
Hierarchical Set Decision Diagrams
and Regular Models�

Yann Thierry-Mieg, Denis Poitrenaud, Alexandre Hamez, and Fabrice Kordon

Université P. & M. Curie, LIP6 - CNRS UMR 7606 - 4 Place Jussieu, Paris, France
first.last@lip6.fr

Abstract. This paper presents algorithms and data structures that exploit a com-
positional and hierarchical specification to enable more efficient symbolic model-
checking. We encode the state space and transition relation using hierarchical Set
Decision Diagrams (SDD) [9]. In SDD, arcs of the structure are labeled with sets,
themselves stored as SDD.

To exploit the hierarchy of SDD, a structured model representation is needed.
We thus introduce a formalism integrating a simple notion of type and instance.
Complex composite behaviors are obtained using a synchronization mechanism
borrowed from process calculi. Using this relatively general framework, we in-
vestigate how to capture similarities in regular and concurrent models. Experi-
mental results are presented, showing that this approach can outperform in time
and memory previous work in this area.

1 Introduction

Model checking is a formal verification approach that suffers from the state-space ex-
plosion problem. One approach which has been successfully used to tackle this problem
is symbolic model-checking using binary decision diagrams [3].

Shared reduced ordered Binary Decision Diagrams (Binary DD or BDD) offer in
many cases a very compact representation of a binary function of n Boolean variables,
i.e. a function Bn �→B. BDD rely on a unique table to avoid creating nodes more than
once: the decision tree is built from the leaves (the terminals 0 and 1) up to the unique
root. This yields a canonical representation for a boolean function given an ordering of
its variables. Thus comparison of two BDD is of constant complexity. Using a cache,
it is possible to obtain algorithms in complexity polynomial to the number of nodes
in the data structure, rather than to the number of paths. For instance, union (or) and
intersection (and) of two BDD a and b has a complexity proportional to the product of
the number of nodes in the representation a and b.

Since their introduction, many extensions to BDD have been proposed. One family
of extensions consists in Multi-Terminal DD (MTBDD [5]) a.k.a. Algebraic DD [1]
which allow to represent functionsBn �→N, and by extension when the set of terminals
remains of manageable size Bn �→ R. This type of DD has been successfully used for
probabilistic model-checking [7], as well as being competitive with sparse representa-
tions for matrix computations [1].

� This work has been partially supported by the ModelPlex European integrated project FP6-IP
034081 (Modeling Solutions for Complex Systems).

S. Kowalewski and A. Philippou (Eds.): TACAS 2009, LNCS 5505, pp. 1–15, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 Y. Thierry-Mieg et al.

Another family of extensions is Multiway DD [5], or Data DD [8] which allow to
store functions Nn �→ B, or even Nn �→ N when combining with multi-terminals. Al-
though comparable to binary encodings when variables are bounded, they allow to han-
dle a priori unbounded variables, and may provide more efficient solutions.

Finally, many dedicated data structures that use the same basic concepts of canoni-
cal representation and dynamic programming have emerged to tackle timed (e.g. Clock
Difference Diagrams CDD [2], Clock Region Diagrams CRD [12]) or probabilistic sys-
tems (e.g. MatriX Decision Diagrams MxD [7]).

In hierarchical Set Decision Diagrams (SDD [9]) arcs are labeled by a set of val-
ues rather than a single valuation. They represent assignment sequences of the form
ω1 ∈ s1; · · · ;ωn ∈ sn where ωi are variables and si are sets of values. Since sets are com-
pactly represented using decision diagrams, the arcs of the structure may be labeled by
SDD (or indeed any other variant of DD), introducing hierarchy in the data structure.
This produces a fundamental difference with other decision diagram types by allowing
similar subsystems of a larger specification to share their representation. In the case of
very regular systems, they may even provide an exponential compression factor with
respect to usual DD [11].

Contributions: In this paper we investigate how SDD can be used to provide an ef-
ficient representation of the state space of composite systems. We define a general
framework to express systems as a composition of smaller (possibly similar) subsystems
using a notion of type and instance. Subproblems are composed using an event-based
synchronization model borrowed from process calculi.

We investigate when gains from increased sharing can be expected from using SDD
and how to maximize the gain when applicable. For a standard benchmark set of para-
metric models borrowed from [5] we show that the SDD solution is more efficient in
both time and memory than the current state of the art in symbolic representations.

