
End-to-End Security for Enterprise Mashups

Florian Rosenberg1, Rania Khalaf2, Matthew Duftler2, Francisco Curbera2,
and Paula Austel2

1 Distributed Systems Group, Technical University Vienna
Argentinierstrasse 8/184-1, Vienna, Austria

florian@infosys.tuwien.ac.at
2 IBM T.J. Watson Research Center

19 Skyline Drive, Hawthorne, NY, 10532
{rkhalaf,duftler,curbera,pka}@us.ibm.com

Abstract. Mashups are gaining momentum as a means to develop situ-
ational Web applications by combining different resources (services, data
feeds) and user interfaces. In enterprise environments, mashups are re-
cently used for implementing Web-based business processes, however, se-
curity is a major concern. Current approaches do not allow the mashup
to securely consume services with diverse security requirements without
sharing the credentials or hard-coding them in the mashup definition. In
this paper, we present a solution to integrate security concerns into an
existing enterprise mashup platform. We provide an extension to the lan-
guage and runtime and propose a Secure Authentication Service (SAS)
to seamlessly facilitate secure authentication and authorization of end-
users with the services consumed in the mashup.

1 Introduction

Mashups are an increasingly popular approach to develop new kinds of situ-
ational Web applications by combining content, presentation, and application
functionality from disparate Web sources [1]. A vast number of mashup tech-
nologies and tools exist that provide a means of seamlessly “mashing” together
several Web-based services and sources such as REST or SOAP services, feeds
(RSS or ATOM) or plain XML or HTML sources. These mashup tools either
provide a mashup language targeted for developers or provide an editor allow-
ing a graphical mashup development such as Yahoo Pipes [2] or IBM Mashup
Center [3].

In general, two different mashup types are dominant [4]: Consumer mashups
are mostly for private use, combining data from several resources by unifying
them using a common interface. Enterprise mashups combine different sources
(content, data or application functionality) from at least one resource in an enter-
prise environment. An important distinction is the fact that enterprise mashups
have some additional requirements such as security, availability or other quality
of service items. Such enterprise mashups have an enormous potential by pro-
moting assembly over development to reduce development costs and provision a
new software solution within shorter time periods.

L. Baresi, C.-H. Chi, and J. Suzuki (Eds.): ICSOC-ServiceWave 2009, LNCS 5900, pp. 389–403, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

390 F. Rosenberg et al.

However, current enterprise mashup tools lack the ability to consume and
integrate different services in a secure way when having completely diverse se-
curity requirements in terms of authentication and authorization [5, 6]. As a
consequence, many mashup tools can only integrate security-free services and
data sources or hard-code authentication data in the mashup code. Clearly, this
is a problem in enterprise environments because users are more reluctant to give
their authentication information to third parties (in fact, company policy may
even prohibit that), resources typically have custom security requirements, and
resources may support any of several authentication protocols such as HTTP
basic authentication, custom application keys or more Web 2.0 like protocols
such as OpenID [7] and OAuth [8].

We argue that seamless security support for enterprise mashups, in particular
related to secure credentials management is required and needs to be integrated
in the mashup language and/or tooling because users are not willing and should
not disclose their credentials for different resources in the mashup definition.
The mashup environment has to provide support for authentication and autho-
rization, and delegation control allowing the execution of a service on behalf of
a given user.

1.1 Illustrative Example

An enterprise mashup scenario depicted in Figure 1 is used to illustrate the
problem and concepts. In this scenario, the hiring manager at Acme Inc (left) is
hiring for a new position. He uses the enterprise mashup to schedule the interview
with and get the resume of the candidate (bottom right).

Fig. 1. Hiring Mashup Scenario

In order to do so, the mashup first makes a call to the hiring manager’s
calendar available via Google. Then, it forks: the bottom branch replies to the
initial call and the top branch posts the available times to Acme’s interview
scheduling service, e-mails the candidate the final slot returned by that service
and a link that should be followed to complete the process. Once the candidate
clicks on the link, he finds a form where he fills in his personal information and
attaches his resume. Finally, the mashup places the resume in the ‘Files’ file
sharing service in LotusLive Engage, an online collaboration solution.

End-to-End Security for Enterprise Mashups 391

Interacting with multiple secured third-party services requires different sets
of credentials and authentication protocols. For example, Google Calendar uses
the OAuth protocol, Acme’s scheduling service uses HTTP basic authentication,
and the Files service requires an application key and the user in whose store the
file is to be added. The Google Calendar call and the Files service call both
require that the mashup interacts with them on the user’s behalf - possibly after
the user is no longer logged into the system.

