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Abstract. The search for SHA-3 is now well-underway and the 51 sub-
missions accepted for the first round reflected a wide variety of design
approaches. A significant number were built around Rijndael/AES-based
operations and, in some cases, the AES round function itself. Many of the
design teams pointed to the forthcoming Intel AES instructions set, to
appear on Westmere chips during 2010, when making a variety of perfor-
mance claims. In this paper we study, for the first time, the likely impact
of the new AES instructions set on all the SHA-3 candidates that might
benefit. As well as distinguishing between those algorithms that are AES-
based and those that might be described as AES-inspired, we have de-
veloped optimised code for all the former. Since Westmere processors are
not yet available, we have developed a novel software technique based on
publicly available information that allows us to accurately emulate the
performance of these algorithms on the currently available Nehalem pro-
cessor. This gives us the most accurate insight to-date of the potential
performance of SHA-3 candidates using the Intel AES instructions set.

1 Introduction

Intel has announced that a new AES instructions set1 will be introduced in new
processors such as Westmere and available early in 2010. These instructions will
provide resistance to a range of software side-channel attacks [3,30] and offer
significant performance benefits for encryption and decryption using AES [24].
Simultaneously the NIST SHA-3 effort [25] to establish a new cryptographic
hash algorithm is well-underway and several teams of submitters have used AES-
like transformations as a cryptographic building block. Several of these teams
have explicitly expressed the assumption that their hashing algorithms could
take advantage of AES-NI and thereby enjoy significant performance benefits.
Since the Westmere processor is still unavailable, there have been no substantive
efforts to assess the possible implications of this important issue. In this paper,

1 Denoted AES-NI in this paper for “new instructions”.
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we provide the first quantitative analysis that estimates the likely impact of the
Intel AES instructions set on SHA-3 candidates.

The first step is to identify which SHA-3 candidates should be considered, and
this is not as straightforward as it might appear. AES-NI can be used in different
combinations to carry out different transformations, and so AES-NI might be
used in many more ways than would näıvely be expected. As a result, there are
submissions for which the variant that provides (say) 256-bit digests gains from
AES-NI, while the same algorithm providing a 512-bit digest cannot.

The second step is to develop a sound methodology for implementing the differ-
ent algorithms, optimising them, and measuring their performance. Clearly this
is a challenge when Westmere processors are unavailable. So we developed new
techniques from publicly available information—in effect, uncovering the behavior
of AES-NI—and this allowed us to emulate Westmere behavior on the publicly-
available Nehalem chips. While this might appear to detract from the value of
the performance figures we derive, the level of validation and confirmation that
took place during this work makes us confident that our results are close to the
Westmere reality.

Our sole goal in this paper has been to compare the performance of SHA-3
candidates when using AES-NI. To this end, we have set aside cryptanalytic
discussions [10] and we have implemented and optimised all the algorithms that
we believe might benefit from AES-NI. While the authors of this paper are
independent (co-)submitters of two SHA-3 proposals, we have strived to be fair
and consistent. In addition, all the code is publicly available via [29] and we
welcome interested parties to download and improve upon it. When Westmere
processors appear, the same samples can be used for real silicon running AES-NI.

2 The Intel AES Instructions

To start we provide a brief description of the Intel AES instructions, and com-
plete details can be found in [13,14]. Intel’s AES instructions set consists of six
instructions, four of which aesenc, aesenclast, aesdec, and aesdeclast are
designed to support data encryption and decryption. The names of these instruc-
tions are short for AES encryption (inner and last) round and AES decryption
(inner and last) round, see Table 4 from Appendix A. These instructions have
register/register and register/memory variants.

There are two other instructions for the AES key expansion but they seem to
be of little use to the SHA-3 submissions and are omitted from this paper.

2.1 What Operations Can We Use AES-NI for?

Clearly, AES instructions can be used whenever a SHA-3 proposal uses one
of the internal or final AES encryption (or decryption) rounds. But they can
be used more widely than this. For instance, calling aesdeclast and aesenc
back-to-back, both with a zeroed second operand, is functionally equivalent to
performing AES MixColumns on the first operand, see Appendix A.
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In fact if we use the pshufb instruction which shuffles bytes in a 128-bit
word, see Appendix A, then we can isolate all of the AES-constituents using
AES-NI [14], namely:

SubBytes , ShiftRows , MixColumns ,
InvSubBytes , InvShiftRows , InvMixColumns .

