
Audio CAPTCHA for SIP-Based VoIP

Yannis Soupionis, George Tountas, and Dimitris Gritzalis

Information Security and Critical Infrastructure Protection Research Group
Dept. of Informatics, Athens University of Economics & Business, Greece

jsoup@aueb.gr, gtountas@aueb.gr, dgrit@aueb.gr

Abstract. Voice over IP (VoIP) introduces new ways of communication, while
utilizing existing data networks to provide inexpensive voice communications
worldwide as a promising alternative to the traditional PSTN telephony. SPam
over Internet Telephony (SPIT) is one potential source of future annoyance in
VoIP. A common way to launch a SPIT attack is the use of an automated pro-
cedure (bot), which generates calls and produces audio advertisements. In this
paper, our goal is to design appropriate CAPTCHA to fight such bots. We fo-
cus on and develop audio CAPTCHA, as the audio format is more suitable for
VoIP environments and we implement it in a SIP-based VoIP environment. Fur-
thermore, we suggest and evaluate the specific attributes that audio CAPTCHA
should incorporate in order to be effective, and test it against an open source bot
implementation.

1 Introduction

A serious obstacle when trying to prevent Spam over Internet Telephony (SPIT) is iden-
tifying VoIP communications which originate from software robots (bots). Alan Tur-
ing’s Turing Test” paper [1] discusses the special case of a human tester who attempts
to distinguish humans from artificial intelligence (AI) computer programs. The research
interest in this subject has spurred a number of proposals for CAPTCHA (Completely
Automated Public Tests to tell Computers and Humans Apart) [2,3,4,5]. Commercial
examples include major stakeholders in the field, such as Google and MSN, which
require CAPTCHA (visual or audio), in order to provide services to users. However,
more advanced computer programs can break a number of CAPTCHA that have been
proposed to date.

In this paper, we develop an audio CAPTCHA suitable for use in VoIP infrastruc-
tures, which are based on the Session Initiation Protocol (SIP). We first illustrate some
of the SIP-based SPIT characteristics and present background work. We then explain
how a CAPTCHA can be utilized in a VoIP infrastructure. In section 3, we propose
a classification of the characteristics/attributes of audio CAPTCHA. In section 4 we
briefly introduce a bot that is currently publicly available and will be used for testing
purposes. We also present an example of how this bot solves CAPTCHA. In section 5
we implement a new audio CAPTCHA, which is based on the attributes shown in sec-
tion 3. Finally, we present the results of the tests performed to order to evaluate its
performance.

D. Gritzalis and J. Lopez (Eds.): SEC 2009, IFIP AICT 297, pp. 25–38, 2009.
c© IFIP International Federation for Information Processing 2009

26 Y. Soupionis, G. Tountas, and D. Gritzalis

2 Background

SPIT constitutes a new, emerging type of threat in VoIP environments. It illustrates sev-
eral similarities to email spam. Both spammers and spitters use the Internet to target a
group of users to initiate bulk and unsolicited messages and calls, respectively. Com-
pared to traditional telephony, IP telephony provides a more effective channel, since
messages are sent in bulk, and at a low cost. Marketers can use spam-bots to harvest
VoIP addresses. Furthermore, since call-route tracing over IP is more difficult, the po-
tential for fraud is considerably greater.

A method that is widely used to uphold automated SPAM attacks is CAPTCHA. The
same technique can be used in order to mitigate SPIT. Each time a callee receives a call
from an unknown caller, an automated reverse Turing test would be triggered, which
the spit-bot needs to solve in order to complete its attack. Integrating such a technique
into a VoIP infrastructure raises two issues. Firstly, the CAPTCHA module should be
combined with other anti-SPIT controls, i.e. not every call should pass through the
CAPTCHA challenge, since each audio CAPTCHA requires considerable computa-
tional resources. A simultaneous triggering of numerous CAPTCHA challenges may
eventually lead to denial of service. Challenges would also cause annoyance to users, if
they had to solve one for every single call they make. Moreover, the CAPTCHA needs
to be designed in a friendly way to humans and also remain solvable by them.