1.2 Contributions

Seamlessly specifying and enforcing mashup security by supporting different
authentication mechanisms requires both, a language extension and a runtime
mechanism. In particular, this paper makes the following contributions to enable
an end-to-end security solution for enterprise mashups:

– We provide a model and semantics for integrating security concerns directly
into an existing business mashup platform (BMP), in particular the underly-
ing lightweight workflow language Bite [9,10] to address authentication and
authorization from a language perspective.

– We describe a framework and implementation for homogenizing the authenti-
cation and authorization process within a mashup application for authoriza-
tion mechanisms (e.g., basic authentication, custom application IDs, OAuth,
etc) by leveraging a trusted Secure Authentication Service (SAS).

– We elaborate on the seamless integration and user experience of the authen-
tication process by describing several mechanisms to allow mashup users to
securely enter their credentials directly at the service provider (if possible)
or by using the SAS.

The remainder of this paper is organized as follows: In Section 2, we describe the
BMP project and the underlying Bite engine as the target enterprise mashup
platform. Section 3 outlines the proposed security solution. Section 4 describes
the Bite language extensions to enable security support followed by a detailed
description of the SAS in Section 5. Section 6 evaluates and discusses the pro-
posed approach followed by a discussion of related work in Section 7. Finally,
Section 8 concludes this paper and outlines future work.

2 BMP and the Bite Language

The Business Mashup Platform (BMP) provides a hosted development envi-
ronment for rapid development of situational business processes or enterprise
mashups. It overlaps with the system in [11]. The graphical mashup develop-
ment is browser-based, leveraging a BPMN-style editor, a forms designer and a
catalog of extension activities that are offered to the designer in a palette. Once
a mashup has been completely specified, BMP allows one click deployment of
mashups that are immediately invokable. In the backend Bite code is generated
and executed on the server.

392 F. Rosenberg et al.

Bite Language and Runtime. Bite is an XML-based REST-centric com-
position language designed to facilitate the implementation of lightweight and
extensible flows1. The process model implements a subset of the WS-BPEL [12]
execution semantics that consists of a flat graph (except for loops) containing
atomic actions (activities) and links between them. Loops may be created using
a dedicated while activity, the only construct allowed to contain other activities.
Graph execution logic is encoded in conditional transition links between activi-
ties. Error handling is provided by special error links to error handling activities.
Bite provides a small set of built-in activities: (1) basic HTTP communication
primitives for receiving and replying to HTTP requests (receiveGET|POST2,
replyGET|POST, receive-replyGET|POST) and making HTTP requests to ex-
ternal services (GET, POST, PUT, DELETE), (2) utility activities for waiting or
calling local code, (3) control helpers such as external choice and loops.
� �

1 <process name="hiring">
2 <receivePOST name="hrInput " url="/hiring" />
3
4 <!-- get Google calendar data -->
5 <GET name="gcal" url="http://www.google.com/calendar /feeds/default /

owncalendars/full">
6 <control source="hrInput " />
7 <input name=""></input>
8 <input name=""></input>
9 <security authtype ="oauth" />

10 </GET>
11
12 <replyPOST name="hrReply " url="/hiring">
13 <control source="gcal" />
14 <input value=""/>
15 </replyPOST>
16
17 <!-- invoke interview scheduling service -->
18 <POST name="scheduleInterview" url="http://internal .acme.com/ interview/

schedule ">
19 <control source="gcal" />
20 <input name=""></input>
21 <input name=""></input>
22 <security authtype ="http_basic" notificationType="sametime "

notificationReceiver="$:hrInput_User" />
23 </POST>
24
25 <!-- send an email to the candidate and collect candidate data using a

special form activity -->
26
27 <!-- put all the collected candidate data on the Lotus file share -->
28 <shareFile name="storeApplication" ...>
29 <control source="collectCandidateData"/>
30 <!-- other parameter cut for brevity -->
31 <security user="$:hrInput_User" authtype ="app_id">
32 <mapping >
33 <element name="par" label="Partner ID" applyTo ="param" />
34 <element name="key" label="License Key" applyTo ="param" />
35 </mapping >
36 </security >
37 </shareFile>
38 </process >
� �

Listing 1.1. Hiring Mashup (simplified – without input parameters)

A Bite flow both calls external services and provides itself as a service. Sending
an HTTP POST request to a flow’s base URL results in the creation of a new
flow instance that is assigned a new instance URL. This instance URL is returned
1 We use ‘mashup’ and ‘flow’ interchangeably in this paper.
2 The pattern [x]GET|POST denotes two different activities:[x]GET, [x]POST.

End-to-End Security for Enterprise Mashups 393

in the HTTP Location header field of the response. The instance URL contains
a flow ID that is used for correlation of subsequent requests to that flow.