To illustrate the versatility this gives us, we combine standard xmm instructions
with AES-NI to perform encryption with Rijndael [8] operating on 256-bit blocks.
The plaintext is stored in xmmi and xmmj , but AES-NI cannot be used directly
since half the bytes of xmmi must be swapped with half the bytes of xmmj . However,
this swap can be efficiently implemented using two pshfub (1) to pack the bytes
to-be-swapped into two 32-bit words, two pblendw (2) to swap the 32-bit words,
and two pshufb (3) to re-order the bytes giving, in total, the following state
permutation:

xmmi

3 7 11 15

2 6 10 14

1 5 9 13

0 4 8 12

xmmj

3 7 11 15

2 6 10 14

1 5 9 13

0 4 8 12

1→

xmmi

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

xmmj

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

2→

xmmi

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

xmmj

12 14 1 15

8 13 10 11

4 9 6 7

0 5 2 3

3→

xmmi

37 11 15

14 26 10

5 9 131

0 4 8 12

xmmj

37 11 15

14 26 10

5 9 131

0 4 8 12

After this, aesenc can be applied in parallel to xmmi and xmmj , thereby giving the
appropriate ShiftRows for the large state, and Rijndael encryption on a larger
state has been emulated. Techniques like these are important to us since it is
possible that several SHA-3 candidates that do not use the complete AES round,
or that use a larger state, might still benefit from AES-NI.

2.2 The “In-Scope” SHA-3 Candidates

Obviously SHA-3 candidates that use the AES round as a building block can
benefit from using AES-NI. In addition, algorithms that use the AES S-box
along with some byte shuffling with or without the AES MDS mixing matrix
can benefit. One can also apply these operations to larger states, as we have seen
for Rijndael with 256-bit blocks. The main problems in using AES-NI tend to
arise when designs move away from the AES MDS matrix. Generally speaking,
this dramatically limits any potential performance gain from AES-NI, partic-
ularly since most optimised assembly implementations would incorporate the
MDS matrix operation into table look-ups, potentially combined with other op-
erations. AES-NI might however still be of interest to these designs, especially
in thwarting some side-channel attacks.

There are four submissions that directly, and transparently, use AES rounds
for all hash output lengths. These are echo [2], lane [18], shavite-3 [4], and
vortex [23]. For these algorithms it is clear that we can directly use AES-NI.
There are others that are clearly inspired by Rijndael-like techniques in their
construction. These include cheetah [22], fugue [15], grøstl [12], lesam-
nta [16], lux [27], and twister [11]. The submission shamata [1] has already
been withdrawn, and while some other surveys [5] describe sarmal [31] as being
AES-inspired, a non-AES S-box and MDS mixing layer take it out-of-scope.
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Table 1. The SHA-3 submissions with substantial Rijndael-based components. Check-
marks indicate those that might benefit from AES-NI, for different hash output lengths.

Algorithm 224-bit 256-bit 384-bit 512-bit

arirang � � no no

cheetah � � no no

echo � � � �
fugue no no no no

grøstl no no no no

lane � � � �
lesamnta � � � �

lux � � no no

shavite-3 � � � �
vortex � � � �

While lesamnta offers advantages for 256- and 512-bit hash outputs, it is
interesting that only the 256-bit versions of cheetah and lux benefit from
AES-NI. By contrast, it appears that no variant of fugue, grøstl, or twister
are likely to benefit. These algorithms use a very different MDS mixing matrix
to the AES and, as a result, end-up being too distant to use AES-NI in any
efficient way. So even though a combination of AES-NI instructions could be
used to isolate the S-box operations for fugue and grøstl, say, the table look-
ups typically used for the MDS operations in current optimised implementations
mean that there is no easy way for these algorithms to benefit from AES-NI.

Finally, even though the submission arirang [6] is quite different from the
Rijndael-based constructions, it might potentially benefit from AES-NI. We have
therefore included it in our considerations and Table 1 summarizes the (alpha-
betically ordered) list of algorithms and hash output lengths that we consider.

3 Implementation and Measurements

Obviously the best way to get performance timings is to write the appropriate
code, run it on a Westmere processor (the first with AES-NI), and measure the
performance. However, since this processor is not yet available, we propose a
new methodology that can be used to get an accurate emulation of AES-NI. We
rely on the fact that Westmere (formerly Nehalem-C) and Nehalem processors
share the same micro-architecture. This means that if we can find suitable in-
structions patterns that behave exactly as AES-NI instructions, we will get very
good estimates for the future performance of AES-based SHA-3 candidates on
a Westmere processor, but using today’s Nehalem processor.

Previously, a substitution instruction was proposed [23] for future processors.
However this substitution does not exhibit the correct behaviour for Westmere
and can give misleading results, see Section 3.1 and Appendix B. Here we pro-
vide a particularly accurate replacement instructions pattern for aesenc and we
explain how to derive it from publicly available information only.
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3.1 Replacement Instructions Pattern

The first step is to understand the exact behavior of the AES-NI instructions at
the micro-operation (µop) level,2 in particular that of aesenc and aesenclast.

An Intel code analyzer tool (IACA [21]) is publicly available and gives the
following information about aesenc (aesdec yields the same output):

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesenc xmm1, xmm0

(In this trace, ‘DV’ stands for the divider pipe of port 0, ‘D’ for the data fetch
pipe of ports 2 and 3. Additionally, an ‘X’ in the trace will be used to denote the
possible ports a µop can be dispatched to.)