2.1 CAPTCHA

A CAPTCHA challenge is a test that most humans should be able to pass, but cur-
rent computer programs should not. Such a test is often based on hard, open AI prob-
lems, e.g. automatic recognition of distorted text, or of human speech against a noisy
background. Differing from the original Turing test, CAPTCHA challenges are auto-
matically generated and graded by a computer. Since only humans are able to return a
sensible response, an automated Turing test embedded in the above protocol can ver-
ify whether there is a human or a bot behind the challenged computer. Although the
original Turing test was designed as a measure of progress for AI, CAPTCHA is a
human-nature-authentication mechanism. In this paper, we focus on audio CAPTCHA.
These were initially created to enable people that are visually impaired to register or
make use of a service that requires solving of a CAPTCHA. Nowadays, an audio
CAPTCHA would also be useful to defend against automated audio VoIP messages,
as visual CAPTCHA are hard to apply in VoIP environments due to the limitations
of end-user devices (e.g. IP phones). If an adequate CAPTCHA is used, it should
be hard for a spit-bot to respond correctly and, thus, manage to initiate a call. Au-
dio CAPTCHA also seem attractive, as text-based CAPTCHA have been proven to be
breakable [7,8,9,10,11]. We validate our results with user tests and with a bot that was
configured in order to solve difficult audio CAPTCHA. The proposed CAPTCHA must
be: (a). Easy for humans to solve, (b). Easy for a tester machine to generate and grade,
(c). Hard for a software bot to solve.

Audio CAPTCHA for SIP-Based VoIP 27

Fig. 1. A generic CAPTCHA development process

The first requirement implies that user studies are necessary in order to evaluate
the effectiveness of CAPTCHA. The latter ones imply that a test with a new property
is required: the test must be easy to generate, but intractable to pass without special
knowledge available to humans and not computers. Audio recognition seems to fit in
the category. Humans can easily identify words in a noisy environment, but this is not
true for computers. Specification-wise, CAPTCHA do not need to be 100% effective
at identifying software bots. A design goal for a CAPTCHA could be to prevent bots
from having a success rate greater than 0.01% [6]. Since CAPTCHA use increases the
cost of a software robot, the CAPTCHA can still be effective, as long as this increased
cost remains higher than the cost of using a human. In order to develop a new audio
CAPTCHA, we followed an iterative approach: (a) we selected a set of attributes ap-
propriate for audio CAPTCHA, (b) we developed a CAPTCHA that is based on these
attributes, and (c) we evaluated the CAPTCHA by calculating the success rates of a bot
and a number of users until the results were satisfying and the attributes did not require
further adjustment (see Fig 1).

3 CAPTCHA Attributes

High success rates by users is a key factor in deciding whether the CAPTCHA is effec-
tive or not. This is particularly important in the case of audio CAPTCHA, as it does not
only refer to VoIP callers, but also to visually impaired users of a VoIP service. Equally
important is the success rate of a bot, which should be kept to a minimum. Both factors
depend on several attributes, which we classified into four categories (Fig. 2): (a). vo-
cabulary, (b). background noise, (c). time, and (d). audio production.

Vocabulary attributes: CAPTCHA can vary based on the vocabulary used, by the
following attributes:

1. Adequate data field: A data field (called alphabet) is used as a pool for selecting
the characters to be included in an audio CAPTCHA. For the development of our
CAPTCHA we used an alphabet of ten one-digit numbers, i.e. 0,,9. Such a choice
allows the use of the DTMF method for answering the audio CAPTCHA. Other
examples of audio CAPTCHA that use only digits are the MSN and the Google
ones. A limited alphabet may make an audio method quite vulnerable to attacks.

28 Y. Soupionis, G. Tountas, and D. Gritzalis

Therefore, in order to make the CAPTCHA solution harder for a bot, a means that
we adopted, is to use a number of different human speakers for each digit of the
alphabet.

