
Adaptive Peer Sampling with Newscast�

Norbert Tölgyesi1 and Márk Jelasity2

1 University of Szeged and Thot-Soft 2002 Kft., Hungary
ntolgyesi@gmail.com

2 University of Szeged and Hungarian Academy of Sciences, Hungary
jelasity@inf.u-szeged.hu

Abstract. The peer sampling service is a middleware service that provides ran-
dom samples from a large decentralized network to support gossip-based appli-
cations such as multicast, data aggregation and overlay topology management.
Lightweight gossip-based implementations of the peer sampling service have
been shown to provide good quality random sampling while also being extremely
robust to many failure scenarios, including node churn and catastrophic failure.
We identify two problems with these approaches. The first problem is related
to message drop failures: if a node experiences a higher-than-average message
drop rate then the probability of sampling this node in the network will decrease.
The second problem is that the application layer at different nodes might request
random samples at very different rates which can result in very poor random
sampling especially at nodes with high request rates. We propose solutions for
both problems. We focus on Newscast, a robust implementation of the peer sam-
pling service. Our solution is based on simple extensions of the protocol and an
adaptive self-control mechanism for its parameters, namely—without involving
failure detectors—nodes passively monitor local protocol events using them as
feedback for a local control loop for self-tuning the protocol parameters. The
proposed solution is evaluated by simulation experiments.

1 Introduction

In large and dynamic networks many protocols and applications require that the partic-
ipating nodes be able to obtain random samples from the entire network. Perhaps the
best-known examples are gossip protocols [1], where nodes have to periodically ex-
change information with random peers. Other P2P protocols that also require random
samples regularly include several approaches to aggregation [2,3] and creating overlay
networks [4,5,6,7], to name just a few.

One possibility for obtaining random samples is to maintain a complete membership
list at each node and draw samples from that list. However, in dynamic networks this
approach is not feasible. Several approaches have been proposed to implementing peer
sampling without complete membership information, for example, based on random
walks [8] or gossip [9,10,11].

� M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences.
This work was partially supported by the Future and Emerging Technologies programme FP7-
COSI-ICT of the European Commission through project QLectives (grant no.: 231200).

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 523–534, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

524 N. Tölgyesi and M. Jelasity

Algorithm 1. Newscast
1: loop
2: wait(Δ)
3: p ← getRandomPeer()
4: buffer ← merge(view,{myDescriptor})
5: send update(buffer) to p
6: end loop
7:
8: procedure ONUPDATERESPONSE(m)
9: buffer ← merge(view,m.buffer)

10: view ← selectView(buffer)
11: end procedure

12: procedure ONUPDATE(m)
13: buffer ← merge(view,{myDescriptor})
14: send updateResponse(buffer) to m.sender
15: buffer ← merge(view,m.buffer)
16: view ← selectView(buffer)
17: end procedure

Gossip-based solutions are attractive due to their low overhead and extreme fault tol-
erance [12]. They tolerate severe failure scenarios such as partitioning, catastrophic node
failures, churn, and so on. At the same time, they provide good quality random samples.

However, known gossip-based peer sampling protocols implicitly assume the uni-
formity of the environment, for example, message drop failure and the rate at which
the application requests random samples are implicitly assumed to follow the same
statistical model at each node. As we demonstrate in this paper, if these assumptions
are violated, gossip based peer sampling can suffer serious performance degradation.
Similar issues have been addressed in connection with aggregation [13].

Our contribution is that, besides drawing attention to these problems, we propose so-
lutions that are based on the idea that system-wide adaptation can be implemented as
an aggregate effect of simple adaptive behavior at the local level. The solutions for the
two problems related to message drop failures and application load both involve a local
control loop at the nodes. The local decisions are based on passively observing the local
events and do not involve explicit failure detectors, or reliable measurements. This fea-
ture helps to preserve the key advantages of gossip protocols: simplicity and robustness.

