
N. Aykin (Ed.): Internationalization, Design, LNCS 5623, pp. 274 – 282, 2009.
© Springer-Verlag Berlin Heidelberg 2009

“Whose Rule Is It Anyway?" – A Case Study in the
Internationalization of User-Configurable Business Rules

Morgan McCollough

Bridge360
1016 La Posada Dr, Suite 120

Austin, TX 78752
morgan_mccollough@bridge360.com

Abstract. This paper consists of a case study concerning the internationaliza-
tion of an electronic invoice management web application and its central rules
engine. It examines the challenges faced in introducing internationalization
changes at the level of a custom scripting language processor and the problems
inherent in maintaining compatibility with existing deployments. The paper out-
lines the specific solution and the ways in which the key concepts of locale con-
text and lazy initialization may be applied to other similar internationalization
problems.

1 Introduction

In early 2007 Bridge360 was challenged with the internationalization (i18n) of a cli-
ent's flagship web application. The client was taking the first steps into the European
market and had limited experience with global software. The application in question
was a web-based, ASP.NET system developed for large organizations to automate the
process of managing electronic invoices. The system was originally an outgrowth of an
effort to establish standards for certain types of electronic invoices and tools to handle
them. The invoice management system created value for large organizations by requir-
ing the electronic submission of all invoices using a specific standard and serving as a
conduit for invoice approval workflows and integration with accounts payable.

The particular challenge concerning this case study is not the internationalization
of the invoice management application in general, but rather one of its core compo-
nents, the rules engine. The rules engine is a custom scripting language that provides
a framework for customers to develop and add their own business processes, rules,
and workflows to an existing system. For example, a billing management system
might be customized through the use of a rules engine to automatically apply a certain
percentage discount for all clients in a particular region. In the context of electronic
invoices, rules could be developed to automatically apply rate adjustments to invoices
arriving from particular vendors, to raise errors when an invoice is submitted against a
project not approved for payment, or to insert warnings directly into an invoice when
the total amount billed for a particular project climbs over a certain threshold. In gen-
eral the strength of a rules engine lies in the ability to customize the behavior of a
software system for any particular client in the field.

 Whose Rule Is It Anyway? 275

The rules engine in this specific application was implemented using a custom
scripting language processor, which allowed for a great deal of flexibility in customi-
zation for customer deployments due to its expressive power. However, this flexibility
also presented complications in the area of internationalization. This case study will
focus on the challenges encountered when implementing a solution capable of sup-
porting global environments. The difficulties in the project centered on two central
issues. First, the server had to run in one language environment but service users in
different languages. Second, the locale under which the rule was initially executed did
not necessarily match the locale under which its results were viewed. The final solu-
tion will also be described, along with the core concepts of locale context and lazy
initialization, which may be applied to other similar internationalization problems.

2 The Project

The first step in the project was an internationalization assessment of the automated
invoice management system. This is a useful technique to gain an overall picture of an
application’s code base and discern its internationalization shortcomings. Despite the
fact that the server application was written in C#.NET, a language with a large
amount of internationalization support built-in, the assessment revealed a number of
potential problems. This was largely because the system was never architected to sup-
port multiple languages and hence included a number of U.S.-specific assumptions as
well as places where the built-in i18n support of C# was not utilized. The application
also employed a number of 3rd party components that were incapable of performing
correctly in an international environment.

2.1 Rules Engine

The rules engine in the client’s invoice management system was implemented as a
custom scripting language processor. In other words, the client created a completely
new, custom scripting language, solely for the purpose of defining business rules to
modify the behavior of the system. The rules engine consisted of a single process
which ran the language interpreter to parse, compile, and execute the various rules
scripts defined in the engine’s configuration file. As invoices were posted into the
system, rules were executed in the context of each invoice as a whole or for each in-
dividual line item in an invoice.