2. Spoken characters variation: Another drawback is the use of a fixed number of
characters. Having a non variable number of characters in combination with a lim-
ited alphabet can make a CAPTCHA particularly vulnerable to attacks. For exam-
ple, if only 3-digit CAPTCA are used and a bot can successfully recognize 2 of the
digits, then it would easily reach 10% success.

3. Language requirements: Another important factor is the mother tongue of the users,
as it plays a major role in achieving a high success rate by human users. This is
particularly important in the case of audio methods, where there is a greater dif-
ficulty in identifying spoken characters when the mother tongue differs from that
of the user. As a result, the language used should meet the scope of the specific
CAPTCA application. As a good practice, the spoken characters should be few. The
CAPTCHA we proposed can be adjusted for non English users, as the CAPTCHA
are created dynamically and different characters can be added easily.

Background noise attributes: The background noise is another important attribute of
an audio CAPTCHA, as it increases the difficulty for an automated procedure to solve
it [12]. The main noise attributes are the following:

1. Noise patterns: The noise, which can be added during the production of a voice
message, can make CAPTCHA particularly resistant to attacks by automated bots.
Application of background noise requires a great variety of such noises to be avail-
able. These noises should be rotated in an erratic manner. In our proposal, instead
of developing a repository with noises, we chose to proceed with a dynamic pro-
duction of noises, which are distorted in a random manner. The way various noises
are produced should prevent the easy elimination of them by automated programs
that use learning techniques. An example of an audio CAPTCHA which is vulner-
able to attacks, because of the static nature of the added noise is the MSN audio
CAPTCHA (violated by the J. van der Vorms bot, success rate of 75%) [13]. The
Google audio CAPTCHA, with a noise production different than the MSN and with
different announcers for each character, appears to be harder for the same bot (33%)
[13]. In any case, the final version of the audio message, resulting from the com-
bined use of different distortion techniques and added noise, should be such that
the majority of users can recognize it as easily as possible.

2. Sound distortion techniques: Sound distortion techniques may prevent an auto-
mated program to isolate the spoken characters from a voice message correctly.
One needs to select the scale in which a distortion method will be applied to the
spoken characters, the background noise added, or both. The deformation can last
for the entire duration of the voice message, or it can be applied only when char-
acters are announced, or even appear at random time intervals. In our CAPTCHA
the distortion is applied between the characters, as there appears to be no effective
method for evaluating how people understand digits with distortion.

Audio CAPTCHA for SIP-Based VoIP 29

Time attributes: During the production of an audio snapshot, a set of variables should
be defined. These variables refer to the length of the audio message, which depends
on: (a). the number of characters spoken, (b). the characters chosen, and (c). the time
required for each character to be announced, which depends on the announcer of each
character. The beginning and the end of each character spoken should also be defined.
This depends on the duration of each character, as well as to the duration of the pause
between the spoken characters, which could vary for each CAPTCHA. If the above
time parameters follow specific patterns, then the resistance of the audio CAPTCHA
to an automated program will decrease. In our CAPTCHA, we tried to eliminate such
time-related patterns.

Audio production attributes: An audio CAPTCHA production procedure should be
automated. An acceptable human interference refers only to the adjustment of various
thresholds.

1. Automated production process: The automation of the CAPTCHA production pro-
cess is a desirable but hard to achieve property. The various elements that compose
an audio CAPTCHA, such as the number of characters of a message, the different
announcers of each character, the different background sound, the timing and the
distortion of the message, make the process time-costly and demanding of hard-
ware resources. Our choice is to produce audio CAPTCHA periodically in order:
(a) not to produce them in real-time, and (b) not to produce identical snapshots for
extended time periods.

2. Audio CAPTCHA reappearance: An audio CAPTCHA should reappear rarely. In
any case, especially with short alphabets, every CAPTCHA is expected to reappear
after a while. Due to the attributes of the voice messages (e.g., technical distortion,
added noise, language, speakers, etc.), as well as to the context of the user (e.g.,
noisy environment, etc.), a voice message may not be identified by the user on the
first attempt. Therefore, a second chance may be given. In this case, a different
CAPTCHA should be used.