2 Peer Sampling with Newscast

In this section we present a variant of gossip-based peer sampling called Newscast (see
Algorithm 1). This protocol is an instance of the protocol scheme presented in [12],
tuned for maximal self-healing capabilities in node failure scenarios. Here, for simplic-
ity, we present the protocol without referring to the general scheme.

Our system model assumes a set of nodes that can send messages to each other. To
send a message, a node only needs to know the address of the target node. Messages
can be delayed by a limited amount of time or dropped. Each node has a partial view
of the system (view for short) that contains a constant number of node descriptors. The
maximal size of the view is denoted by c. A node descriptor contains a node address
that can be used to send messages to the node, and a timestamp.

The basic idea is that all the nodes exchange their views periodically, and keep only
the most up-to-date descriptors of the union of the two views locally. In addition, every
time a node sends its view (update message) it also includes an up-to-date descriptor of
itself.

Adaptive Peer Sampling with Newscast 525

Parameter Δ is the period of communication common to all nodes. Method getRan-
domPeer simply returns a random element from the current view. Method merge first
merges the two lists it is given as parameters, keeping only the most up-to-date descrip-
tor for each node. Method selectView selects the most up-to-date c descriptors.

Applications that run on a node can request random peer addresses from the entire
network through an API that Newscast provides locally at that node. The key element of
the API is method getRandomPeer. Though in a practical implementation this method is
not necessarily identical to the method getRandomPeer that is used by Newscast inter-
nally (for example, a tabu list may be used), in this paper we assume that the application
is simply given a random element from the current view.

Lastly, we note that although this simple version of Newscast assumes that the clocks
of the nodes are synchronized, this requirement can easily be relaxed. For example,
nodes could adjust timestamps based on exchanging current local times in the update
messages, or using hop-count instead of timestamps (although the variant that uses
hop-count is not completely identical to the timestamp-based variant).

3 Problem Statement

We identify two potential problems with Newscast noting that these problems are com-
mon to all gossip-based peer sampling implementations in [12]. The first problem is re-
lated to message drop failures, and the second is related to unbalanced application load.

3.1 Message Drop Failure

Gossip-based peer sampling protocols are designed to be implemented using lightweight
UDP communication. They tolerate message drop well, as long as each node has the
same failure model. This assumption, however, is unlikely to hold in general. For ex-
ample, when a lot of failures occur due to overloaded routers that are close to a given
node in the Internet topology, then UDP packet loss rate can be higher than average at
the node. In this case, fewer copies of the descriptor of the node will be present in the
views of other nodes in the network violating the uniform randomness requirement of
peer sampling.

Figure 1 illustrates this problem in a network where there is no failure, only at a
single node. This node experiences a varying drop rate, which is identical for both
incoming and outgoing messages. The Figure shows the representation of the node in
the network as a function of drop rate. Note the non-linearity of the relation. (For details
on experimental methodology see Section 4.3.)

3.2 Unbalanced Application Load

At different nodes, the application layer can request random samples at varying rates.
Gossip-based peer sampling performs rather poorly if the required number of samples
is much higher than the view size c over a time period of Δ as nodes participate in
only two view exchanges on average during that time (one initiated and one passive).
Figure 1 illustrates the problem. It shows the number of unique samples provided by

526 N. Tölgyesi and M. Jelasity

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

message drop rate

Newscast

desired value

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5000 10000 15000 20000 25000 30000

un
iq

ue
 a

dd
re

ss
es

 r
et

ur
ne

d

number of requests for a random sample

uniform random sampling

Newscast

Fig. 1. Illustrations of two problems with gossip-based peer sampling. Parameters: c = 20, N =
10, 000, the number of own entries in network is the average of 100 consecutive cycles

Newscast as a function of time at a node where the application requests random samples
at a uniform rate with a period of Δ/1000.

4 Message Drop Failure

4.1 Algorithm

We would like to adapt the period Δ of Newscast (Algorithm 1) at each node in such
a way that the representation of each node in the network is identical, irrespective of
message drop rates. This means that ideally all the nodes should have c copies of their
descriptor since the nodes hold Nc entries altogether, where N is the number of nodes.