Each flow instance can define multiple receive activities corresponding to mul-
tiple entry points. These activities expose additional URLs as logical addresses
of the instance’s nested resources. POST requests directed to these URLs are dis-
patched to the individual receive activities in the flow model using the relative
URLs defined in the activities’ url attribute. This mechanism allows building
interactive flows having multiple entry points for interacting with them. This
behavior is leveraged by various activities such as Web forms that are designed
as part of the mashup creation with the BMP.

A core concept of Bite is the extensible design that enables the developer
community to provide additional functionality in a first-class manner by cre-
ating Bite extension activities and registering them with the Bite engine. This
design allows keeping the language and its runtime very small and allows to
implement other required activities as extensions. Extension activities can be
created using Java or any scripting language supported by the Java Scripting
API (e.g., Groovy, Ruby, Python, etc).

We show, in Listing 1.1, the (abbreviated) Bite code for the hiring sample
in Figure 1. Each mashup has a root element called process (line 1). A new
flow instance is created by sending a HTTP POST request to the relative URL
/hiring of the initial receivePOST (line 2). The data associated with the POST
request is implicitly available in variable hrInput Output to all dependent ac-
tivities. In this case the variable contains a map of all POST parameters. After
completing the hrInput activity, the gcal activity is activated (lines 5–10).
Transitions between activities are expressed by the control element (line 6).
From lines 12–15, the mashup replies to the initial HTTP POST from the hiring
manager informing him that he will receive an email with the selected interview
date. The interview scheduling is executed in lines 18–23 by issuing a HTTP
POST call to the interview scheduling service. Then, the other remaining steps
are executed, e.g., sending an email using the sendMail activity and preparing
the candidate form using the form activity – both implemented as Bite extension
activities (not shown in the listing for brevity). Finally, the shareFile extension
activity (lines 28–37) uploads the collected candidate data to LotusLive.

As stated in Section 1.1, the outgoing HTTP GET and POST call (gcal
and scheduleInterview) and the shareFile activity require different security
credentials that are required for successfully executing the mashup. The security
element (lines 9, 22 and 31–36) and its semantics are presented in Section 4. For
more details on Bite, its runtime and possible applications, see [9, 10].

3 Overview of the Enterprise Mashup Security Solution

Building security into an enterprise mashup platform requires to address (i)
authentication of users at third-party services (i.e., verifying a user’s claimed
identity) and (ii) authorization in the sense that the user has to authorize the
Bite engine to perform the task on the user’s behalf. We have to distinguish two

394 F. Rosenberg et al.

aspects: First, security has to be addressed on a language level to integrate secu-
rity concerns into the Bite language. A core requirement is to keep the language
extensions minimal and provide extensibility support for various authentica-
tion protocols in a seamless user-centric way. Second, an extensible mechanism
is needed to realize authentication and authorization of trusted services having
different authentication protocols. This process is transparently handled by a Se-
cure Authentication Service (SAS) that offers an OAuth interface, as described
in detail in Section 5.

Bite Engine

Trusted Area

Secure
Authentication
Service (SAS)

Third Party ServicesEnterprise Mashup Host

Google
Calendar

Lotus
FileShare

Interview
Scheduling

Service

Legend:

... Secured Service ... Unsecured Service

HTTP Basic
Authentication

OAuth

AppID

redirect
redirect &

authenticate

authenticated
redirect back

 send
credentials

authenticated

 send app IDs

authenticated

Security Handler

Fig. 2. End-to-End Security Solution Overview

In Figure 2, the basic overview of the security solution is depicted. The Bite
engine including an executable flow is shown on the left (resembling the illus-
trative example from Figure 2). The white circles constitute services which do
not require authentication, the gray ones require authentication. In the middle
is the SAS which has to operate in a secure and trusted area within the company
network as it manages credentials during the execution of a flow. On the right,
the third-party services are depicted that will be invoked during the execution.
Note that placement of the SAS is important: it must be in a trusted space.
Some options include either at a third-party provider or a SAS at each service
provider. As we are focused on enterprise mashups, it is viable that the SAS is
a service provided by the enterprise itself making trust issues between users and
the proxy infrastructure less of a problem. In this paper, we focus on an archi-
tecture and implementation whereby mashups can be secured using a security
service; therefore, trust issues related to particular deployments are left to future
work.