Fig. 2. Audio CAPTCHA attributes

30 Y. Soupionis, G. Tountas, and D. Gritzalis

4 CAPTCHA Bot

Frequency and energy pick detection bots
There are various methods/tools to recognize the words spoken in an audio file, such
as the HTK toolkit [16] and the Sphinx [17]. These methods are demanding in hard-
ware and time resources, because they use combinations of speech recognition methods.
Moreover, they do not focus on how quick they reach a result but on how correct the
result is. Therefore, we selected a bot category which employs frequency and energy
peak detection methods and can be used to solve audio CAPTCHA for the following
reasons:

• Such bots have been proven effective: Demonstrative (though perhaps not thorough
enough) tests of such bots against popular audio CAPTCHA implementations have
been successful [13,14,15] (e.g., SPIT prevention infrastructures, registrations for
visually impaired people, etc.)

• Such bots are easy to implement: Frequency and energy peak detection bots are
comparatively easy to implement using open-source software.

• Such bots require limited time to solve a CAPTCHA: Fast CAPTCHA solving is
required because most services leave a small time frame for their users to solve the
tests (5-15 sec), especially if VoIP services are considered. The CAPTCHA solving
bot must analyze and reform the solution to the desired form (SIP message, DTMF,
etc.), in a limited time frame.

• Such bots occupy a small amount of system recourses: An automated spam attack
is selected when its cost is lower than employing humans. Also, a spitter performs
multiple attacks simultaneously (e.g. the goal is to initiate SIP calls or messages
in parallel). Thus, a bot must be inexpensive in terms of system recourses, which
will allow the spammer/spitter to run several instances of the bot at the same time.
Regarding time constraints, frequency and energy peak detection processes are less
demanding than other approaches, which use different methods such as Hidden
Markov Models (HMM) [16].

On the other hand, there are drawbacks when using these bots, mainly due to the fact
that they require a training session. In this session a human identifies a number of se-
lected CAPTCHA. The human recognizes the announced characters and records them
in a file, from which the bot receives the data to solve the CAPTCHA. The set of train-
ing audio CAPTCHA might be extensive if the CAPTCHA data field (alphabet) is long.
However, in the VoIP domain, the available alphabet is relatively small as it contains
only digits (0-9), which increases the applicability of the mechanism.

The bot used
For the purpose of this paper we used the bot developed by J. van der Vorm [13]. This
bot uses frequency analysis and energy peak detection, in order to segment and solve an
audio CAPTCHA. The bot works as follows: it first reads the audio file. It skips as many
starting bytes as the user has predefined (to avoid the starting bells that many services
have, e.g. Google). Then, the samples are treated with a hamming window defined by
the user. Each block is transformed into the frequency domain using Discrete Fourier

Audio CAPTCHA for SIP-Based VoIP 31

Transformation. Then, the frequencies are put in a predefined number of bins (the bins
are not equally wide, the higher the frequency, the larger the band). After that, the bot
looks at the highest frequency bin. Every block that has more energy in a window than
the predefined threshold energy is considered a peak (see Fig. 3). These peaks are used
to segment the audio file in the different spoken digits. Then the bot looks for a number
of windows around the peaks and prints all the frequency bins. This is the profile of the
digit. The profiles of the digits are then compared with the ones in the training file, and
the closest match is chosen as a possible guess for each digit.

Fig. 3. Audio analysis of the bot

During the training session of the bot, the user gives as input to the bot an audio
CAPTCHA. Then, for each profile of the digit that the bot chooses, the user enters
which digit it actually was (this procedure can be automated if the user names the audio
files accordingly, i.e., if an audio CAPTCHA file includes the digits 3, 2 and 1, the file
name can be 321.wav). Obviously, the larger the number of audio CAPTCHA in the
training set is, the higher the success ratio of the bot would be.

Bot applicability to SIP-based VoIP
In order to implement the bot in a SIP-based VoIP environment and examine its applica-
bility, it was decided that the implementation procedure should consist of three stages.
The procedure and the exchanged SIP messages between the participating entities are
presented in Fig. 4.