We make the assumption that for each overlay link (i, j) there is a constant drop rate
λi,j , and all the messages passing from i to j are dropped with a probability of λi,j .
According to [14] this is a reasonable assumption. For the purpose of performing sim-
ulation experiments we will introduce a more specific structural model in Section 4.2.

The basic idea is that all the nodes passively monitor local messages and based on
this information they decide whether they are under- or overrepresented in the network.
Depending on the result, they slightly decrease or increase their period in each cycle,
within the interval [Δmin, Δmax].

Let us now elaborate on the details. All the nodes collect statistics about the incoming
and outgoing message types in a moving time window. The length of this time window
is Δstat. The statistics of interest (along with notations) are the following (note that
we have omitted the node id from the notations for the sake of clarity): the number of
update messages sent (uout), the number of update messages received (uin), and the
number of update response messages received (rin).

From these statistics, a node approximates its representation in the network (n).
Clearly, n is closely related to uin. The exact relationship that holds for the expectation
of uin is

E(uin) =
1
c
PinnΔstatφavg , (1)

Adaptive Peer Sampling with Newscast 527

where c is the view size, Pin is the probability that a message sent from a random node
is received, and φavg is the average frequency of the nodes in the network at which they
send update messages.

The values for this equation are known except Pin and φavg . Note however, that
φavg is the same for all nodes. In addition, φavg is quite close to 1/Δmax if most of the
nodes have close to zero drop rates, which is actually the case in real networks [14]. For
these two reasons we shall assume from now on that φavg = 1/Δmax. We validate this
assumption by performing extensive experiments (see Section 4.3).

The only remaining value to approximate is Pin. Here we focus on the symmetric
case, when λi,j = λj,i. It is easy to see that here E(rin) = P 2

inuout, since all the links
have the same drop rate in both directions, and to get a response, the update message
first has to reach its destination and the response has to be delivered as well. This gives
us the approximation Pin ≈

√
rin/uout.

Once we have an approximation for Pin and calculate n, each node can apply the
following control rule after sending an update:

Δ(t + 1) =

⎧
⎪⎨

⎪⎩

Δ(t) − α + β if n < c

Δ(t) + α + β if n > 2c

Δ(t) + α(n/c − 1) + β otherwise,

(2)

where we also bound Δ by the interval [Δmin, Δmax]. Parameters α and β are positive
constants; α controls the maximal amount of change that is allowed in one step towards
achieving the desired representation c, and β is a term that is included for stability: it
always pulls the period towards Δmax. This stabilization is necessary because otherwise
the dynamics of the system will be scale invariant: without β, for a setting of periods
where nodes have equal representation, they would also have an equal representation if
we multiplied each period by an arbitrary factor. It is required that β � α.

Although we do not evaluate the asymmetric message drop scenario in this paper
(when λi,j �= λj,i), we briefly outline a possible solution for this general case. As in
the symmetric case, what we need is a method to approximate Pin. To achieve this we
need to introduce an additional trick into Newscast: let the nodes send R independent
copies of each update response message (R > 1). Only the first copy needs to be a
full message, the remaining ones could be simple ping-like messages. In addition, the
copies need not be sent at the same time, they can be sent over a period of time, for
example, over one cycle. Based on these ping messages we can use the approximation
Pin ≈ rin/(Rnin), where nin is the number of different nodes that sent an update
response. In other words, we can directly approximate Pin by explicitly sampling the
distribution of the incoming drop rate from random nodes.

This solution increases the number of messages sent by a factor of R. However,
recalling that the message complexity of gossip-based peer sampling is approximately
one UDP packet per node during any time period Δ, where Δ is typically around 10
seconds, this is still negligible compared to most current networking applications.

4.2 Message Drop Failure Model

In our model we need to capture the possibility that nodes may have different message
drop rates, as discussed in Section 3.1. The structure of our failure model is illustrated in

528 N. Tölgyesi and M. Jelasity

1
λ 1

λ 2 λ 3

λ 4

2 3

4

core Internet

Fig. 2. The topological structure of the message drop failure model

Figure 2. The basic idea is that all the nodes have a link to the core Internet that captures
their local environment. The core is assumed to have unbiased failure rates; that is, we
assume that for any given two links, the path that crosses the core has an identical failure
model. In other words, we simply assume that node-specific differences in failure rates
are due to effects that are close to the node in the network. We define the drop rate of a
link (i, j) by λi,j = λiλj .

