becoming
seeds and deciding to stay in the torrent.

5.1 The Neighbor Selection Strategy

– In the leecher state, peers concentrate on their nearby neighborhood. The
scope of sharing is fixed to 2 hops as it is proved to be the best regarding the
routing overhead and transfer performance. A leecher maintains 4 simultane-
ous active outgoing connections. The first 3 connections are dedicated to best
uploaders among peers in the sharing scope and the fourth connection consists
in an optimistic unchoke allowing to discover new upload capacities and the
bootstrap of the sharing. The fourth peer is chosen randomly among leechers
within the sharing scope. The selection is done at the end of each choking
time slot. Except the limitation of the scope to two hops, this is globally the
classical BitTorrent algorithm for leechers.

– In the seed state, peers dedicate their first 3 connections to serve leechers
within their sharing scopes (set to 2). These are the connections dedicated to
injecting the content in the network by starting from the small sharing area.
The fourth connection of a seed is mainly dedicated to diversify pieces in an
area wider than the sharing area. This area is called the diversification area
of the seed and contains all peers not belonging to its sharing area and that
are located at a distance lower than the diversification scope. The scope of
diversification is determined by observing the range of piece transmissions (see
paragraph 5.4). Paragraph 5.3 studies the optimal way to choose a leecher in
the diversification area and paragraph 5.2 shows how the fourth connection is
used when there is more than one seed within the diversification area.

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 21

5.2 Dividing the Diversification Effort among Seeds

Sending pieces to far nodes engenders a big routing overhead. Hence, the diver-
sification effort must be divided between all seeds, both in space and in time. In
our solution, each seed is responsible for its own diversification area and does not
have to serve the whole network. Moreover, when there are many seeds within the
diversification scope of each other (for example when other peers finish the down-
load and decide to stay), our solution reduces the routing overhead of the fourth
connection of each of them, which is dedicated to diversification, by the number
of seeds in its diversification area. This is done as follows. The seed pauses for a
number of slots equal to the number of seeds in its diversification area between
every two diversification time slots. During the pause, the seed can serve leechers
in its sharing area. This scheduling is repeated periodically and follows the evolu-
tion of the number of seeds. In this way, the total diversification overhead is kept
constant as there are more and more seeds in the network.

5.3 Optimal Diversification-Neighbor Selection Strategy

In this paragraph, we look for the best strategy used by seeds to select leechers
in their diversification areas at time slots. The goal is to maximize the sharing
ratio while minimizing the average download time. Let’s note the sharing scope
of a seed as Ss and its diversification scope as Sd. Searching the optimal strat-
egy, we define a parametric general probability distribution to tune the leecher
selection and we study, through simulations and by varying the parameter of the
distribution, the impact of the different strategies on the torrent performances.
We model the probability to select a peer located at h hops from a seed in its
diversification scope (Ss < h ≤ Sd) as follows:

p(h) =
hα

Sd∑

l=Ss+1

Nll
α

(1)

where Nl is the number of peers located at l hops and α is a parameter of the
probability distribution. The sum of this probability function over all peers in

Fig. 5. Download time as a function of
the number of hops to the initial seed

Fig. 6. Download time as a function of α

22 M.K. Sbai and C. Barakat

a diversification area is clearly equal to 1. By setting α to 0, we can obtain
the uniform probability distribution where peers are selected with the same
probability independently of their location. For large positive values of α, the
probability to select the farthest peers becomes close to 1, and that to select peers
near to the seed almost null. For large negative values of α, the opposite occurs;
the seed diversifies pieces over peers close to it. This parameter α then covers
a large set of strategies, and its optimal value should point us to the optimal
leecher selection strategy to use for diversification purposes. Next, we seek this
optimal value using extensive simulations. Figure 5 plots the average download
time as function of the number of hops to the initial seed for different values of
the parameter α. Figure 6 draws the average download time over all peers as a
function of the parameter α. For large negative values of α, the download time is
maximal and tends to the one obtained without diversifying the pieces (scope 2
in Figure 4). For large positive values of α, one can obtain a better performance
since there is the introduction of some diversity of pieces in the network but the
concentration is only on leechers located at the edge of the diversification area.
This is below the optimal because of the routing overhead and an inefficient
spatial distribution of pieces. Our main observation is that a value of α equal
to 0 gives the best performance. Indeed, for this optimal value, seeds distribute
pieces uniformly in the network and then boosts fair sharing among peers and
transmission parallelism while having a reasonable average routing overhead.
Figure 7 plots the sharing ratio as a function of the number of hops to the initial
seed for different values of the parameter α. Figure 8 presents both the average
sharing ratio and the average download time over all nodes as function of the
parameter α. These figures prove that the best choice of α is 0 as it also results in
the best sharing ratio. Indeed, large negative values of α means no diversification
of pieces and then the lowest sharing ratio is recorded, whereas for large positive
values, one can obtain a better sharing ratio but the load is not equally divided
among leechers. For the uniform probability case, the sharing opportunities are
the best because original pieces are distributed over all peers and sharing areas
and the load is not concentrated on any local neighborhood.