Stage 0: It is dominated by the administrator of the callees domain (Domain2). When
the callees domain receives a SIP INVITE message, there are three possible distinct
outcomes: (a) forward the message to the caller, (b) reject the message, and (c) send a
CAPTCHA to the caller (UA1).

Stage 1: An audio CAPTCHA is sent (in the form of a 182 message) to the caller
(UA1). In the proposed implementation, the caller is replaced by a bot. It must record

32 Y. Soupionis, G. Tountas, and D. Gritzalis

the audio CAPTCHA, reform it to an appropriate audio format (wav, 8000Hz, 16 bit),
and identify the announced digits. The procedure depends mainly on the time needed
to reform the message. Moreover, the particular bot needs approximately 0.10 sec to
identify a 3-digit CAPTCHA and 0.15 sec to identify a 4-digit one.

Stage 2: When the bot has generated an answer, it forms a SIP message by using SIPp
[14], which includes the DTMF answer. This answer is sent as a reply of the CAPTCHA
puzzle. If the caller does not receive a 200 OK message, a new CAPTCHA is sent and
the bot starts to record again (Stage 1).

Fig. 4. SIP message exchange for CAPTCHA

The procedure above should be completed within a specific time frame. This time
slot opens when the audio file is received by the caller and closes when the timeout of
the users input expires (defined by the service CAPTCHA provider). The duration of
the CAPTCHA playback does not affect the time frame because the waiting time for an
answer starts when the playback is complete. If an answer arrives before the timeout,
then it is validated by CAPTCHA service (and if it is correct the call is established),
otherwise the bot has another try. In our proposal, the bot is given 6 sec to respond to
the CAPTCHA, whereas the maximum number of attempts is set to three (3).

Table 1 illustrates the time required by the various stages in the proposed imple-
mentation. The selected bot is able to answer properly to CAPTCHA puzzle in much
less time than the proposed time frame. Since a CAPTCHA is desired to be easy for hu-
mans, we suggest that the time frame, in which the caller should answer the CAPTCHA
puzzle, should not be less than 3 sec. That is because many groups of users, such as
physically impaired or elderly people, may not be able to respond promptly.

5 Audio CAPTCHA Implementation

Selected Attributes
In order to develop an effective audio CAPTCHA, we decided upon the following at-
tributes:

Different announcers: The announcer of each and every digit is selected
randomly.

Audio CAPTCHA for SIP-Based VoIP 33

Table 1. Stage duration

Stage Step Duration (sec)

1 Reform audio ∼1.00
Identify digits ∼ 0.15

2 Create SIPp message ∼0.40
Send SIPp message ∼0.00

Total (sec) ∼1.55

Random positioning of each digit in the CAPTCHA: The digits of the CAPTCHA are
physically distributed randomly in the available space.

Background noise of each digit: Background noise, randomly selected, is added to
each and every digit of the audio CAPTCHA. The audio noise files are segments
(from 1 to 3 seconds) of randomly selected music files and not auto-generated by
other methods (e.g. creation of white noise). We wanted to ensure that they will
be less annoying for the user to listen to. The automatic generation of background
and intermediate noises would require statistical analysis. Moreover, the volume
level of the noise is lower than the level of the digits so that they remain audible to
humans.

Loud noise between digits: Loud noise is introduced between the digits (the noise is
not very loud, to minimize the discomfort of the user).

Different duration and file size: Each audio CAPTCHA file has different duration and
different size.

Vocabulary:The vocabulary was limited to digits 0,,9, since the audio CAPTCHA was
designed for a SIP-based VoIP infrastructure, where DTMF signals need to be sent.