When the user triggers the execution of the flow by using the HTTP POST
request in the Web form (or from another application), the mashup is executed
and as soon as it reaches the first “secured” third-party service (cf. the gcal
activity from Listing 1.1), the Bite engine will use a security handler to allow

End-to-End Security for Enterprise Mashups 395

the user to authenticate at the target service. The handler does this by inter-
acting with the SAS. The SAS implements different security modules (OAuth,
HTTP Basic Authentication and AppID) to provide support for different security
mechanisms at the target service. The procedure for performing authorization
and authentication has two cases:

– Synchronous Authentication: In this case the user is already interacting with
the flow via a Web application and can thus be simply redirected to the
SAS to perform the authentication at the target service. In the flow, this
means that receiveGET|POST has been processed without yet reaching a
corresponding replyGET|POST activity. For example, this is the case for the
gcal activity from Listing 1.1 (lines 5–10) which is in between a receivePOST
and a replyPOST.

– Asynchronous Authentication: In this case the flow already returned to the
user by executing a replyGET|POST activity. Alternatively, an activity called
receive-replyGET|POST is used to receive and immediately reply to an in-
coming request. Therefore, the user is no longer interacting with the flow
and there is no connection that can be redirected to the SAS. For example,
all activities from Listing 1.1 after line 18 (namely, scheduleInterview,
emailCandidate,collectCandidateDataand storeApplication).This re-
quires contacting the user using asynchronous techniques to request him to
authenticate at the third-party service. As shown later in the paper, we
support email and instant messaging to do this.

The communication between the Bite engine and the SAS uses a slightly ex-
tended version of the OAuth protocol to seamlessly implement the handling of
authentication and authorization between Web applications (in our case the Bite
engine and the SAS). Therefore, the SAS design is generic and can be used by
any mashup tool by implementing the corresponding OAuth connector that is
capable of processing the proposed extensions.

4 Language Extensions for Security Specification

In order to enable security within Bite, the language needs to be extended to
capture the security requirements such as authentication and authorization. A
core requirement is to keep such language extensions minimal. On a language
level, we focus on the outbound security in this paper, i.e., security support
while calling an external service from Bite. Inbound security, i.e., authentication
and authorization of users that want to execute a mashup is also supported
but a detailed description is out of scope. For the sake of completeness, it is
mentioned that it is done on a runtime level whereby the user authenticates using
OpenID with an external authentication service and the authenticated user is
injected into the process context where it can be checked against user restrictions
on receiving activities (receiveGET|POST). If the user is allowed to access the
receive, the activity activates, stores the message and the user in the appropriate
variables, and completes. Otherwise, an error is sent back to the user and the

396 F. Rosenberg et al.

receive activity is not activated. If provided, user information from inbound
security is stored at runtime in an implicit variable, [activity name] User.
Hence, subsequent activities may use this variable to refer back to a particular
user.

4.1 Security Extension and Semantics

A security extension element is provided and made optional for all outbound
communication activities such as GET, POST, PUT, DELETE and all extension ac-
tivities implementing custom behavior that may also require authentication.

Listing 1.1 has three security elements (lines 9, 22 and 31–36) in the flow. In
Listing 1.2, we present the security element syntax.
� �

1 <security authtype ="http_basic|oauth|app_id" user="string |expression"?
2 roles="string (comma -separated)"? scope="activity |flow"?
3 notification="http|email|sametime "?
4 notificationReceiver="string |expression"?/>

� �

Listing 1.2. Security Extension Element

Attribute Description: The attributes available for the security element are:

– authtype: Specifies the authentication type for authenticating a user at the
target service. Currently, we support OAuth [8], HTTP basic authentication
and customized application IDs that are frequently used by various service
providers in the form of single or multiple GET or POST parameters. Han-
dling these authentication types is transparently supported by the Secure
Authentication Service (SAS), described in Section 5.

– user: Defines the name of the user (as a string or an expression) on whose
behalf a specific service is executed. This user attribute is relevant especially
for extension activities that support the “on behalf of” semantics. For ex-
ample, the hiring flow from Listing 1.1 uses LotusLive to upload and share
files. This application supports the “on behalf of” semantics by explicitly
defining who uploaded a document indicated by the user attribute in the
Bite flow (this username is then used in LotusLive’s file sharing service as
the owner of the uploaded document).

– roles: Defines roles, that a user can have, in the form of comma-separated
strings. If a role is used, role definitions must have been provided to the
runtime.

– scope: It defines whether an activity’s security credentials are propagated
to the other activities for re-use. If the attribute value is flow, credentials
are propagated thereby avoiding repeated logins by re-using credentials to a
service that is called more than once in a flow for the same user. In case of
an attribute value activity, the credentials are not propagated.