This shows that aesenc consists of three µops, two of which are dispatched
to a unit on port 0 and one which is dispatched to a unit on port 5, and that
the instruction’s latency is 6 cycles. However, this information is too coarse to
provide hints for the right instructions pattern replacement: we need to derive
the exact scheduling of these µops. In what follows, we represent µops by bars
for which the length varies according to their latency. The gray bars denote the
µops on port 5 while the white ones denote the µops on port 0. Hence is a
2 cycle µop on port 5 and is a 3 cycle µop on port 0.

From Intel’s white paper [13] we know that AES-NI are highly parallelizable.
This discards the sequential µop patterns on port 0. Moreover, the white paper
explains (see Fig. 9 and 15) that aesdec is structured using the equivalent inverse
cipher (described in Appendix B), which is confirmed by an IACA trace identical
to that of aesenc displayed above (see Appendix B). This leads us to assume
that the µop on port 5 is the exclusive-or with the key, which is corroborated by
the purpose of unit 5, see [19]. Therefore, the µop on port 5 runs in cycle 6 and
requires that µops from port 0 are finished.

Intel’s optimization reference manual [19] gives additional information on the
possible µop latencies and throughput for each port on the Nehalem micro-
architecture. In particular, we see that µops dispatched on port 0 can only have
latencies 1, 4, or 5 cycles, and that µops on port 5 all have a 1 cycle latency.
Since aesenc has a total latency of 6 cycles, this only leaves the following possible
patterns: , , and . (Two µops cannot start at the same
cycle in the same unit but a µop is started as soon as possible to maximize the
overall throughput). It is impossible that a µop on port 0 performs the SubBytes
and/or ShiftRows step while it runs in parallel with the other µop performing
the MixColumns step which would then need the output of the first µop. So both
µops on port 0 perform at least one of the four MixColumn multiplications of the
MixColumns step. The most natural way of doing this is to symmetrically split
the computation on two independent halves of the state. In this case, the two
µops on port 0 have the same latency, which only leaves the pattern.
This is again supported by the IACA trace of aesimc instruction, as well as the
choice of inverse equivalent cipher for aesdec.

2 Instructions are split into micro-operations and dispatched to specialized CPU units.
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Now we turn to the replacement instructions set which would give exactly the
same µop-behavior as the instruction aesenc reg, reg. A previously proposed
replacement [23,17] is not appropriate for Westmere (see Appendix B). Instead,
a sequence that closely simulates the µop behavior of aesenc xmmi, xmmj is:

movdqu xmmk, xmmi

mulps xmmi , xmmj

mulps xmmk, xmmj

xorps xmmi , xmmk

For now, let us ignore the movdqu instruction. The IACA trace displayed below
shows that the last three instructions of the replacement behave exactly as the
aesenc xmm0, xmm1 instruction with a latency of 6 cycles. It yields two identical
and independent µops (they both come from mulps) on port 0, a 1 cycle µop on
port 5 which is forced to start after the two µops on port 0 since xorps has a
1 cycle µop on port 0 together with a dependency on register xmm2:

Total Latency: 6 Cycles; Total number of Uops: 4

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | X | | 1 | | | | | | X | CP | movdqu xmm2, xmm0
| 1 | 1 | | | | | | | | | | mulps xmm0, xmm1
| 1 | 1 | | | | | | | | | CP | mulps xmm2, xmm1
| 1 | | | | | | | | | 1 | CP | xorps xmm0, xmm2

The reader might wonder why we added the movdqu instruction to the beginning
of the replacement: by introducing a dependency on xmm0, we try to prevent the
processor from re-ordering the instructions at the prefetch and re-order step.
Hence, movdqu acts as a fence and ensures that the replacement fragment exhibits
a similar atomic behavior as aesenc. Since movdqu only has a latency of one cycle
and can be dispatched on port 0, 1, or 5, it will in most cases execute on port 1
in parallel of the other µops—and does not interfere with the replacement, and
rarely on port 5 or 0 which would add one cycle to the replacement latency.

Note however, that though the replacement allows for a very good simulation
of aesenc in terms of latency, throughput, and port behavior, it does introduce
a significant issue: the use of a third register xmmk (k = 2 in IACA’s trace) might
interfere with code surrounding the replacement by introducing false dependen-
cies. We took extra care in our implementations to avoid these when using the
replacement. This was not an easy task, especially for those SHA-3 candidates
that make heavy use of AES-NI parallelism such as echo and lane.

Another potential issue is that the aesenc instruction is 5 to 10 bytes long
depending on the variant whereas our replacement is 13 to 22 bytes. This can lead
to an efficiency penalty as the prefetch buffer of the Nehalem micro-architecture
has a size of 16 bytes. However an experiment (see Appendix B) shows that the
size of replacement is unlikely to be a significant factor.