The scripting language was straightforward but highly configurable. It was never
intended to be a fully-expressive programming language and therefore consisted
mainly of conditional statements, a few basic mathematical operations, and a small set
of actions or functions that could be performed on an invoice. Each defined rule con-
sisted of a context definition (invoice or line item), a conditional expression to exam-
ine the incoming invoice data and make a logical choice of whether or not to execute
the rule, and an action to perform if the rule in question was triggered. Support for
conditional statements included basic logical operators as well as access to a pre-
defined data structure consisting of all of the main elements of an invoice. Actions
were a series of functions with specific parameters as defined in an external configu-
ration file. This configuration file defined the names of all supported actions, their

276 M. McCollough

parameters, and references to the code that implemented each action. It was therefore
relatively simple for the client's professional services department to add custom ac-
tions during a product deployment if the default actions did not meet a customer's
requirements. In addition, there was a completely separate client application devel-
oped for editing business rules in the field. It provided a graphical environment for the
Professional Services group to quickly author a series of rules to meet any customer's
needs.

An Example Rule. The following is an example of a simple rule that could have been
implemented in the invoice management system's rules engine.

If

 Invoice.Project.ID == "ACCT-257”

 and

 Invoice.Total > 100000.00

Then

 AddInvoiceWarning “Invoice submitted on “ +

 Invoice.SubmitDate + “ exceeds the maximum
billable amount

 for Project “ + Invoice.Project.ID + “(“ +
100000.00 +

 “) and will require special approval!”

End

The above rule would have the effect of adding an invoice warning to an incoming
invoice if the ID of the related project was "ACCT-257" and the total billed in the
invoice exceeded 100,000. An invoice warning is a special message that is attached to
an invoice that is prominently visible at the top of the invoice detail screen in the ap-
plication's web interface. It would be one of the first messages displayed when a user
viewed an invoice matching the above condition through the web interface. The mes-
sage itself contains several variable expressions that are part of the pre-defined data
structure mentioned above. They provide access to the various fields and values con-
tained in an invoice and resolve to the appropriate values when the rule executed.

2.2 The Problem

The difficulties in internationalizing a rules engine like the one described above are
twofold. First, all existing rules had to function correctly when the application was
deployed on a non-English application server. Many non-internationalized applica-
tions exhibit problems or cease to function at all when run on a non-English operating
system. Even if a non-U.S. customer were to deploy the English version of the appli-
cation, it is likely that the application would be run on a non-English version of the
Windows server platform. Requiring a customer to run an international software
product exclusively on an English operating system is not a reasonable option. Sec-
ond, as evidenced by the example above, this particular rules engine was capable of

 Whose Rule Is It Anyway? 277

adding strings to an invoice that were visible in the main application interface. There-
fore there had to be some mechanism to translate this text since the application was a
web-based system where a single server could support users in multiple languages
simultaneously.

Constraints. Although the basic problem is outlined above, there were a number of
important additional requirements to consider in the specific situation of the auto-
mated invoice management system. These requirements or "constraints" had to be
taken into account when designing and implementing an appropriate solution.

Backwards Compatibility. The internationalization improvements were being incorpo-
rated in the main version of the application as opposed to an international-specific
version. The client had a significant base of existing customers that all had rules con-
figured specifically for their business environments, and there were plans to upgrade a
number of these customers to the next major release, which would include the interna-
tionalization features. If any changes were made that caused existing rules to stop
functioning after an upgrade or required changes to existing rules the costs involved
would have been unacceptable to current customers.

Multi-language Server. The client confirmed that their first European customer would
be hosting the application to run in both English and French simultaneously. There
are a number of companies, especially in Europe, that do business in multiple lan-
guages, and requiring clients to install a separate server for every desired language
would have been unreasonable due to the increased costs of using multiple servers
and the lack of an easy way to share data among multiple servers without significant
application enhancements. This type of web application has further complications
because the user interface locale is variable and does not always match the locale of
the server that is running the application. This presented a challenge for the rules en-
gine since it ran in a separate process from the user interface. The rules processor ran
using the locale of the server, which could be different from the locale of a particular
user session in the web interface. However, the user’s locale defined the environment
in which a rule’s output would be viewed, including examples like the one above.