– notification: It defines how a user should be notified that a service re-
quires authentication. In case of a synchronous authentication, http can be
used by redirecting to the SAS to request authentication and authorization.
In the asynchronous case, the flow has to get back to the user to request

End-to-End Security for Enterprise Mashups 397

authentication. This can be done by blocking the activity requiring security,
sending an email to the user (attribute value email) or sending an instant
message (attribute value sametime) pointing him to the SAS, and resuming
the activity once authentication/authorization is complete. Our approach
supports Lotus Sametime, a messaging software used at IBM; other proto-
cols may easily be added.

– notificationReceiver: It is only needed when using the notification
type email or sametime because then it is necessary to have the contact
details (e.g., email address or sametime contact). In case of http, it is not
necessary, because the user is still interacting with the flow in the browser
and is thus redirected to the SAS to perform the authentication.

4.2 Execution Semantics

The effect of the security elements on the execution semantics of the Bite lan-
guage is as follows: Once an activity that has a security element is reached in
a flow, the values of the security element’s attributes are evaluated and stored
in a security context, itself stored in the process context which maintains the
state of execution for the flow instance. This information is used to lookup a
corresponding security handler in a handler registry. The security context and
the message payload are provided to this handler, which interacts with the SAS
to provide the required authentication and authorization. If no credentials are
available, the handler contacts the user sending them to the SAS. The handler
then makes the secure call and returns the result to the activity implementation,
which in turn stores it in its output variable. If the scope attribute value is set
to activity, the security handler contacts the SAS through its OAuth interface
to proceed with the required security handling and the OAuth connection tokens
are destroyed after the authentication. If it is set to flow, these OAuth tokens
are stored in the process context and can be reused in case the same service is
called again in the flow for the same user. Reusing the same OAuth tokens for
connecting to the SAS allows it to determine whether the user has previously
authenticated and authorized Bite to invoke a given third-party service on its
behalf. For more details on the OAuth handling see Section 5.

While the asynchronous case has no further effects on flow semantics, the
synchronous (http) case is more involved because if credentials are not available
then it needs to reuse one of the flow instance’s open connections to contact
the user, redirecting him to the SAS, and then back to the flow. Bite allows
several receiving activities to be open (i.e., not yet replied to) at the same time.
Therefore, the right open connection must be identified. To do so, open receive
activities in the flow instance are checked for a matching ‘ User’ variable value to
the one in the security element being handled. The ‘reply status’ of a matching
receive activity is set to ‘awaiting redirect’ and a key is created for it against
which the redirection from the SAS back to the flow can be matched. A reply is
sent to the receive’s open connection that redirects the user to the SAS. Once
the user completes working with the SAS, a client-side redirect sends him back

398 F. Rosenberg et al.

to the flow. Also, the matched receive activity instance is found using the key
and its reply status reset to ‘open’.

If no match is found among open receives, then receives ‘awaiting reply’ are
checked as they will eventually become ‘open’ and may be used at that time. If
no match is found among receives that are open or awaiting-redirect, the user is
contacted as in the asynchronous case if contact information is provided in the
security element definition. Otherwise, a fault is thrown.

A reply activity for a receive that is ‘awaiting redirect’ must wait before it
can send its response until the receive’s reply status is again ‘open’ and no other
security redirects are pending for that receive.

5 Secure Authentication Service

The Secure Authentication Service (SAS) is responsible for providing a proxy
that can transparently handle various authentication types of different secure
Web-based, e.g., RESTful services. Therefore, the SAS supports different secu-
rity mechanisms and exposes itself using an OAuth interface, a popular protocol
for managing authentication and authorization among Web-based APIs. The
specification [8] defines it as follows: “OAuth protocol enables websites or appli-
cations (Consumers) to access Protected Resources from a web service (Service
Provider) via an API, without requiring Users to disclose their Service Provider
credentials to the Consumers.”3. We provide a brief overview of the OAuth pro-
tocol and its extensions.

5.1 OAuth Principles

We leverage OAuth as the protocol for communicating with the SAS for two
main reasons: OAuth is a well-understood and increasingly popular protocol for
Web based applications and it implements a seamless way of handling authen-
tication and authorization between a consumer and a provider. The consumer
in our scenario is the Bite engine and the provider is the SAS itself. An OAuth
provider has to provide three different request URLs: (1) a request token URL
(relative URL /request token); (2) a user authorization URL (/authorize);
and (3) an access token URL (/access token). A typical OAuth authentication
and authorization is handled as follows: First, a consumer requests a request
token using the request token URL (1) by sending a number of OAuth specific
parameters, such a pre-negotiated consumer key to identify the consumer appli-
cation, timestamp, nonce, signature etc. In case all parameters are correct and
verifiable, the service provider issues an unauthorized request token. When the
request token is received by the consumer, the user’s browser can be redirected to
the service provider to obtain authentication and authorization. This authoriza-
tion ensures that the user sitting behind the browser explicitly ensures that the
consumer Web application is allowed to access the service provider on its behalf.
3 We are aware of the current security issue with OAuth [13], however, this will be

fixed in a future version of the OAuth implementation that we currently use.