Outline: Section 2 defines SDD and formalizes operations over SDD as inductive ho-
momorphisms. Section 3 defines a general formalism that allows to closely match the
requirements of SDD based solutions. Section 4 then investigates diverse ways of en-
coding a problem. Finally, section 5 compares the different encodings proposed across
a benchmark of models.

2 Context

This section recalls the salient points of Hierarchical Set Decision Diagrams, a data
structure based on the principles of decision diagram technology (node uniqueness
thanks to a canonical representation, dynamic programming, ordering issues . . .). They
feature two main original aspects: the support of hierarchy in the representation (sec-
tion 2.1) and the definition of user operations through a mechanism called inductive
homomorphisms (section 2.2) which gives freedom and flexibility to the user. Usually,
the next state function of a system is encoded using one or more decision diagrams,
with two variables per variable of the state signature.

2.1 Set Decision Diagrams

Hierarchical Set Decision Diagrams (SDD) defined in [9], are shared decision diagrams
in which arcs are labeled by a set of values, instead of a single value. This set may itself

Hierarchical Set Decision Diagrams and Regular Models 3

be represented by an SDD, thus when labels are SDD, we think of them as hierarchical
decision diagrams. Definition 1 is taken practically verbatim from [11] where it was
adapted for more clarity from [9].

SDD are data structures for representing sets of sequences of assignments of the
form ω1 ∈ s1;ω2 ∈ s2; · · · ;ωn ∈ sn where ωi are variables and si are sets of values.

We assume no variable ordering, and the same variable can occur several times in
an assignment sequence. We define the terminal 1 to represent the empty assignment
sequence, that terminates any valid sequence. The terminal 0 represents the empty set
of assignment sequences. In the following, Var denotes a set of variables, and for any
ω in Var, Dom(ω) represents the domain of ω which may be infinite.

Definition 1 (Set Decision Diagram). δ ∈ S, the set of SDD, is inductively defined by:

– δ ∈ {0,1} or
– δ = 〈ω,π,α〉 with:
• ω ∈Var.
• π = s0∪·· ·∪ sn is a finite partition of Dom(ω), i.e. ∀i
= j,si∩ s j = /0,si
= /0,n

finite.
• α : π→ S, such that ∀i
= j,α(si)
= α(s j).

By convention, when it exists, the element of the partition π that maps to the SDD 0 is
not represented.

Despite its simplicity, this definition supports rich and complex data:

– SDD support domains of infinite size (e.g. Dom(ω) = R), provided that the parti-
tion size remains finite (e.g.]0..3],]3..+ ∞]). This feature could be used to model
clocks for instance (as in [12]). It also places the expressive power of SDD above
most variants of DD.

– SDD or other variants of decision diagrams can be used as the domain of variables,
introducing hierarchy in the data structure.

– SDD can handle paths of variable lengths, if care is taken when choosing the state
encoding to avoid creating so-called incompatible sequences (see [9]). This feature
is useful when representing dynamic structures such as queues, lists or variable size
arrays.

2.2 Operations and Homomorphisms

SDD support standard set theoretic operations (∪,∩,\). They also offer a concatenation
operation δ1 ·δ2 which replaces 1 terminal of δ1 by δ2. This corresponds to a cartesian
product. In addition, basic and inductive homomorphisms are introduced as a powerful
and flexible mechanism to define application specific operations. A detailed description
of homomorphisms including many examples can be found in [8].

A basic homomorphism is a mapping Φ : S �→ S satisfying Φ(0) = 0 and ∀δ,δ′ ∈
S,Φ(δ+δ′) = Φ(δ)+Φ(δ′). The sum + and the composition ◦ of two homomorphisms
are homomorphisms. For instance, the homomorphism δ · Id, where δ ∈ S and Id des-
ignates the identity homomorphism, permits to left concatenate sequences. We widely
use the left concatenation of a single assignment (ω ∈ s), noted ω s−→ Id. Many basic
homomorphisms are hard-coded.

4 Y. Thierry-Mieg et al.

Furthermore, application-specific mappings can be defined by inductive homomor-
phisms. An inductive homomorphism φ is defined by its evaluation on the 1 terminal
φ(1) ∈ S, and its evaluation Φ′ = φ(ω,s) for any ω ∈Var and any s⊆Dom(ω). The ex-
pression φ(ω,s) is itself a (possibly inductive) homomorphism, that will be applied on
the successor node α(s). The result of φ(〈ω,π,α〉) is then defined as ∑s∈π φ(ω,s)(α(s)),
where ∑ represents a union.