CAPTCHA development

The audio CAPTCHA development was carried out in five incremental Stages (Stage
1 to Stage 5), in terms of the number of attributes adopted. Each development stage
was tested and evaluated upon its efficiency according to the success rate of the bot
and the success rate of human users. The audio CAPTCHA produced in Stage 1 were
pronounced by one sole announcer without including additional features. Furthermore,
the first digit of every word started at the exact same point as the other ones, and the
time difference between each digit was equal. The waveforms of the resulting 3- and
4-digit CAPTCHA appear in Fig. 5(a) and 5(e). In such a simple audio CAPTCHA,
a bot can use a detection method, such as energy peak detection, and easily segment
and recognize the digits. An important factor in this process is the number of audio
CAPTCHA that were used during the training of the bot. If a small number was used,
then there is a high chance that not all digits are given as an input in the training
process; thus, the bot may have a low success rate. That is the case with the 4-digit
CAPTCHA (Fig. 5(e)). The random training sequence did not involve many instances
of some digits (such us 8 and 9), therefore, the bot resulted in a relatively low (69%)
success rate.

34 Y. Soupionis, G. Tountas, and D. Gritzalis

(a) Stage 1 (3 digits). (b) Stage 2 (3 digits). (c) Stage 3 (3 digits). (d) Stage 5 (3 digits).

(e) Stage 1 (4 digits). (f) Stage 2 (4 digits). (g) Stage 3 (4 digits). (h) Stage 5 (4 digits).

Fig. 5. Audio files’ waveforms in implementation stages

During Stage 2, the audio CAPTCHA were produced by using 7 different announc-
ers. Each digit was pronounced by a randomly selected announcer. This modification
affected the success of the bot, but it mainly depended on the training set. When a larger
training set was provided in the case of 4-digit audio CAPTCHA, the bot was able to
maintain a relatively high success rate. However, when the same number of audio files,
as in the 3-digit CAPTCHA process, was provided, the success rate decreased slightly.
Moreover, we should mention that 4-digit CAPTCHA offer more digits to the train-
ing procedure. For example, if we use 100 3-digit CAPTCHA for training, we have 300
digits recorded, whereas with the same number of 4-digit CAPTCHA we get 400 digits.
Figs. 5(b) and 5(f) show the waveforms of the produced digits.

In Stage 3 background noise was added against each digit. This way we managed
to suppress the success rate of the bot, but it still remained relatively high (30% for
the 3-digit CAPTCHA and 55% for the 4-digit ones). Figs. 5(c) and 5(g) show the
waveforms of the produced digits with the background noise. The high success rate is
due to the ability of the bot to cut off the low energy sounds (i.e., the noise) by checking
above a certain threshold energy. The difference between the success of 3- and 4-digit
CAPTCHA is due to the difference in the training sets. In this case we allowed a training
of 50 audio CAPTCHA for the 3-digit ones and 150 for the 4-digit ones. As a result,
the available digits taking part in the training process were 150 and 600, respectively.

In Stage 4 we raised the volume of the background noise of each digit. Although
the bot success rate fell noticeably (10-15% success), the produced audio CAPTCHA
were too difficult to solve for humans, as the loud background noise made it hard for
the users to distinguish the digits spoken.

In Stage 5 we introduced loud noise between the digits (intermediate noise)
(Fig. 5(d), 5(h)). This resulted in the bot being unable to segment the audio file correctly.
This happened because there were more energy peaks than the digits spoken. The loud
intermediate noises were recognized as additional digits, because they produce high
energy peaks as well, when transformed with the Discrete Fourier Transformation. As
a consequence, the bot could not be trained, as it failed to recognize successfully any
digits.

Audio CAPTCHA for SIP-Based VoIP 35

Fig. 6. Demonstration of a bot failing to solve a CAPTCHA

Stage 5 is described, in more detail in Fig. 6. When the bot transforms such an audio
into the frequency domain, the energy peaks that can be found are both digits and noise.
Therefore, the bot recognizes more digits than those which are actually included in the
file. One possible solution for the bot would be to raise or lower the threshold of the
energy. In that case (see Fig 6), the bot would still fail. If the threshold energy is very
high, then the bot would not recognize some of the digits in the CAPTCHA, while at
the same time it would recognize some intermediate noise as digits. On the other hand,
if the threshold energy is lowered, then the bot would recognize all digits, but at the
same time all intermediate noises would also be considered digits, as well. As a result,
the bot would assume that there were 12 or 15 digits in the CAPTCHA.