We assume that each message is dropped with a probability independent of previous
message drop events. This is a quite reasonable assumption as it is known that packet
loss events have negligible autocorrelation if the time lag is over 1000 ms [14].

It should be mentioned that the algorithm we evaluate does not rely on this model
for correctness. This model merely allows us (i) to control the failure rate at the node
level instead of the link level and (ii) to work with a compact representation.

As for the actual distributions, we evaluate three different scenarios:

Single-Drop. As a baseline, we consider the model where any node i has λi = 0,
except a single node that has a non-zero drop-rate.

Uniform. Drop rate λi is drawn from the interval [0, 0.5] uniformly at random.
Exponential. Based on data presented in [14] we approximate 100λi (the drop rate

expressed as the percentage of dropped messages) by an exponential distribution
with parameter 1/4, that is, P (100λi < x) = 1 − e−0.25x. The average drop rate
is thus 4%, and P (100λi > 20%) ≈ 0.007.

4.3 Evaluation

In order to carry out simulation experiments, we implemented the algorithm over the
event-based engine of PeerSim [15]. The parameter space we explored contains every
combination of the following settings: the drop rate distribution is single-drop, uniform,
or exponential; α is Δmax/1000 or Δmax/100; β is 0, α/2, or α/10; and Δstat is
Δmax, 2Δmax, 5Δmax, or 20Δmax. If not otherwise stated, we set a network size
of N = 5000 and simulated no message delay. However, we explored the effects of
message delay and network size over a subset of the parameter space, as we explain
later. Finally, we set c = 20 and Δmin = Δmax/10 in all experiments.

The experiments were run for 5000 cycles (that is, for a period of 5000Δmax time
units), with all the views initialized with random nodes. During a run, we observed the
dynamic parameters of a subset of nodes with different failure rates. For a given failure

Adaptive Peer Sampling with Newscast 529

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

message drop rate (λ)

Δstat=Δmax
Δstat=2Δmax
Δstat=5Δmax
Δstat=20Δmax

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

message drop rate (λ)

Δstat=Δmax
Δstat=2Δmax
Δstat=5Δmax
Δstat=20Δmax

Fig. 3. The effect of Δstat on n. The fixed parameters are N = 5, 000, α = Δmax/1000,
β = α/10, exponential drop rate distribution. Message delay is zero (left) or uniform random
from [0, Δmax/10] (right).

rate, all the plots we present show average values at a single node of the given failure
rate over the last 1500 cycles, except Figure 6 that illustrates the dynamics (convergence
and variance) of these values.

Let us first consider the role of Δstat (see Figure 3). We see that small values intro-
duce a bias towards nodes with high drop rates. The reason for this is that with a small
window it often happens that no events are observed due to the high drop rate, which
results in a maximal decrease in Δ in accordance with the control rule in (2). We fix the
value of 20Δmax from now on.

In Figure 3 we also notice that the protocol tolerates delays very well, just like the
original version of Newscast. For parameter settings that are not shown, delay has no
noticeable effect either. This is due to the fact that we apply no failure detectors explic-
itly, but base our control rule just on passive observations of average event rates that are
not affected by delay.

Figure 4 illustrates the effect of coefficients α and β. The strongest effect is that the
highest value of β introduces a bias against nodes with high drop rates. This is because
a high β strongly pushes the period towards its maximum value, while nodes with high
drop rates need a short period to get enough representation.