Finally, we refer the reader to Appendix B for a justification of our choice of
the following replacement for memory-based variants like aesenc xmmi, [mem]:

movdqu xmmk, xmmi

mulps xmmi , [mem]
mulps xmmk, xmmj

xorps xmmi , xmmk

as well as for a discussion regarding replacements for other AES-NI instructions.



168 R. Benadjila et al.

3.2 Timing Methodology

For each in-scope candidate and for each hash output length, we implemented
two versions of the submission. These were identical in every way, except one
had AES-NI instructions and was used to ensure the correctness of our AES-NI
optimized implementation against the NIST-submitted test vectors with Intel’s
Emulator [20]; the other had AES-NI instructions substituted with their replace-
ments allowing it to run on a Nehalem to derive performance estimates.

To get consistent results over the candidates, we measured the number of
cycles (using rdtsc instructions and averaging over more than 108 samples to get
stable results) taken by the compression function of each algorithm on the same
Nehalem machine running Linux. However NIST’s API was fully implemented
to check correctness and, in many cases, these were taken from the reference
code sent to NIST by the submitters. To eliminate as much noise as possible
from the OS, high priority scheduling was allocated to the measured code. All
algorithms were implemented by the same programmers, providing a somewhat
uniform level of optimization.

4 Candidate Descriptions and AES-NI Implementations

In this section we consider the design and discuss the implementation of the
in-scope candidates. Full details of the algorithms can be found in the respective
algorithm descriptions, so we only give a brief overview of their functionality
along with insights into their design with regards to AES-NI. Our implementa-
tion proposals will be available from our website [29].

ARIRANG is a single-pipe compression function-based proposal. The bulk of
the computation in the compression function consists of the 40-step expansion of
a 512-bit message block, which is highly efficient in general purpose registers and
can be pre-computed, and a StepFunction that is repeated 40 times. StepFunction
requires eight exclusive-ors, four fixed rotations, and two calls to a function G256

that uses elements of the AES. For longer hash outputs, the equivalent function
G512 uses a larger MDS matrix that cannot be emulated using AES-NI, and so
any potential gain is restricted to 256-bit outputs.

However, the extent of this gain is very limited since arirang uses 1
4 of

an AES round as a building block, but the latency cost of aesenc while only
performing 1

4 of an AES round means that the performance of AES-NI, when
compared to the use of lookup tables, is not competitive. Attempts to parallelize
two of the 1

4 AES rounds introduced too many overheads. We conclude that
AES-NI is unlikely to offer any substantial benefits to arirang.

CHEETAH is a single-pipe compression function-based proposal. The com-
pression function consists of two strands of computation: a message-dependent
expanded block is generated which provides a key-like input to encrypt the
internal state. While the computations on expanded block and internal
state are both Rijndael-inspired, the former uses a different non-AES MDS
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matrix that is hard to emulate. Thus this key derivation is unlikely to benefit
from AES-NI and the use of look-up tables seems better suited.

For operations on the internal state, the 224- and 256-bit versions of chee-
tah use an operation InternalRound that can be emulated using AES-NI. How-
ever, the inherent sequential nature of the rounds and the fact that AES-NI
cannot be used in the most straightforward way means that while there are
gains, they are not as significant as they might be for some other submissions.

For the 384- and 512-bit versions, the operation InternalRound is modified to
use a larger MDS matrix that, once again, cannot exploit AES-NI. So for these
larger outputs, there is unlikely to be any gain with AES-NI.

ECHO is a double-pipe compression-based hash function. The 224- and 256-bit
(resp. 384- and 512-bit) versions encrypt a sixteen 128-bit words state in eight
(resp. ten) rounds of a compression function calculation. The encryption round
applies two AES rounds to each word of the state with a counter or salt as a
key, followed by a BIG.MixColumns MDS and row shift operation that provides
mixing across the entire state. For all hash output lengths, echo can benefit
from AES-NI and, while echo is primarily a double-pipe compression-based
hash function, a simple single-pipe variant was announced at the first NIST
workshop. We therefore include it in our considerations.

The AES encryption rounds are directly performed with aesenc with pre-
computed keys in memory. This allows the algorithm to take full advantage of
the AES-NI parallelism. The BIG.MixColumns operation however cannot further
benefit from AES-NI, though it is based on MixColumns. As an echo encryption
round does not vary with the output length, the same optimizations apply.

LANE is a single-pipe compression function-based hash function. Compress
consists of a message expansion, a set of six p-permutations, and then a set
of two q-permutations. As both sets of permutations are based on the AES
round, lane benefits from AES-NI at all hash function output lengths.

Both permutations are made of L = 2 (resp. L = 4) lines of AES rounds for
hash outputs of 256 (resp. 512) bits and after each round of AES in each line,
an operation SwapColumns mixes the L computation strands. lane therefore
offers two levels of parallelism: the p- and q-permutations and the lines inside
the permutations. The latter does not allow to take full advantage of AES-
NI parallelism as SwapColumns breaks the instructions flow so we use the two
levels of parallelism simultaneously: we compute an AES round for each of the
6L lines of the p-permutations in parallel before applying SwapColumns in
each p-permutation, and do the same for the q-permutations. (The code is
completely unrolled and all keys are precomputed.)