Fig. 7. Sharing ratio as a function of the
number of hops to the initial seed

Fig. 8. Sharing ratio and download time as
a function of α

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 23

Fig. 9. Download time as a function of
the diversification scope

Fig. 10. Average number of pieces sent dur-
ing a choking slot

5.4 Choice of the Diversification Scope

The results shown up to now have been obtained for a diversification scope set
to 10. In this paragraph, we study the impact of this scope both on download
time and sharing ratio. Figure 9 plots the average download time and the average
sharing ratio over all nodes vs. the scope of diversification. It shows that for small
values of this scope, there is not enough diversity introduced into the network.
Hence, the sharing ratio decreases considerably and the download time wors-
ens. For large diversification scopes, again the sharing ratio and download time
worsen for the simple reason that TCP becomes unable to send entire reusable
pieces far away from the seed. It is clear that in our settings a diversification
scope around 10 hops away from each seed leads to best performances both from
download time and sharing ratio perspectives. This should be the largest scope
where entire content piece could be sent. Figure 10 confirms this claim by show-
ing the average number of pieces a seed can send as a function of the number of
hops to the leecher. As a result, the diversification scope must be fixed so that
it does not exceed the range of pieces. To support this in practice, the seed can
adapt its diversification scope up or down by measuring the number of pieces
that it can send during a choking slot to leechers located at the edge of the
diversification area. We leave this online adaptation for a future research.

6 Mobility Helps Diversification

In the previous sections, we supposed that the network is fixed. In the case
of mobility of nodes, two main factors must be considered. On one hand, the
mobility naturally increases the diversity of pieces, since the neighborhood of
a peer is changing while moving. In this case, one can hope that there will
be enough sharing opportunities and hence there will be no need for sending
pieces to far away nodes to boost diversity. On the other hand, as long paths
suffer from bad performances in mobile ad hoc networks, it would be better to
have a short range of sharing and diversification. Preliminary simulation results
(see [9]) show indeed that the mobility has a beast and a beauty. The beast
is that it increases packet losses over long multi-hop paths, thus it makes it

24 M.K. Sbai and C. Barakat

Fig. 11. Average download time Vs.
Neighborhood scope

Fig. 12. Average sharing ratio Vs.
Neighborhood scope

almost inefficient to send pieces to faraway peers. The beauty is that the mobility
efficiently improves piece diversity since peers are continuously exchanging new
pieces with the new peers they meet while moving across the network. We give
a flavor of the results in Figures 11 and 12, where we compare respectively
the download time and the average sharing ratio for both the fixed and the
mobile scenarios when the diversification effort is activated or disabled. In these
simulations, the RandomWay point mobility model is used. The speed of nodes
is set to 2m/s and two pause times have been considered (2s and 10s). The curves
in the figures correspond to no diversification and different sharing scopes. The
dotes correspond to a fixed sharing scope of two hops and a diversification area
of 10 hops. We can observe how the best performance is obtained for mobile
networks limiting the sharing scope and disabling the diversification. Once nodes
become fixed, the diversification by seeds becomes mandatory to replace the one
inherent to mobility.

7 Conclusions and Perspectives

In this paper, we study the routing overhead and piece diversity dilemma and
propose an efficient neighbor selection strategy that minimizes the download
time while maximizing sharing opportunities. Our proposed choke/unchoke al-
gorithm is practical and does not make any assumptions on the cooperation of
leechers. We prove through extensive NS-2 simulations that when using our new
neighbor selection strategy, the download time of BitTorrent is 30% of the one
obtained with the classical version of BitTorrent and 65% of the one obtained
with the version without diversification of pieces and a sharing scope equal to 2.
As for the sharing, the upload is now better distributed among peers and more
reciprocal. However, the solution and results presented in this paper relae to a
dense challenging scenario. We will study sparse scenarios in our future work.

References

1. BitTorrent protocol, http://wiki.theory.org/BitTorrentSpecification
2. Michiardi, P., Urvoy-Keller, G.: Performance analysis of cooperative content distri-

bution for wireless ad hoc networks. In: WONS 2007, Obergurgl (2007)

http://wiki.theory.org/BitTorrentSpecification

Revisiting P2P Content Sharing in Wireless Ad Hoc Networks 25

3. Sbai, M.K., Barakat, C., Choi, J., Al Hamra, A., Turletti, T.: Adapting BitTorrent
to wireless ad hoc networks. In: Ad-Hoc Now 2008, Sophia Antipolis, France (2008)

4. Klemm, A., Lindermann, C., Waldhorst, O.: A special-purpose peer-to-peer file shar-
ing system for mobile ad hoc networks. In: VTC 2003 (2003)

5. Das, S.M., Pucha, H., Hu, Y.C.: Ekta: an efficient peer-to-peer substrate for dis-
tributed applications in mobile ad hoc networks. TR-ECE-04-04, Purdue University
(2004)

6. Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest First and Choke Algorithms Are
Enough. In: IMC 2006, Rio de Janeiro, Brazil (2006)

7. NS: The Network Simulator, http://www.isi.edu/nsnam/ns/
8. Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance-Vector

routing (DSDV) for mobile computers. In: SIGCOMM 1994, London, UK (1994)
9. Salhi, E., Sbai, M.K., Barakat, C.: Neighborhood selection in mobile P2P networks.

In: Algotel conference, Carry-Le-Rouet, France (2009)

http://www.isi.edu/nsnam/ns/

	Revisiting P2P Content Sharing in Wireless Ad Hoc Networks
	Introduction
	Background and Methodology
	Background
	Scenario and Methodology

	The Routing Overhead Problem
	The Piece Diversity Problem
	Solving the Dilemma
	The Neighbor Selection Strategy
	Dividing the Diversification Effort among Seeds
	Optimal Diversification-Neighbor Selection Strategy
	Choice of the Diversification Scope

	Mobility Helps Diversification
	Conclusions and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