 10

 12

 14

 16

 18

 20

 22

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

message drop rate (λ)

α=Δmax/1000, β=0
α=Δmax/100, β=0
α=Δmax/1000, β=α/10
α=Δmax/100, β=α/10
α=Δmax/1000, β=α/2
α=Δmax/100, β=α/2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

no
rm

al
iz

ed
 p

er
io

d
(Δ

/Δ
m

ax
)

message drop rate (λ)

α=Δmax/1000, β=0
α=Δmax/100, β=0

α=Δmax/1000, β=α/10
α=Δmax/100, β=α/10
α=Δmax/1000, β=α/2

α=Δmax/100, β=α/2

Fig. 4. The effect of α and β on n. The fixed parameters are N = 5, 000, Δstat = 20Δmax,
exponential drop rate distribution.

530 N. Tölgyesi and M. Jelasity

 16

 17

 18

 19

 20

 21

 22

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

message drop rate (λ)

N=100,000
N=25,000
N=5,000

 16

 18

 20

 22

 24

 26

 28

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

message drop rate (λ)

exponential
single-drop

uniform

Fig. 5. The effect of network size and drop rate distribution on n. The fixed parameters are
N = 5, 000 (right), Δstat = 20Δmax, α = Δmax/1000, β = α/10, exponential drop rate
distribution (left)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000

no
rm

al
iz

ed
 p

er
io

d
(Δ

/Δ
m

ax
)

elapsed time (Δmax)

Δ/Δmin

λ=0.7

λ=0.2

λ=0

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 500 1000 1500 2000

ow
n

vi
ew

 e
nt

rie
s

in
 n

et
w

or
k

(n
)

elapsed time (Δmax)

λ=0.7
view size (c)

Fig. 6. The dynamics of Δ and n for N = 5, 000, Δstat = 20Δmax, α = Δmax/1000,
β = α/10, exponential drop rate distribution

In general, the smaller value for α is more stable than the higher value for all values
of β, which is not surprising. However, setting a value that is too small slows down
convergence considerably. Hence we will set α = Δmax/1000 and β = α/10.

In Figure 5 we see that the algorithm with the recommended parameters produces
a stable result irrespective of network size or message drop rate distribution. There is
a notable exception: the uniform distribution, where nodes with very small drop rates
get slightly overrepresented. To see why this happens, recall that in the algorithm we
made the simplifying assumption that the average update frequency is 1/Δmax. This
assumption is violated in the uniform model, where the average drop rate is very high
(0.25) which noticeably increases the average update frequency.

However, in practice, due to the skewed distribution, the average drop rate is small.
Second, in special environments where the average rate is high, one can approximate
the average rate using suitable techniques (for example, see [3]).

Finally, in Figure 6we show the dynamics ofΔandnwith the recommended parameter
settings. We observe that convergence requires approximately 500 cycles after which the
periods of the nodes fluctuate in a bounded interval. The Figure also shows n as a function
of time. Here we see that the variance is large. However, most importantly, it is not larger
than that of the original Newscast protocol where this level of variance is normal [12].

Adaptive Peer Sampling with Newscast 531

5 Unbalanced Application Load

5.1 Algorithm

If the application at a node requests many random samples, then the node should com-
municate faster to refresh its view more often. Nevertheless we should mention that it is
not a good solution to simply speed up Algorithm 1 locally. This is because in this case
a fast node would inject itself into the network more often, quickly getting a dispropor-
tionate representation in the network. To counter this, we need to keep the frequency of
update messages unchanged and we need to introduce extra shuffle messages without
injecting new information.

To further increase the diversity of the peers to be selected, we apply a tabu list as
well. Algorithm 2 implements these ideas (we show only the differences from
Algorithm 1).

Shuffle messages are induced by the application when it calls the API of the peer
sampling service; that is, procedure getRandomPeer: the node sends a shuffle message
after every S random peer requests. In a practical implementation one might want to
set a minimal waiting time between sending two shuffle messages. In this case, if the
application requests random peers too often, then it will experience a lower quality of
service (that is, a lower degree of randomness) if we decide to simply not send the
shuffle message; or a delayed service if we decide to delay the shuffle message.

We should add that the idea of shuffling is not new, the Cyclon protocol for peer
sampling is based entirely on shuffling [10]. However, Cyclon itself shares the same
problem concerning non-uniform application load; here the emphasis is on adaptively
applying extra shuffle messages where the sender does not advertise itself.