End-to-End Security for Enterprise Mashups 399

Once the authorization is performed, the service provider can redirect the user
back to the consumer application (using a callback URL). Finally, the consumer
has to exchange the request token for an access token at the service provider.
This is typically granted if the user successfully performed the authentication
and authorization in the previous step. This access token is one of the OAuth
parameters that has to be sent with every further request to the protected service
(among others such as consumer key, timestamp, signature, etc).

5.2 Third-Party Service Support

Transparently supporting a secure authentication and authorization of different
third-party services through the SAS’s OAuth interface requires extending the
OAuth protocol. This allows the SAS to act as a “secure proxy” for various
other authentication protocols. To do so, the SAS needs at least the URL and the
authentication type of the target service. Since this information is available in the
activity specification and the security extension in a Bite flow (e.g., Listing 1.1,
lines 18–23), it just needs to be sent to the SAS to enable transparent third-party
service authentication. Thus, a number of request parameters are added when
the Bite engine requests a request token at the SAS as discussed below.

HTTP Basic Authentication. This type of authentication is widely used in
practice although it is not very secure unless using SSL. It can be specified in Bite
by setting the authtype to http basic (cf., Listing 1.1, line 22). At runtime,
the Bite engine contacts the SAS by requesting a request token by sending the
following extended OAuth request:

http://sas.watson.ibm.com/request_token?oauth_consumer_key=bite_app

&oauth_timestamp=...&oauth_signature=...&oauth_...=...

&x-oauth_serviceurl=http://internal.acme.com/interview/schedule

&x-oauth_authtype=http_basic

The parameters x-oauth serviceurl and x-oauth authtype indicate the tar-
get URL of the secured third-party service and its authentication type from the
scheduleInterview activity from Listing 1.1 (we prefix the extension with x-
because this is a common pattern for HTTP header extensions too). In case of
a synchronous authentication the user is redirected to the SAS Web interface,
otherwise (in the asynchronous case) the user id specified in the notification-
Receiver attribute receives a link that is used for authentication (basically the
same that Bite redirects to in the synchronous case).

These two extension attributes are used by the SAS to make an outgoing
call to the target URL in an iframe. It prompts the user for the credentials of
the target service. If the authentication is successful, the HTTP Authorization
header of the target service is intercepted by the SAS’s proxying mechanism. A
simple proxy servlet (/proxy) is used to achieve the proxying transparently at
the SAS. The response of the target service is queued at the SAS, otherwise we
would call the service twice: once for the authentication and once for the original
service invocation. When the first “real” service invocation is executed, the SAS
will return the queued response during the authentication process.

400 F. Rosenberg et al.

Custom Application IDs. Support for custom application IDs requires adding
another OAuth extension parameter called x-oauth appid mapping, that en-
codes details on how application IDs are queried from the user in a dynamically
rendered Web form at the SAS and how this data is sent to the target service
(e.g., in the HTTP header or as GET or POST parameter). Therefore, the secu-
rity extension element in the Bite flow defines a mapping element (cf. Listing 1.1,
lines 31–36). More specifically, this mapping states that the target service re-
quires two parameters for a successful authentication, par and key, that need to
be added as HTTP POST parameters (because this extension activity internally
uses POST). Additionally, each element defines a label attribute used as a label
for the HTML input element in the dynamically rendered authentication form.

Upon execution of such an application ID based service, the Bite engine se-
rializes the Bite XML mapping into a simple text based form that is transfered
to the SAS using the aforementioned OAuth extensions. Then the dynamically
rendered authentication form is shown to prompt for the application IDs.

OAuth. Support for OAuth is also transparently supported by the SAS. In
this case, the SAS just adds another layer of redirection between Bite and the
target service provider without storing any information. It would be possible
to implement a customized security handler to consume OAuth-based services
directly (because Bite is already an OAuth consumer for the SAS). However,
going through the SAS when consuming OAuth-based services has the advantage
of handling multiple security mechanism transparently for the Bite engine.

5.3 Implementation Aspects

Bite and the SAS have been implemented in Java 1.6. Bite can be run on ei-
ther a servlet container or WebSphere sMash server. The SAS implementation
is based on Google’s Java OAuth implementation providing multiple servlets
for the different endpoints (request token, access tokens, etc). These servlets
have been extended to support the above mentioned security protocols trans-
parently. The Bite engine implements the OAuth client by using a specific se-
curity handler upon calling services from an activity with a security element
(SASSecurityHandler). All other calls use a NullSecurityHandler that does
not involve the SAS.