For 256-bit outputs, the state nicely fits the available xmm registers. But for
512-bit outputs, the state does not fit anymore and only three p-permutations
are computed in parallel instead of all six as before. This, in itself, does not
change the AES-NI throughput as the number of lines is doubled in each per-
mutation and thus the same number of AES rounds as before is performed
in parallel. However, the 512-bit version of SwapColumns imposes an additional
overhead.
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LESAMNTA is a single-pipe compression function-based hash function. The
underlying block cipher has the general topology of an unbalanced Feistel cipher;
at each round two strands of the eight that comprise the cipher state are updated
using a message dependent “subkey” and the round function f256 (resp. f512)
for the 256-bit (resp. 512-bit) hash output. The subkey generation and the f256

and f512 functions in the encryption path all involve AES-like operations and
lesamnta can potentially benefit from AES-NI.

For the 256-bit version, the key schedule poses few problems. However, one
difficulty for encryption path is that the AES-like transformations operate on
64-bit values and the MDS matrix is distinct from that of AES. The MDS matrix(

2
1

1
2

)
that is used is however a submatrix of MixColumn and so inserting zero

bytes at the entry of the appropriate MixColumns entries will allow to perform the
AES-like transformation using AES-NI. This can be achieved with the sequence:
pshufb, pxor with a particular constant, aesenc, and pshufb. Note that in this
case, aesenc is used at 1

2 of its normal efficiency.
In the case of 512-bit hash outputs, the AES-like transformation in the key

schedule involves an MDS that is too different from MixColumns, and so AES-NI
is not really of any use there: the keys are therefore precomputed in a classical
way. However, on the encryption side the round functions now use the full AES
round, which gives nice advantages.

For both sets of outputs, it is possible to use the unbalanced nature of the
Feistel construction to perform four f functions in parallel for both output sizes.
In the 256-bit version, this carries a greater benefit: the four instances of the
sequence preparing the data mentioned above can also be grouped to increase
the overall throughput.

LUX is a stream-cipher based hash function that uses two banks of cipher state;
the buffer and the core. At each iteration a block of message is input to both
the buffer and core, both of which are then updated with information being
passed between them. Sixteen blank rounds of computation seal the hashing
process after the last block of message has been processed. While the buffer
transformation is very simple, the core transformation is built on Rijndael-like
operations. And it is the Rijndael-like operations in the core that are the most
time-consuming parts of lux, with mixing of the core and buffer requiring
only a few, simple xmm instructions.

For all hash output lengths, the core transformation operates on a larger
state than we find in the AES. However for 256-bit hash outputs it is equivalent
to Rijndael operating on 256-bit blocks and techniques described in Section 2.1
can be used. Thus lux with 256-bit outputs will benefit from AES-NI.

When used to generate longer hash outputs, however, lux changes the form
of the MDS transformation in such a way that it cannot easily be emulated
using AES-NI. It appears for these longer outputs that AES-NI will not offer
any advantage. In fairness, the optimised implementations of lux for 512-bit
outputs are already extremely competitive.

As an aside on the timing methodology, it is worth observing that we imple-
mented sixteen iterations of the classical compression function found in lux as a
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single compress operation. This avoided buffer rotations and helped treat lux
in a way that was more consistent with the other algorithms.

SHAVITE-3 is a single-pipe compression function-based design, with the com-
pression function being built closely on a Feistel cipher. The round function for
this Feistel cipher is built directly from an AES round, and the accompanying
message expansion also uses the AES round function. As a result, all hash output
sizes can expect to benefit from AES-NI.

For the 256-bit hash output, the round function for the 12-round Feistel cipher
consists of three rounds of the AES and we can therefore use AES-NI directly. To
avoid any interaction with the memory, it is much more efficient to perform key
derivation inside the xmm registers. Key derivation produces 36 subkeys of 128 bits
using a combination of a non-linear layer based on four aesenc operations and
a linear layer. It is possible to interleave key derivation with encryption since
there are sufficient registers. The linear part of the key derivation only requires
a few xmm manipulations (if handled properly) while the four AES rounds in the
key schedule can be performed in parallel. The Feistel round function involves
three AES rounds, but this time they are chained. shavite-3 derives a significant
benefit from avoiding memory access.

For the 512-bit hash output, the underlying 14 rounds block cipher is a gen-
eralised Feistel network. At each round there are two parallel invocations of four
AES rounds. Now, however, key derivation produces new 128-bit words in sets of
eight, rather than four, and so this needs to be performed in place while keeping
the rest of the state in registers. The linear part of key derivation can still be im-
plemented efficiently and the eight AES rounds can be parallelized. Within the
encryption operation, there are now two Feistel round functions, each with four
dependent AES rounds but these can be interleaved, increasing the throughput
slightly. shavite-3 is very closely built around the AES round operation and
gains substantially from AES-NI.