As an example, the local construction L allows to “carry” a homomorphism h to a
certain variable v, and apply h to the current state of v. Thus, it implements an operation
local to the variable v. This homomorphism will be used in section 3. It is defined by:

L(v,h)(ω,s) =

{
ω s−→ L(v,h) if ω
= v

ω
h(s)−−→ Id else

L(v,h)(1) = 0

The transitive closure � unary operator allows to perform a least fixpoint compu-
tation. For any homomorphism h and any node δ ∈ S, h�(δ) is evaluated by repeating
δ← h(δ) until a fixpoint is reached. In other words, h�(δ) = hn(δ) where n is the small-
est integer such that hn(δ) = hn+1(δ). This operator is often applied to (Id + h) instead
of just h, allowing to accumulate newly computed assignment sequences in the result.

An important recent result is that we have defined a set of rewriting rules for homo-
morphisms [11], allowing to automatically make use of the decision diagram saturation
algorithms originally due to Ciardo [6]. When computing the least fixpoint of a tran-
sition relation over a set of states, this algorithm offers gains of one to three orders of
magnitude over classical BFS fixpoint algorithms.

For the user, these rewriting rules are transparent. Given a set of homomorphisms
{t1, . . . ,tn} that represent a partition of the transition relation of the system, the appli-
cation of (t1 + . . .+ tn + Id)� to a node automatically triggers the saturation algorithm
for the evaluation. Note that this is a central operation in any symbolic model-checking
problem since reachability is defined as a transitive closure over the full transition re-
lation. Futhermore a more complex CTL model-checker can then be constructed using
nested transitive closures over the transition relation or its reverse [4].

3 Instantiable Transition System

This section introduces a framework to define formalisms in a way that allows to take
advantage of the characteristics of SDD. Previous manual encoding of some particular
systems [11] has shown that a best case exponential compression factor can be reached
by SDD with respect to other DD. To generalize these results, we define Instantiable
Transition System (ITS), a minimal Labeled Transition System (LTS) style formalism
that makes use of the notions of type and instance to emphasize locality of actions. This
helps identify similar subproblems. The requirements we express through this formal-
ism on the input language are sufficiently wide to encompass many types of description
languages. Any formalism that can fit this generic description is likely to gain from
using SDD rather than other “flat” decision diagram types.

3.1 ITS Definition

Notations: Bag(A) denotes a multiset over a set A. Let ⊕ be a commutative operation
A×A �→ A. Let τ ∈ Bag(A), we note S =

⊕
a∈τ a where if an element a ∈ A occurs n

Hierarchical Set Decision Diagrams and Regular Models 5

times in τ it will be⊕-ed n times in S. We note tuple.X ,tuple.Y . . . the element X (resp.
Y . . .) of a tuple tuple = 〈X ,Y, · · ·〉.

The generic definition of an Instantiable Transition System (ITS) builds upon the
notion of model type and instance. It uses a composition mechanism based solely on
transition synchronization (no explicit shared memory or channel). Definition 2 sets an
abstract contract or interface that must be realized by concrete ITS types. The prin-
ciple is to build hierarchical models in which elementary bricks are homogeneous to
composite models, as they both conform to the notion of ITS type.

Definition 2 (ITS Concepts). An ITS type must provide a tuple
type = 〈S, InitStates,T,Locals,Succ〉:

– S is a set of states;
– InitStates⊆ S is a finite subset of designated initial states;
– T is a finite set of public transition labels;
– Locals : S �→ 2S is the local successors function.
– Succ : S×Bag(T) �→ 2S is the transition function satisfying ∀s∈ S,Succ(s, /0) = {s}.
Let Types denote a set of ITS types. An ITS instance i is defined by its ITS type, noted

type(i) ∈ Types. An ITS instance i may be associated to a state s ∈ type(i).S. We use the
terminology: “assign a state s to instance i”.

InitStates is introduced to avoid violating encapsulation: to initialize an instance we
need to be able to designate its initial configuration(s) without knowing the internal
structure of the instance.

Locals will typically return states reachable through occurrence of local events. It
represents transitions that may occur within an instance autonomously or independently
from the rest of the system.