CAPTCHA testing
User and bot success rates are the main factors that form the decision of whether a
CAPTCHA is efficient or not. The corresponding success rates, regarding the CAPTCHA
we described in section 5.2, appear on Fig. 7. Each attribute added efficiency to the
CAPTCHA and directly affected the user and bot success rates.

The CAPTCHA developed in Stage 5 had an average user success rate of 83%, with
an average bot success rate less than 1%.1

CAPTCHA implementation
During the implementation of the proposed audio CAPTCHA, the audio files had the
following attributes:

1. They were created automatically; therefore they can be updated at random time-
periods, without human intervention. The overall process for creating a full set of
3-digit CAPTCHA took 8 sec, whereas for creating a full set of 4-digit CAPTCHA
it took 107 sec. Thus, the reproduction of the whole set of CAPTCHA does not

1 The users who were invited to solve the CAPTCHA (sample) were 22 in number and mainly
between 20-30 years old. Most of them were university students. All CAPTCHA were in
english, which was not the mother tongue of any of the participants (there was a requirment
for them to speak english).

36 Y. Soupionis, G. Tountas, and D. Gritzalis

Fig. 7. Bot’s and users’ success rates

cause significant overhead to our VoIP infrastructure (the VoIP server was a 2GHz
Core2Duo, with 2GB RAM).

2. All constituting parts of the audio CAPTCHA, such as the digits and the noise, lay
in different folders. Moreover, each time a set of CAPTCHA is produced, the pro-
gram selects randomly each digit from a different announcer, as well as a random
background noise.

3. The noise between the digits is random and has different volume and energy.
4. The pronounced digits and the noise have random duration, which results in a ran-

dom duration of each audio CAPTCHA.

6 Conclusions, Limitations and Future Plans

CAPTCHA are expected to play a key role for preventing email spam and voice spam
(SPIT) in the near future. In order for them to be effective, they must be easy to solve
for humans, while at the same time very hard for bots to pass. The CAPTCHA we pro-
posed incorporated several attributes, such us different digit announcers, background
noise against each digit, noise between digits and all of them in a random1 and au-
tomated way. We produced audio CAPTCHA, which are regularly refreshed, with a
limited chance of creating the same instance of an audio CAPTCHA more than once.
The production of the CAPTCHA was done in five discrete stages. Each time the
CAPTCHA were tested both with a frequency and energy peak detection bot, as well
as by a number of users. The bot managed to achieve a high success rate during the
first four stages (up to 98%), but that rate dropped dramatically at the last one (less
than 2%).

Additionally, we determined an appropriate level of background noise of each digit,
in order for them to solvable by humans and difficult to break by bots. However, each
attribute alone is not enough for making CAPTCHA robust; it is the combination of
the features that make the CAPTCHA resistant. Needless to say, every CAPTCHA
is efficient, as long as there is a high rate of success for humans and a low one for
bots.

A limitation of the proposed CAPTCHA is that there has been no evaluation of its ef-
fectivenss and its attributes by audio/speech recognition tools, such as HTK which uses
Hidden Markov Model (HHM). Most audio recognition systems are based on identifing
conversations, where each word should have a connection with other words. However,

Audio CAPTCHA for SIP-Based VoIP 37

an extensive research with an Automated Speech Recognition (ASR) system could sup-
port a more reliable evaluation of our implementation Also it would be interesting to
compare our CAPTCHA with other audio CAPTCHA implementations [18], that have
not been tested with the particular bot yet.

Another possible extension is to consider different populations of users and take into
consideration the specific requirements of each set. This could be done if a major SIP
provider can provide personalized services to its clients and, as a result, provide various
CAPTCHA types for each specific user.

Acknowledgement. This work has been performed within the SPIDER (COOP-32720)
Project, which is partly funded by the European Commission. The authors would like
to acknowledge the contribution of our colleagues from Athens University of Eco-
nomics & Business (GR), Fokus (D), Eleven (D), Voztelecom (E), Telio (NO) and
IPTEGO (D).