Dynamic Data. In the example above there are variables inserted into the middle of
the invoice warning string. These types of variables are sometimes referred to as "dy-
namic data" because their value is not determined until run-time and hence may
change depending on the specific execution environment. In the example, "In-
voice.SubmitDate" would be replaced with the date on which the invoice in
question was submitted, and this would change depending on the date on which the
rule runs. The rules scripting language supported data insertion for any data field in an
invoice, which meant that inserted values could be strings, numeric values, currency
values, or dates. These values therefore needed to be rendered according to the user’s
locale when viewed in the user interface. Deciding upon a locale context to use pre-
sented a problem because rules processor executed completely independently of the
user interface.

Customization in the Field. The final limiting factor concerned the nature of the rules
engine itself. The rules engine was meant as a customization tool, and the client con-
figured it mostly during deployments at customer sites. It was therefore logical that

278 M. McCollough

there would need to be a method to create internationalized rules in the field. This
spurred the need for a mechanism by which the Professional Services, or even the
customer, could create and configure fully internationalized rules and update any nec-
essary translations.

3 The Solution

The final solution to the internationalization problems in the rules engine came down
to solving 3 major issues. First, the application had to correctly execute the custom
script rules regardless of the language and locale of the server’s operating system.
Second, dynamic data had to be rendered correctly at runtime depending on the user’s
locale. Finally, there needed to be some method to translate arbitrary strings utilized
in custom business rules without breaking any existing syntax or rules. The following
sections outline how each of these problems was solved and how each solution ad-
dressed the requirements and constraints listed above.

3.1 Locale Context

When writing code for an internationalized application, it is important to be cognizant
of locale. Any piece of code that executes on modern operating systems does so in a
particular locale context, and there are many libraries and system functions that will
change behavior depending on the locale environment. This is especially true for a
language environment like C#.NET where all string-related operations utilize the con-
figured locale context to define their behavior. Many internationalization problems
can be traced to code that completely ignores locale or simply assumes behavior
based on the rules and conventions of one particular locale.

In the case of the invoice management rules engine, the scripting language proces-
sor was largely a string parser and interpreter that assumed the conventions of the
U.S. English locale. When this code was executed on a non-English machine there
were a number of issues. All string-related functions in the C#.NET libraries auto-
matically picked up the locale of the system, which broke many implicit assumptions
in the code. For example, the code assumed a period was always used for the decimal
point. However, the French locale uses a comma instead of a period which caused the
script language processor to parse many numbers incorrectly.

Two basic solutions to this problem were considered. The first was to make sure
the locale was properly detected and then go through the code and eliminate any as-
sumptions based on U.S. conventions. This approach had two major problems. First
was that the rules engine was at its core a scripting language interpreter and hence had
many lines of code. Combing through this component to find all the potential prob-
lems would have been a long process, especially considering project time constraints
and the fact that there were few people left at the client that were familiar with the
interpreter’s inner workings. The second issue was that there was a significant base of
default rules that shipped with the product and were used as the basis to customize a
client's system. Forcing the interpreter to use the system locale could have potentially
required the client to keep different versions of these scripts for each language that
differed only in syntax, due mainly to differences in date and numeric literal values.

 Whose Rule Is It Anyway? 279

The second solution, which was the one chosen, was relatively simple. Code was
added in a number of places to explicitly set the locale environment of parse opera-
tions to use U.S. conventions. This was to ensure consistency such that any rules
script running in any language environment would be functionally identical. The rules
scripts themselves were never seen by end users and it would have made no sense for
the same script to operate differently in two different language contexts or to require
rules to be re-written depending on the language environment of the server, as it was
assumed that international users would no longer embed literal strings into business
rules. This also made sense because the rules script was essentially a programming
language, and programming languages tend to follow the U.S. conventions as a stan-
dard. Finally, explicitly using the U.S. conventions was a low-risk change because the
engine had already been thoroughly tested on an English operating system.