The function Succ allows to obtain successors by explicitly synchronizing over a
multiset of public transition labels. Synchronizing on an empty multiset of transitions
leaves the state of the instance locally unchanged. Succ takes a multiset of transition
labels as argument, to resolve ambiguities that may occur when synchronizing several
labels of a given instance The definition of the Succ as returning a set of successors (and
not a single successor state) offers good generality, and allows in particular to capture
non-deterministic transition relations as we will show in section 3.4. This feature allows
a compact transition relation representation, as shown by the example of section 4.

Note that Succ is the only way to control the behavior of a (sub)system from outside.
Thus the transition relation of a full system can only be defined in terms of transition
synchronizations using Succ and of independent local behaviors. The definition of com-
position as a synchronization of independent effects on parts of a system (rather than
data or channel sharing) is favorable to using various verification algorithms that exploit
compositional verification [5,10] and locality of actions.

These functions will be used to define the semantics of a composite type below. To
encode a system using SDD, one must define an SDD encoding of a state s ∈ S, and a
homomorphism encoding of each of the two functions Locals and Succ.

As an example, consider the graphical type declaration of a process and buffer type
depicted in Fig. 1. This example taken from [5] describes a round robin protocol allow-
ing to share a single buffer to communicate among n processes. The buffer will initially

6 Y. Thierry-Mieg et al.

empty
get read

ProcessBuffer

give_token

Public transition labelswriteput get_token

active
passive

Type name

Initial States

Fig. 1. Two type declarations for a resource and a process. Encapsulation makes implementation
details irrelevant: only public transition labels (interface) and initial states are visible. The pro-
cesses (instances of the Process type) will be connected through “get_token” and “give_token”
to form a ring topology. The processes “get” (“read”) the message that was “put” (“write”) in the
buffer by another process.

be empty. Initially, a single process will be active (has the token), all others will be
passive. This round robin model will be used as a running example through the rest of
the paper.

A full system is defined by an instance of a particular type in a specific initial state.
As a full system is self-contained, the definition of reachability only depends on the
definition of Locals:

(Reachability). A state s′ is reachable by an instance i from the state s0 iff. ∃s1, . . .sn ∈
type(i).S s.t. s′ = sn∧∀1≤ i≤ n,si ∈ type(i).Locals(si−1).

3.2 A Composite Type

We now define a composite ITS type to offer support for the hierarchical composition
of ITS instances.

Notations: Let I designate a set of ITS instances. CSI designates the set of functions
that map instances i ∈ I to a state of type(i), i.e. cs ∈CSI =⇒ ∀i ∈ I,cs(i) ∈ type(i).S.
SyncsI designates the set of functions that map instances i ∈ I to a multiset of public
transition labels of type(i), i.e. t ∈ SyncsI =⇒ ∀i ∈ I, t(i) ∈ Bag(type(i).T). The sum
⊕ : SyncsI × SyncsI �→ SyncsI is defined as: t = t0 + t1 ⇐⇒ ∀i ∈ I, t(i) = t0(i)+ t1(i)
where + designates the standard sum of multisets.

Intuitively, CSI represents composite states, an element of SyncsI corresponds to a
synchronization of public labels of the set I of subcomponents. The sum⊕ represents an
operation cumulating the effect of two synchronizations. For instance, let I = {i0, i1}.
Let s0,s1 ∈ SyncsI , s0(i0) = t0 + 2′t1, s0(i1) = /0; s1(i0) = t0, s1(i1) = t3. Then s2 =
s0⊕ s1 =⇒ s2(i0) = 2′t0 + 2′t1, s2(i1) = t3.

We define the next state function NextI , which is used when defining Locals and Succ
below NextI : CSI×Bag(SyncsI) �→ 2CSI .∀s,s′ ∈CSI,∀τ ∈ Bag(SyncsI),

s′ ∈ NextI(s,τ)iff ∀i ∈ I,s′(i) ∈ type(i).Succ(s(i),(
⊕
t∈τ

t)(i)).

Definition 3 (Composite). A composite is a tuple C = 〈I, IS,ST,V〉:
– I is a finite set of ITS instances, said to be contained by C. We further require that

the type of each ITS instance preexists when defining these instances, in order to
prevent circular or recursive type definitions.