The tabu list is a FIFO list of fixed maximal size. Procedure findFreshPeer first at-
tempts to pick a node address from the view that is not in the tabu list. If each node in
the view is in the tabu list, a random member of the view is returned.

Note that the counter is reset when an incoming shuffle message arrives. This is done
so as to avoid sending shuffle requests if the view has been refreshed during the waiting
period of S sample requests.

Finally, procedure shuffle takes the two views and for each position it randomly
decides whether to exchange the elements in that position; that is, no elements are
removed and no copies are created.

Algorithm 2. Extending Newscast with on-demand shuffling
1: procedure GETRANDOMPEER

2: p ← findFreshPeer()
3: tabuList.add(p)
4: counter ← counter+1
5: if counter=S then
6: counter ← 0
7: send shuffleUpdate(view) to p
8: end if
9: return p

10: end procedure

11: procedure ONSHUFFLEUPDATERESPONSE(m)
12: buffer ← m.buffer
13: counter ← 0
14: end procedure
15:
16: procedure ONSHUFFLEUPDATE(m)
17: (buffer1,buffer2) ← shuffle(view,m.buffer)
18: send shuffleUpdateResp(buffer1) to m.sender
19: buffer ← buffer2
20: end procedure

532 N. Tölgyesi and M. Jelasity

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5000 10000 15000 20000

un
iq

ue
 a

dd
re

ss
es

 r
et

ur
ne

d

number of requests for a random sample

max delay=0.01Δ, S=1

random sampling
tabu size=300
tabu size=100
tabu size=30
tabu size=10
tabu size=3
tabu size=0

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

un
iq

ue
 a

dd
re

ss
es

 r
et

ur
ne

d

number of requests for a random sample

tabu size=300, S=1

random sampling
max delay=0.01Δ
max delay=0.02Δ
max delay=0.04Δ
max delay=0.08Δ
max delay=0.16Δ
max delay=0.32Δ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2000 4000 6000 8000 10000

un
iq

ue
 a

dd
re

ss
es

 r
et

ur
ne

d

number of requests for a random sample

tabu size=300, max delay=0.01Δ

random sampling
S=1
S=2
S=4
S=8
S=16

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 10000 20000 30000 40000 50000 60000 70000

un
iq

ue
 a

dd
re

ss
es

 r
et

ur
ne

d

number of requests for a random sample

tabu size=300, max delay=0.01Δ

random sampling, N=106

random sampling, N=105

S=8, N=106

S=8, N=105

Fig. 7. Experimental results with adaptive shuffling for N = 104 if not otherwise indicated. In
B/W print, lines are shown in the same line-type: the order of keys matches the order of curves
from top to bottom.

5.2 Evaluation

Like in Section 4.3, we ran event-driven simulations over PeerSim. Messages were
delayed using a uniform random delay between 0 and a given maximal delay.

In all the experiments, we worked with a scenario where peer sampling requests are
maximally unbalanced: we assumed that the application requests samples at a high rate
on one node, and no samples are requested on the other nodes. This is our worst case
scenario, because there is only one node that is actively initiating shuffle requests. The
other nodes are passive and therefore can be expected to refresh their own view less often.

The experimental results are shown in Figure 7. The parameters we examine are
S, the size of the tabu list, network size (N) and the maximal delay. The values of
the maximal delay go up to 0.3Δ, which is already an unrealistically long delay if we
consider that practical values of Δ are high, around 10 seconds or more. In fact, in the
present adaptive version Δ can be much higher since randomness is provided by the
shuffling mechanism.

First of all, we notice that for many parameter settings we can get a sample diversity
that is almost indistinguishable from true random sampling, especially when S and the
maximal delay are relatively small. For S = 2 and S = 4 the returned samples are still
fairly diverse, which permits one to reduce the number of extra messages by a factor of
2 or even 4. The tabu list is “free” in terms of network load, so we can set high values,
although beyond a certain point having higher values appears to make no difference.