6 Case Study and Discussion

We have implemented the approach and provided a simple case study based
on the illustrative example from Figure 1. It uses three different authentication
mechanisms that are transparently handled by the SAS.

Figure 3 illustrates the SAS’s Web interface for the authentication and au-
thorization for the shareFile activity from Listing 1.1 (lines 28–37) that uses
custom application IDs as the “security” mechanism. Figure 3a shows the dy-
namically rendered authentication form based on the specification in Bite. When

End-to-End Security for Enterprise Mashups 401

(a) Authentication Dialog (b) Authorization Step

Fig. 3. Custom Application ID Authentication and Authorization Process

the user’s browser is redirected to the SAS, the user sees the Web page as shown.
By clicking on the link, the authentication box pops up and the user enters the
credentials. After submitting the credentials, the user explicitly has to authorize
Bite to call the service on its behalf (Figure 3b). When the user authorizes Bite,
the flow proceeds its execution and the user is redirected back to the flow appli-
cation (in the synchronous case), otherwise an error is thrown. The same user
experience is available for HTTP basic authentication, however, the dialog box
is not dynamically rendered but browser-specific.

The proposed approach based on the SAS effectively supports both, authenti-
cation and authorization of third-party services without the need to disclose the
credentials to consumer applications (such as Bite in our case). A major focus
was a seamless user-experience during the authentication and authorization pro-
cess by automatically redirecting to the SAS to handle the authentication and
authorization process. Therefore, it provides a mechanism for enterprise mashup
solutions to transparently consume services in a secure way.

An important requirement for ensuring this end-to-end security is that the
SAS has to run in a “trusted” environment because it stores intercepted creden-
tials (for HTTP basic authentication) and stores the custom application IDs.
Clearly, this is not an issue when using a third-party service supporting OAuth,
because no credentials are disclosed to the SAS.

7 Related Work

Most existing mashup tools and products (e.g., Yahoo Pipes [2] or IBM Mashup
Center [3]) do not address a secure end-to-end authentication and authorization
of different services within a mashup. Most approaches use plain text to manage
user credentials within a mashup definition.

Pautasso [14] proposed BPEL for REST, an extension to the WS-BPEL lan-
guage to enable language support for RESTful services in business processes.

402 F. Rosenberg et al.

BPEL for REST does not provide any direct security support for invoking REST-
ful services. It allows the specification of custom HTTP headers which could be
used to encode the HTTP basic authentication information. However, this would
imply that password information is stored in cleartext in the BPEL definition.

Austel et al. [15] discussed the security challenges that need to be addressed
for Web 2.0. Many of the challenges are addressed in our solution: protecting
end-user credentials, secure and open delegation, authorization rules to limit del-
egation and a proxy to enable secure delegation to back end legacy systems. The
paper mostly concentrated on OAuth as the wire protocol for secure delegation.
It does not discuss proxy implementation details.

The approach introduced in this paper also shares several characteristics with
identity metasystems (IMs) [16, 17], which also deal with the problem of users
having multiple digital identities based on different protocols. IMs are typically
used to allow clients to access Web applications on behalf of users. In the work
presented here we consider the impact of multiple digital identities on the devel-
opment and use of business mashups. The fundamental difference is our focus
on a server side application (the mashup) acting on behalf of the end user.

A number of works have identified security issues for client-side mashups,
i.e., running in a browser and communicating with other service through AJAX
or related technologies. SafeMashups [18], for example, allows two web appli-
cations to communicate through a browser to securely authenticate each other
and establish a trusted channel. Subspace [19] enables a secure cross-domain
communication by providing a small JavaScript library to rule out a number of
existing security flaws.

8 Conclusions and Outlook

In this paper we provided an end-to-end environment for securely consuming
third-party services having diverse security requirements in a common service
mashup application. The proposed approach was implemented as an extension
to the Bite language and runtime by providing authentication and authorization
transparently using a Secure Authentication Service (SAS) that can handle dif-
ferent security protocols common in the Web 2.0 area. The approach currently
supports HTTP basic authentication, OAuth and customized application IDs
that are frequently used in various RESTful services on the Web.

As future work, we plan to extend the support for further security mech-
anisms supported by the SAS, for example single sign-on approaches such as
OpenID [7]. Additionally, we also want to reduce the need to explicitly spec-
ify the authentication type in the Bite flow, enabling automatic techniques to
“guess” the security mechanism at the target service.