– IS ⊆ {s ∈ CSI | ∀i ∈ I,s(i) ∈ type(i).InitStates} is a finite set of designated initial
states

Hierarchical Set Decision Diagrams and Regular Models 7

– ST ⊂ SyncsI is the finite set of synchronizations;
– V : ST �→ {public,private} assigns a visibility to each synchronization

The ITS type corresponding to a composite, is defined as:

– S = CSI
– InitStates = IS
– T = {st ∈ ST |V (st) = public}
– Locals : S �→ 2S. ∀s,s′ ∈ S,s′ ∈ Locals(s) iff

∃i ∈ I,s′(i) ∈ type(i).Locals(s(i))∧∀ j ∈ I, j
= i,s′(j) = s(j)
or ∃t ∈ ST,V (t) =private,s′ ∈ NextC.I(s,{t})

– Succ : S×Bag(T) �→ 2S. ∀s,s′ ∈ S,∀τ ∈ Bag(T),Succ(s,τ) = NextC.I(s,τ)

Definition 3 is a realization of the generic ITS type contract. It contains either ele-
mentary subcomponents (see section 3.3), or recursively other instances of composite
nature.

Locals is defined as states reachable through the occurrence of local transitions of
any nested component (without affecting the other subcomponents) or states reachable
through occurrence of any given private synchronization.

Succ is realized by “summing” the impact of the multiset of transitions given as its
argument using the ⊕ operator defined over SyncsI , and synchronously updating the
state of each subcomponent.

As an example consider in Fig. 2 a composite type built to represent the round robin
system with two processes.

Fig. 2. A composite type declaration, containing three instances and six private synchroniza-
tions. For instance, private synchronization link2 is read link2(p1) = get_token, link2(p2) =
give_token, link2(b) = /0.

Encoding: A state s ∈ CSI of a composite C will be represented by an SDD of |I|
variables, each representing the state of an instance i ∈ I. The domain of each variable
is determined by the type of the instance. The NextI function is defined using the L
homomorphism introduced in section 2.2. For any τ ∈ Bag(T):

NextI(τ) =©i∈IL(i,type(i).Succ((
⊕
t∈τ

t)(i)))

The homomorphisms representing Locals and Succ , ∀τ ∈ BagT , are encoded:

Locals = ∑i∈I L(i,type(i).Locals)+ ∑t∈ST,V (t)=private NextC.I({t})
Succ(τ) = NextC.I(τ)

8 Y. Thierry-Mieg et al.

3.3 An Elementary Type

To have a fully working model definition, we still need to define an elementary type.
We use here a labeled transition system as elementary brick, adapted to the ITS type
contract. In practice any finite state model is appropriate.

Definition 4. An elementary Labeled Transition System (LTS) is a tuple
LTS = 〈N,N0,L,E,V 〉:

– N is a finite set of nodes;
– N0 ⊆ N is a subset of designated initial states;
– L is a finite set of labels for transitions;
– E ⊆ N×L×N is a set of labeled edges;
– V : L �→ {public, private} is a function assigning a visibility to each label;

The ITS type which corresponds to an elementary LTS, is defined as:

– S = N
– InitStates = N0
– T = {l ∈ L |V (l) = public}
– Locals : S �→ 2S is defined as n′ ∈ Locals(n) iff ∃l ∈ L,V (l) =private∧〈n, l,n′〉 ∈ E;
– Succ : S×Bag(T) �→ 2S: Succ(n,τ) = /0 if τ contains more than one transition label.

Else, when τ = {l}, ∀n,n′ ∈ S,n′ ∈ Succ(n,{l}) iff 〈n, l,n′〉 ∈ E .

As an example, Fig. 3 represents an implementation of the Process type introduced
earlier (Fig. 1) using an LTS.

Fig. 3. An LTS representing an implementation of the Process type in the round robin protocol

Encoding: we index the states of LTS, and use an SDD with a single variable of integer
domain reflecting the current state. The transition relation is easily realized using a
precomputed transition function f : S×L �→ 2S such that f (n, l) = {n′ | 〈n, l,n′〉 ∈ E}.
Furthermore, for any set s⊆ S we define the set priv(s) =

⋃
x∈s

⋃
l∈L∧V (l)=private f (x, l).

Locals and Succ are defined using inductive homomorphisms. Note that as we have
a single variable in the encoding these homomorphisms do not need to propagate. Succ
is defined below when the argument τ ∈ Bag(T) contains a single transition label l.
Otherwise it returns the terminal 0.{

Locals(ω,s) = e
priv(s)−−−→ Id

Locals(1) = 1

{
Succ(l)(ω,s) = e

⋃
x∈s f (x,l)−−−−−−→ Id

Succ(l)(1) = 1

Hierarchical Set Decision Diagrams and Regular Models 9

3.4 An Extended Composite Type

The concepts introduced up to this point offer basic support for the definition of hierar-
chical models. Extending this definition is possible provided that the ITS type contract
is preserved. We consider here such an extension, which proposes an additional type of
synchronization to handle non-determinism.