Adaptive Peer Sampling with Newscast 533

The algorithm is somewhat sensitive to extreme delay, especially during the initial
sample requests. This effect is due to the increased variance of message arrival times,
since the number of messages is unchanged. Due to variance, there may be large inter-
vals when no shuffle responses arrive. This effect could be alleviated via queuing the
incoming shuffle responses and applying them in equal intervals or when the application
requests a sample.

Since large networks are very expensive to simulate, we will use just one parameter
setting for N = 105 and N = 106. In this case we observe that for large networks
randomness is in fact slightly better, so the method scales well.

6 Conclusions

In this paper we identified two cases where the non-uniformity of the environment can
result in a serious performance degradation of gossip-based peer sampling protocols,
namely non-uniform message drop rates and an unbalanced application load.

Concentrating on Newscast we offered solutions to these problems based on a sta-
tistical approach, as opposed to relatively heavy-weight reliable measurements, reliable
transport, or failure detectors. Nodes simply observe the local events and based on that
they modify the local parameters. As a result, the system converges to a state that can
handle non-uniformity.

The solutions are cheap: in the case of symmetric message drop rates we require no
extra control messages at all. In the case of application load, only the local node has
to initiate extra exchanges proportional to the application request rate; but for any sam-
pling protocol that maintains only a constant-size state this is a minimal requirement.

References

1. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart,
D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of
the 6th Annual ACM Symposium on Principles of Distributed Computing (PODC 1987),
Vancouver, British Columbia, Canada, pp. 1–12. ACM Press, New York (1987)

2. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In:
Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2003), pp. 482–491. IEEE Computer Society Press, Los Alamitos (2003)

3. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large dynamic net-
works. ACM Transactions on Computer Systems 23(3), 219–252 (2005)

4. Bonnet, F., Kermarrec, A.-M., Raynal, M.: Small-world networks: From theoretical bounds
to practical systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 372–385. Springer, Heidelberg (2007)

5. Patel, J.A., Gupta, I., Contractor, N.: JetStream: Achieving predictable gossip dissemination
by leveraging social network principles. In: Proceedings of the Fifth IEEE International Sym-
posium on Network Computing and Applications (NCA 2006), Cambridge, MA, USA, July
2006, pp. 32–39 (2006)

6. Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-
based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648, pp.
1143–1152. Springer, Heidelberg (2005)

534 N. Tölgyesi and M. Jelasity

7. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management. In: Brueck-
ner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS,
vol. 3910, pp. 1–15. Springer, Heidelberg (2006)

8. Zhong, M., Shen, K., Seiferas, J.: Non-uniform random membership management in peer-
to-peer networks. In: Proc. of the IEEE INFOCOM, Miami, FL (2005)

9. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership proto-
col. In: Proceedings of the 24th annual ACM symposium on principles of distributed com-
puting (PODC 2005), Las Vegas, Nevada, USA. ACM Press, New York (2005)

10. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive Membership Management
for Unstructured P2P Overlays. Journal of Network and Systems Management 13(2), 197–
217 (2005)

11. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kermarrec, A.M., Kouznetsov, P.:
Lightweight probabilistic broadcast. ACM Transactions on Computer Systems 21(4), 341–
374 (2003)

12. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based
peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)

13. Yalagandula, P., Dahlin, M.: Shruti: A self-tuning hierarchical aggregation system. In: IEEE
Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 141–150. IEEE
Computer Society, Los Alamitos (2007)

14. Zhang, Y., Duffield, N.: On the constancy of Internet path properties. In: Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement (IMW 2001), pp. 197–211. ACM
Press, New York (2001)

15. PeerSim, http://peersim.sourceforge.net/

http://peersim.sourceforge.net/

	Adaptive Peer Sampling with Newscast
	Introduction
	Peer Sampling with Newscast
	Problem Statement
	Message Drop Failure
	Unbalanced Application Load

	Message Drop Failure
	Algorithm
	Message Drop Failure Model
	Evaluation

	Unbalanced Application Load
	Algorithm
	Evaluation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