VORTEX is a single-pipe compression function-based design that uses the en-
veloped Merkle-Damg̊ard construction and builds upon MDC-2 [7]. The building
blocks of vortex are Rijndael rounds on 128-bit blocks for vortex-256 and Ri-
jndael rounds on 256-bit blocks for vortex-512. Cross-mixing between the 128-
bit strands (resp. 256-bit strands for vortex 512) is multiplication-based. The
parameter MT determines whether integer multiplication (MT = 1) or carry-less
multiplication (MT = 0) is used. A motivation behind vortex was to directly
exploit AES-NI and the carry-less multiplication instructions on future Intel pro-
cessors. In this paper we consider the case of MT = 1. For vortex with 256-bit
outputs we can directly exploit the aesenc operation. The key schedule calls
upon the AES S-box but this can be easily emulated. For the 512-bit outputs,
the underlying cipher operates on 256-bit states and, using similar techniques
to those described in Section 2.1, it is straightforward to operate on this larger
state. In contrast to some other algorithms, e.g. echo and lane, vortex fits
into the registers. On the other hand, it turns out that there is a bit less room
to exploit AES-NI parallelism.
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5 Implementation Results

Performance estimates for all SHA-3 candidates considered in this paper are
given in Table 5. The Nehalem measurements were made on a Core i7 920 pro-
cessor3 clocked at 2.67 GHz with GNU/Linux Debian running a 2.6.26-1-amd64
kernel. The compiler was icc for amd64, Version 11.0, Build 20081105.
As explained in Section 3, we believe that these results will be very close to the
real performance of the algorithms when run on the Westmere processor. For
reference, some performance figures using assembly code from OpenSSL [28] for
SHA-256 and SHA-512 timed under the same methodology on the same proces-
sor are 18.6 and 12.0 cycles/Byte respectively. While our results are preliminary,
we feel they are sound enough to make some general observations.

Table 2. The predicted Westmere performance in cycles/Byte for those algorithms
that can benefit from the Intel AES instructions set. For illustration, we provide the
optimised performance figures given by submitters at the first NIST SHA-3 workshop.
Other performance data can be found at [9]. Since in all cases 224- and 384-bit outputs
are obtained by truncating 256- and 512-bit outputs, we only give figures for the latter.

256-bit 512-bit

Algorithm AES-NI previous AES-NI previous

arirang 14.9 14.9 − 11.3
cheetah 7.6 9.3 − 13.6
echo (double-pipe) 6.6 28.5 12.3 53.5
echo-sp (single-pipe) 5.7 24.4 8.1 35.7
lane 5.5 25.7 13.9 145.0
lesamnta 30.8 52.7 19.9 51.2
lux 6.6 10.2 − 9.5
shavite-3 5.6 26.7 5.5 38.2
vortex (mT = 1) 4.4 46.3 5.2 56.1

While it is tempting to group all AES/Rijndael-based SHA-3 submissions
together [5], one significant point of difference is that some will not be able to
take advantage of AES-NI. Further, there are some algorithms, e.g. cheetah and
lux, for which the shorter hash outputs are likely to gain from AES-NI while the
longer hash outputs, i.e. 384 and 512-bit, won’t. Interestingly, cheetah is one
of the fastest AES-inspired SHA-3 submissions on the NIST reference platform.
But its performance when used with AES-NI is somewhat constrained by other
non-AES components and cheetah may be slightly less competitive than the
other algorithms when using AES-NI. That said, currently optimised code for
this algorithm is reasonably efficient anyway. Our results for lesamnta differ
from those at [17] which unfortunately use a different, inappropriate replacement
instruction (see Section 3.1 and Appendix B).
3 Note that to ensure stable and clean results, we disabled two features of the processor:

Hyperthreading and Turbo Boost.
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Table 3. For those algorithms that solely use the AES round in its entirety, we give
the number of AES rounds/Byte as a crude measure of how much the AES is used
during the hashing process. We also give the cost, which is computed as the number of
cycles/AES round. In general terms, the lower the cost, the more efficiently the AES
round is being used with respect to AES-NI.