References

1. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development.
IEEE Internet Computing 12(5), 44–52 (2008)

2. Yahoo! Inc.: Yahoo Pipes, http://pipes.yahoo.com (Last accessed: May 19, 2009)

http://pipes.yahoo.com

End-to-End Security for Enterprise Mashups 403

3. IBM Corporation: IBM Mashup Center,
http://www.ibm.com/software/info/mashup-center/ (Last accessed: May 19,
2009)

4. Hoyer, V., Fischer, M.: Market Overview of Enterprise Mashup Tools. In: Bouguet-
taya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 708–
721. Springer, Heidelberg (2008)

5. Lawton, G.: Web 2.0 creates security challenges. Computer 40(10), 13–16 (2007)
6. Koschmider, A., Torres, V., Pelechano, V.: Elucidating the Mashup Hype: Def-

initions, Challenges, Methodical Guide and Tools for Mashups. In: Proc. of the
Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the
Web (MEM 2009), Madrid, Spain (2009),
http://integror.net/mem2009/papers/paper14.pdf (Last accessed: May 21,
2009)

7. OpenID Foundation (OIDF): OpenID Authentication 2.0 - Final,
http://openid.net/specs/openid-authentication-2_0.html (Last accessed:
May 20, 2009)

8. OAuth Consortium: OAuth Core 1.0,
http://oauth.net/core/1.0/ (Last accessed: May 20, 2009)

9. Rosenberg, F., Curbera, F., Duftler, M.J., Khalaf, R.: Composing RESTful Services
and Collaborative Workflows: A Lightweight Approach. Internet Computing 12,
24–31 (2008)

10. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow Composition for
the Web. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS,
vol. 4749, pp. 94–106. Springer, Heidelberg (2007)

11. Lau, C.: BPM 2.0 – a REST based architecture for next generation workflow man-
agement. In: Devoxx Conference, Antwerp, Belgium (2008),
http://www.devoxx.com/download/attachments/1705921/D8_C_11_07_04.pdf

12. OASIS: Web Service Business Process Execution Language 2.0 (2006),
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

(Last accessed: May 28, 2009)
13. OAuth Consortium: OAuth Security Advisory 2009.1,

http://oauth.net/advisories/2009-1 (Last accessed: May 20, 2009)
14. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.)

BPM 2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008)
15. Austel, P., Bhola, S., Chari, S., Koved, L., McIntosh, M., Steiner, M., Weber,

S.: Secure Delegation for Web 2.0 and Mashups. In: Proc. of the Workshop on
Web 2.0 Security and Privacy 2008, W2SP (2008), http://w2spconf.com/2008/
papers/sp4.pdf (Last accessed: May 21, 2009)

16. OASIS: Identity Metasystem Interoperability Version 1.0,
http://www.oasis-open.org/committees/download.php/32540/identity-1.

0-spec-cs-01.pdf/ (May 14, 2009)
17. Microsoft: Microsoft’s Vision for an Identity Metasystem, http://msdn.

microsoft.com/en-us/library/ms996422.aspx (May 2005)
18. SafeMashups Inc.: MashSSL, https://www.safemashups.com (Last accessed: May

19, 2009)
19. Jackson, C., Wang, H.J.: Subspace: secure cross-domain communication for web

mashups. In: Proc. of the International Conference on World Wide Web (WWW
2007), Banff, Alberta, Canada, pp. 611–620. ACM, New York (2007)

http://www.ibm.com/software/info/mashup-center/
http://integror.net/mem2009/papers/paper14.pdf
http://openid.net/specs/openid-authentication-2_0.html
http://oauth.net/core/1.0/
http://www.devoxx.com/download/attachments/1705921/D8_C_11_07_04.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://oauth.net/advisories/2009-1
http://w2spconf.com/2008/papers/sp4.pdf
http://w2spconf.com/2008/papers/sp4.pdf
http://www.oasis-open.org/committees/download.php/32540/identity-1.0-spec-cs-01.pdf/
http://www.oasis-open.org/committees/download.php/32540/identity-1.0-spec-cs-01.pdf/
http://msdn.microsoft.com/en-us/library/ms996422.aspx
http://msdn.microsoft.com/en-us/library/ms996422.aspx
https://www.safemashups.com

	End-to-End Security for Enterprise Mashups
	Introduction
	Illustrative Example
	Contributions

	BMP and the Bite Language
	Overview of the Enterprise Mashup Security Solution
	Language Extensions for Security Specification
	Security Extension and Semantics
	Execution Semantics

	Secure Authentication Service
	OAuth Principles
	Third-Party Service Support
	Implementation Aspects

	Case Study and Discussion
	Related Work
	Conclusions and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