3.2 Lazy Initialization

Lazy initialization is a concept in computer science whereby the creation of an object
or the calculation of a value is delayed until such time as it is actually needed versus
performing the operation ahead of time and storing the result for later use. The same
basic principle was applied to the evaluation of data in the rules engine. Originally, all
expressions in a rule were evaluated at the time of the rule's execution. In the example
rule above, the invoice warning string would have been completely evaluated and
attached to the invoice in its final form, e.g. “Invoice submitted on 4/5/09 exceeds the
maximum billable amount for project ACC-257 (100,000.00) and will require special
approval!” This was no longer possible in the context of a multi-language server. The
locale under which the rule was executed did not necessarily match the locale of the
user that logged into the web interface to view that specific invoice. In the case of a
user session in French, the date listed above would not match any of the other dates
displayed in the internationalized interface and it would therefore be easy for the user
to mistake it for May 4, 2009 rather than April 5, 2009. It also would have made
translation of the string at run-time for different user sessions extremely difficult.

The output string resulting from rule execution was stored in a table in the applica-
tion’s database. When the corresponding invoice was displayed in the user interface,
all of the various comments, warnings and other strings were pulled from the database
and displayed directly in the UI. In order to make the system capable of displaying
multiple language versions of these strings, there had to be some locale-neutral ver-
sion of the evaluated string that could be transformed into the correct language form
at run-time based on the user’s locale. This concept of lazy initialization is the basic
idea behind the internationalization of user interface strings for most global software.
The differences lie in the exact mechanism used to achieve it.

Several alternatives were considered regarding where and how to store the transla-
tions for these user-defined strings. The first idea was to have the rule authors simply
place multiple translations of a string in the rule script itself. This was quickly dis-
missed as a maintenance nightmare, as it would require editing rule scripts every time
a language was added and would also require significant modifications to the script-
ing language itself. It would also not solve the problem of dynamic data. The second
idea was to assume users would only ever look at invoices related to specific projects
and all users under a specific project were likely to speak one language. If that were

280 M. McCollough

the case, there could be a specific language designated for a specific project, and the
rules could be segregated by language and project. That again was quickly dismissed,
as it assumed too much about the way in which the application would be used. It also
did not solve the problem of dynamic data, as there was no way to change the locale
of the rule execution and hence the format of numbers and dates at a project level.

Ultimately, the solution was to internationalize the rule code in much the same was
as normal application code. Instead of embedding a literal message in rule code, a
string identifier would take its place. For example a message like “Invoice exceeds
maximum billable amount" would be replaced by an identifier that could be used to
look up the actual value when a user viewed the invoice through the web interface.
Rule output with any identifiers would be inserted in the database table when the rule
executed, just as if it were a typical string. A hook was added to the user interface
layer to tell these identifiers apart from normal text when rule output was pulled from
the database. When the user interface detected an identifier within rule output, the
real value would be pulled from a rules engine resource file according to the user’s
session locale. Any dynamic data was inserted into the translated string properly for-
matted for the user’s locale before being displayed in the web interface. In this way,
final evaluation of rules data could be delayed until the appropriate locale could be
obtained. The main problem with this approach was that it required a consistent for-
mat to be used for the special string identifiers that for the sake of backwards com-
patibility could not be confused with normal text data. Otherwise, there was a very
real danger of breaking existing scripts. This, and the necessity to support dynamic
data, led directly to the final piece of the solution, the introduction of custom syntax
into the scripting language processor.

3.3 Custom Syntax

As mentioned above, the introduction of new syntax into the rules scripting language
was required to produce a consistent pattern that could be evaluated correctly at the
user interface level without changing the behavior of any of the existing syntax.