References

1. Turing, A.: Computing machinery and intelligence. Mind LIX(236), 433–460 (1950)
2. Blum, M., von Ahn, L., Langford, J., Hopper, N.: The CAPTCHA Project (November 2000)
3. von Ahn, L., Blum, M., Hopper, N., Langford, J.: CAPTCHA: Using hard AI problems for

security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer,
Heidelberg (2003)

4. von Ahn, L., Blum, M., Langford, J.: Telling Humans and Computer Apart Automatically.
Com. of the ACM 47(2), 57–60 (2004)

5. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: CAPTCHA: human-based
character recognition via Web security. Science 321(5895), 1465–1468 (2008)

6. Chellapilla, K., Larson, K., Simard, P., Czerwinski, M.: Building Segmentation Based Hu-
man Friendly Human Interaction proofs. In: Proc. of the SIGCHI conference on Human
Factors in Computing Systems, pp. 711–720. ACM Press, New York (2005)

7. Chew, M., Baird, H.: Baffletext: A Human Interactive Proof. In: Proc. of the 10th SPIE/IS&T
Document Recognition & Retrieval Conference, USA, pp. 305–316 (January 2003)

8. Mori, G., Malik, J.: Recognizing objects in adversarial clutter: Breaking a visual CAPTCHA.
In: Proc. of the Computer Vision and Pattern Recognition Conference, pp. 134–141. IEEE
Press, Los Alamitos (2003)

9. Defeated CAPTCHA (retrieved May 18, 2008),
http://libcaca.zoy.org/wiki/PWNtcha

10. Yan, J., El Ahmad, A.: Breaking Visual CAPTCHA with Naive Pattern Recognition Algo-
rithms. In: Samarati, P., et al. (eds.)Proc. of the 23rd Annual Computer Security Applications
Conference (ACSAC 2007), pp. 279–291. IEEE Computer Society, Los Alamitos (2007)

11. Yan, J.: A El Ahmad, A Low-cost attack on a Microsoft CAPTCHA, Technical Report,
School of Computer Science, Newcastle University, United Kingdom (February 2008)

12. Jurafsky, D., Martin, J.: Speech and Language Processing: An Introduction to Natural Lan-
guage Processing, Computational Linguistics and Speech Recognition, 2nd edn. Prentice-
Hall, Englewood Cliffs (2008)

13. Defeating Audio (Voice) CAPTCHA (retrieved October 10, 2008),
http://vorm.net/captchas/

http://libcaca.zoy.org/wiki/PWNtcha
http://vorm.net/captchas/

38 Y. Soupionis, G. Tountas, and D. Gritzalis

14. SIPP Traffic Generator for the SIP Protocol (retrieved September 30, 2008),
http://sipp.sourceforge.net/

15. Breaking Gmails Audio CAPTCHA (retrieved October 10, 2008),
http://blog.wintercore.com/?p=11

16. HTK: Hidden Markov Model Toolkit (retrieved October 10, 2008),
http://htk.eng.cam.ac.uk/

17. SPHINX: The CMU Sphinx Group Open Source Speech Recognition Engines (retrieved
January 2, 2009),
http://cmusphinx.sourceforge.net/html/cmusphinx.php

18. Tam, J., Simsa, J., Huggins-Daines, D., von Ahn, L., Blum, M.: Improving Audio
CAPTCHA. In: Proc. of the Symposium on Usable Privacy and Security (SOUPS 2008),
USA (2008)

http://sipp.sourceforge.net/
http://blog.wintercore.com/?p=11
http://htk.eng.cam.ac.uk/
http://cmusphinx.sourceforge.net/html/cmusphinx.php

	Audio CAPTCHA for SIP-Based VoIP
	Introduction
	Background
	CAPTCHA

	CAPTCHA Attributes
	CAPTCHA Bot
	Audio CAPTCHA Implementation
	Conclusions, Limitations and Future Plans
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