256-bit 512-bit

Algorithm AES-NI #AES/Byte cost AES-NI #AES/Byte cost

echo (double-pipe) 6.6 1.33 4.96 12.3 2.50 4.92
echo-sp (single-pipe) 5.7 1.14 5.00 8.1 1.67 4.85
lane 5.5 1.31 4.20 14.3 1.75 8.17
shavite-3 5.6 0.81 6.91 5.5 1.31 4.20
vortex (mT = 1) 4.4 0.72 6.11 5.2 0.72 7.22

As would be expected, algorithms that are specifically designed around the
AES round operation—echo, lane, shavite-3, and vortex—have the most
to gain by appealing to AES-NI. If we consider the figures for 256-bit hash
outputs then, for single-pipe variants, the throughput performance of these four
algorithms is similar. However there is a much greater contrast in performance
when we turn to 512-bit hash outputs, and this is due to differences in design. For
instance, shavite-3 for 512-bit outputs gains substantially from AES-NI since
the modified round function for 512-bit outputs offers many opportunities for
parallelism. This is something that is especially suited to AES-NI. On the other
hand, when we move from 256- to 512-bit outputs with lane, while the number
of AES operations per byte increases in roughly the same proportion as was the
case for shavite-3, there is a performance impact that comes from doubling the
size of the lanes in the p- and q-permutations. Of course, when compared to
existing optimised implementations lane will still gain considerably when using
AES-NI. But it does demonstrate how different design decisions can lead to very
different performance profiles.

6 Conclusions

In this paper we have provided the first in-depth analysis of the likely impact
of Intel’s AES instructions set on the first round SHA-3 candidates. To do this
we designed a new methodology to replicate and anticipate the likely behavior
of AES-NI in Westmere and we feel that this, in itself, will be of considerable
interest. We have also provided the first performance estimates for those submis-
sions that are likely to gain from AES-NI. Throughout we have tried to make a
consistent and comprehensive comparison, and we have used the best currently-
available information. We believe that our predictions are accurate and, in fact,
may even be conservative. All the code we have developed is public [29] and this
will allow others to develop their own optimized versions and to obtain improved
performance projections.
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Finally this paper sheds light on what has, until now, been a somewhat hidden
issue. It is clear that the new Intel AES instructions set will have a profound
effect on the performance of some of the SHA-3 submissions. At the same time,
this low-level support for AES will become very widespread within a few years.
Certainly this is only one factor among many for the SHA-3 candidates; but it
may well be one of the important ones.
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Schläffer, M., Thomsen, S.: Grøstl—a SHA-3 Candidate. Available from [26]
13. Gueron, S.: Intel’s Advanced Encryption Standard (AES) Instructions Set. Intel

Corporation White Paper (March 2009), http://software.intel.com
14. Gueron, S.: Intel’s New AES Instructions for Enhanced Performance and Secu-

rity. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 51–66. Springer,
Heidelberg (2009)

15. Halevi, S., Hall, W., Jutla, C.: The Hash Function Fugue. Available from [26]
16. Hirose, S., Kuwakado, H., Yoshida, H.: SHA-3 Proposal: Lesamnta. Available from

[26]
17. Hirose, S., Kuwakado, H., Yoshida, H.: The Hash Function Famly Lesamnta,

http://www.sdl.hitachi.co.jp/crypto/lesamnta

18. Indesteege, S.: The LANE Hash Function. Available from [26]
19. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Man-

ual, Table 2-6 of, http://www.intel.com/Assets/PDF/manual/248966.pdf
20. Intel Corporation. Intel Software Development Emulator (SDE),

http://software.intel.com/en-us/avx/

http://cr.yp.to/papers.html#cachetiming
http://bench.cr.yp.to/ebash.html
http://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo
http://software.intel.com
http://www.sdl.hitachi.co.jp/crypto/lesamnta
http://www.intel.com/Assets/PDF/manual/248966.pdf
http://software.intel.com/en-us/avx/


The Intel AES Instructions Set and the SHA-3 Candidates 175

21. Intel Corporation. Intel IACA tool: A Static Code Analyser,
http://software.intel.com/en-us/avx/

22. Khovratovich, D., Biryukov, A., Nikolić, I.: The Hash Function Cheetah. Available
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Appendix A: Instructions

Table 4. The instructions that provide AES encryption

aesenc xmm1, xmm2/m128 aesenclast xmm1, xmm2/m128

Tmp := xmm1; Tmp := xmm1;
Round Key := xmm2/m128; Round Key := xmm2/m128;

Tmp := ShiftRows (Tmp); Tmp := ShiftRows(Tmp);
Tmp := SubBytes (Tmp); Tmp := SubBytes (Tmp);
Tmp := MixColumns (Tmp); xmm1 := Tmp xor Round Key
xmm1 := Tmp xor Round Key;

Table 5. How to derive the MixColumns operation from AES-NI

aesdeclast xmm1, 0x0 · · · 0
aesenc xmm1, 0x0 · · · 0

Tmp := xmm1
Tmp := InvShiftRows (Tmp);
Tmp := InvSubBytes (Tmp);

xmm1 := Tmp xor 0x0;

Tmp := xmm1
Tmp := ShiftRows (Tmp);
Tmp := SubBytes (Tmp);
Tmp := MixColumns (Tmp);

xmm1 := Tmp xor 0x0;