Originally, following the convention of lazy initialization, it was thought that for
dynamic data variables, the simplest solution would be to store the variable name it-
self and delay evaluation until the user interface layer. For example, store the variable
“Invoice.Total” as a string with a marker to identify it as a variable. However, it
quickly became clear that delaying evaluation for all variables used in message strings
could greatly complicate the code in the user interface layer. It was also realized that
there were many situations where the value of the variable could change between the
time of the rule’s evaluation and when the data was eventually displayed in a web
page. For example, if the variable “Invoice.Total” was saved as an identifier
and not resolved to its numeric value until displayed to the user, its value might
change if any users added discounts or rate adjustments to the invoice after it was
posted into the system. In the example rule given above, this would cause a problem if
the adjustment lowered the invoice total below the threshold that triggered the rule in
the first place since the warning comment would no longer make any sense.

Eventually, the team decided that the dynamic variables would have to be evalu-
ated at the time of rule execution. However, in cases where they were to be used in
translatable strings, they had to be evaluated into a locale-neutral format that could be

 Whose Rule Is It Anyway? 281

re-interpreted later in order to format them properly for display in the user interface.
This forced the creation of a special syntax to avoid impacting the normal evaluation
behavior of dynamic data and therefore run the risk of breaking existing rules.

First, a new string concatenation operator (a comma) was added to the language to
serve as a companion to the existing string concatenation operator (”+” in the example
above). The use of the new operator allowed for the conversion of date and numeric
data into a consistent locale-neutral format. Second, a convention was established and
documented that any string value in a rules script starting and ending with 2 dollar
signs (“$$”) would be interpreted as a literal string by the rules processor but would
be interpreted as a key to look up a translated value by the user interface lazy initiali-
zation hook. Values to be inserted into the string at run-time could simply be concate-
nated behind the key value using the new concatenation operator.

The example rule given earlier would be rewritten as follows using the new con-
ventions and syntax.

If

 Invoice.Project.ID == "ACCT-257”

 and

 Invoice.Total > 100000.00

Then

 AddInvoiceWarning “$$AmountExceededWarning$$“,

 Invoice.SubmitDate, Invoice.Matter.ID,
100000.00

End

When evaluated by the newly modified rules engine, the above rule would generate
the follow warning string to attach to an invoice.

“$$AmountExceededWarning$$;2009-4-5;ACCT-257;100000.00”

The actual warning text was placed in the rules engine resource file using the given
id as follows.

AmountExceededWarning = “Invoice submitted on {0:D}

exceeds the

 maximum billable amount for Project {1}
({2:C}) and will

 require special approval!”

The “D” and “C” values are format strings defined in C# to indicate date and cur-
rency values respectively. In the user interface, the lazy evaluation hook was config-
ured to initiate a re-evaluation based on the presence of the double dollar signs. The
translated value was looked up, the dynamic data was parsed according to the estab-
lished convention, and the final string was constructed using the locale conventions of
the current user.

282 M. McCollough

In this way, any rule modified to use the above conventions and syntax could show
up correctly in different languages and formats depending on the user locale. At the
same time, any rule not adhering to the new syntax or conventions would be evaluated
according to the original behavior of the rules engine, therefore ensuring perfect
backwards compatibility. There was also discussion of adding support for these con-
ventions and the rules resource file into the rules engine development application, but
it was deferred due to time constraints and scheduled for a later release.

4 Conclusion

In the end, the project was completed on time, and neither the client nor their custom-
ers were required to modify their existing rules. Two principles proved crucial to ac-
complishing this. First, the insight of treating rules engine output as an intermediate
format to be evaluated further at runtime rather than treating it as final output allowed
full internationalization of dynamic data with a minimum of code changes. Second,
the deferment of localizable data evaluation as long as possible enabled the evaluation
to occur in the correct locale context. Applying these basic principles kept the overall
code changes to a minimum in terms of scale and risk while also providing backwards
compatibility.

Acknowledgements. The author would like to acknowledge the project team for deliv-
ering the project that is the focus of this paper, as well as Brenda Hall and Chris Du-
rand for their many invaluable comments and suggestions during the editing process.

	“Whose Rule Is It Anyway?" – A Case Study in the Internationalization of User-Configurable Business Rules
	Introduction
	The Project
	Rules Engine
	The Problem

	The Solution
	Locale Context
	Lazy Initialization
	Custom Syntax

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