Description of Some Additional Operations Used in This Work

pshufb xmm1, xmm2/m128 This instruction is used to generate a byte-wise per-
mutation of the contents of the first 128-bit operand, where the permutation is
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http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions_md1.html
http://www.openssl.org/source/
http://crypto.rd.francetelecom.com/sha3/AES/
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defined by the second operand (xmm register or a memory location). The sec-
ond source operand (xmm2/m128) is used as a mask, as follows. For each byte of
xmm2/m128, the least significant four bits specify from where to select the corre-
sponding byte of the source operand (xmm1). In addition, if the most significant
bit of a byte of xmm2/m128 equals one, then, regardless of the values of the other
bits in that byte, zero is written in the result byte.

pblendw xmm1, xmm2/m128, imm8 This operation “blends” the contents of
two 128-bit operands (two registers or a register and a memory location) at the
granularity of 16-bit words. Words from the second operand are conditionally
written to the destination operand, depending on the setting of bits in the byte
operand imm8. If bit k of this byte is set, then word k of the source is copied to
the destination. If bit k is zero, word k of the destination is unchanged.

Appendix B: Rationale Behind the Replacements

Additional IACA Traces

AES-NI provides the aesimc instruction to perform InvMixColumns:

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesimc xmm0, xmm1

The IACA tool supports the aesdec instruction the trace of which is shown
below but does not support the aesdeclast instructions. From what has been
derived for aesenc, aesdec, and aesimc, it is reasonable to assume its trace
would have been identical to that of aesdec.

Total Latency: 6 Cycles; Total number of Uops: 3

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 3 | 2 | | | | | | | | 1 | CP | aesdec xmm0, xmm1

Instructions Replacement Size

In order to evaluate the possible impact on the prefetching step (the prefetch
buffer has a size of 16 bytes) or on the instruction cache, we conducted the
following experiment: we went through the same kind of analysis as we conducted
on aesenc and we replaced pmulld xmm15, [mem] which has two sequential µops
of 3 cycles on port 1 by

phminposuw xmm15,[mem]
phminposuw xmm15, xmm15

which have a single µop on port 1 each, but are interdependent. While the size of
pmulld is 7 bytes and the size of the proposed replacement is 17 bytes, they both
ran on the Nehalem with identical timings. Not only does this lend support to our
approach, but it also suggests that the increased size of our AES-NI instructions
set replacement is unlikely to have a significant effect.
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Instructions Replacement for the Memory Variant

The aesenc reg, [mem] replacement we propose is actually quite similar to the
aesenc reg, reg one. The only difference lies in the simulation of the memory
access: it shouldn’t impact the µop flows and, to accurately simulate aesenc
reg, [mem], the corresponding µop should start at the same cycle as the first
µop on port 0. This is why we chose to launch the memory access at the first
mulps instruction:

movdqu xmmk, xmmi

mulps xmmi , [mem]
mulps xmmk, xmmj

xorps xmmi , xmmk

The validity of this replacement is assessed by the two following IACA traces:

Total Latency: 12 Cycles; Total number of Uops: 4

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 4 | 2 | | | 1 | 1 | X | X | | 1 | CP | aesenc xmm0, [0x6008f0]

Total Latency: 11 Cycles; Total number of Uops: 5

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | X | | 1 | | | | | | X | | movdqu xmm2, xmm0
| 2 | 1 | | | 1 | 1 | X | X | | | CP | mulps xmm0, [0x6008f0]
| 1 | 1 | | | | | | | | | | mulps xmm2, xmm1
| 1 | | | | | | | | | 1 | CP | xorps xmm0, xmm2

An unfortunate side-effect of this replacement is that it affects an additional xmm
register, putting additional constraints when avoiding false dependencies. This
mainly concerns the echo and lane algorithms.

Equivalent Inverse Cipher

The equivalent inverse cipher [8] allows for a decryption structure that is very
similar to that of encryption. This is achieved by noticing that the straightfor-
ward decryption algorithm

InvShiftRows , InvSubBytes , AddRoundKey , InvMixColumns ,

can be replaced by the equivalent one

InvSubBytes , InvShiftRows , InvMixColumns , AddRoundKey ,

as the two first rounds commute and the last two commute when the key expan-
sion is tweaked accordingly; decryption is now similarly structured to encryption:

SubBytes , ShiftRows , MixColumns , AddRoundKey .

An Inappropriate Replacement

In this paragraph, we give the IACA trace for the pmuludq instruction. This
shows that the replacement proposed in [23] is not appropriate as a generic
aesenc replacement on the Nehalem architecture. In the trace below, pmuludq
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has a latency of 3 cycles whereas the aesenc instruction has a latency of 6 cycles,
so the two instructions behave differently. It is even worse at the µop level, as
aesenc has 3 µops dispatched through ports 0 and 5 whereas pmuludq has a
single µop dispatched on port 1: this will lead to very distinct behaviors, and
almost certainly a different throughput.

Total Latency: 3 Cycles; Total number of Uops: 1

| Num of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
------------------------------------------------------------
| 1 | | | 1 | | | | | | | CP | pmuludq xmm0, xmm1

This explains the differences in the performance of lesamnta derived in this
paper and quoted at [17].
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