This additional construct allows more compact modeling, and a more efficient en-
coding of the transition relation. An example using this extended composite definition
and illustrating its benefits is presented in section 4.

Notations: We define an additional operator to combine SyncsI . Let the product ⊗ :
2SyncsI ×2SyncsI �→ 2SyncsI be defined as:

∀A,B⊆ SyncsI ,A⊗B = {a⊕b | a ∈ A∧b ∈ B}
We then define a slightly more complex composite type :

Definition 5. A non-deterministic composite is a tuple NDC = 〈C,K〉:
– C is a composite type
– K : C.T �→ {AND,XOR} partitions transitions into basic AND kind synchroniza-

tions and non deterministic choice XOR kind synchronizations;

We define the determinize function Det : Bag(T) �→ 2SyncsI :

Det(τ) =
{{⊕{t∈τ|K(t)=AND} t}⊗⊗

{t∈τ|K(t)=XOR} t if∃t ∈ τ,K(t) = XOR
{⊕{t∈τ|K(t)=AND} t} otherwise

Det allows to map the semantics of XOR synchronizations to a set of deterministic
AND synchronizations. To realize the ITS type definition, we define:

– S = C.S, InitStates = C.InitStates, T = C.T
– Locals : S �→ 2S. ∀s,s′ ∈ S,s′ ∈ Locals(s) iff{ ∃i ∈C.I,s′(i) ∈ type(i).Locals(s(i))∧∀ j ∈C.I, j
= i,s′(j) = s(j)

or ∃θ ∈C.ST,C.V(θ) =private,∃t ∈Det(θ),s′ ∈ NextC.I(s,{t})
– Succ : S×Bag(T) �→ 2S. ∀s,s′ ∈ S,∀σ ∈ Bag(T), s′ ∈ Succ(s,σ) iff
∃τ ∈ Det(σ),s′ ∈ NextC.I(s,τ).

Note that an extended composite in which no disjunctive synchronizations are defined
is identical to definition 3. However, the extended definition introduces “exclusive or”
type synchronizations, in which only one of the transition labels that belong to the set
SyncsI is required to occur when the synchronization occurs. The transition label is
chosen arbitrarily. The function Det selects one transition label from each XOR syn-
chronization, and all transition labels from the AND transitions. Its output is a set of
SyncsI that can be used to define a Successors rule using the same Next function as
definition 3.

Encoding: The state encoding is the same as the encoding for a (basic) composite. The
homomorphisms representing Locals and Succ , ∀σ ∈ BagT , are encoded:

Locals = ∑i∈I L(i,type(i).Locals)+ ∑τ∈ST,V (τ)=private(∑t∈Det(τ) NextC.I({t}))
Succ(σ) = ∑τ∈Det(σ) NextC.I(τ)

10 Y. Thierry-Mieg et al.

4 Hierarchical Modeling Strategies

ITS allow to model a given system in a number of equivalent ways, depending on the
hierarchy of types that is defined. One way of seeing this is that ITS offer to parenthesize
a parallel composition of n processes. Flattening the representation is always possible,
yielding an equivalent composite ITS containing only instances of an elementary type.
This can be seen as removing parenthesis from the expression of the synchronization,
which does not affect the resulting semantics. However, a model’s hierarchy allows to
factorize description of similar structures and behaviors. This is exploited to provide a
more efficient SDD solution for model-checking.

For instance, to obtain an homogeneous representation of a chain of processes and a
single process, we can define a type ProcessGroup (Fig. 4) to contain a set of process
instances. This homogeneous representation is only possible thanks to the use of XOR
synchronizations; a simpler encoding using only AND synchronizations would require
that a process group containing n process instances make visible n versions of the write
and read transitions.

The process group is then identical to a process, from the ITS point of view that sees
only public transition labels and designated initial states. We will note such a composite
M2 = (P�P), where P represents an elementary process type, and � denotes a parallel
composition. This homogeneous representation of a set of processes allows to build
a larger process group by combining two process groups using the same schema. For
instance, we can define M4 = (M2 � M2) using two instances of the type defined in
Fig. 4 to represent 4 process.

Fig. 4. An extended composite ITS representing a group of Process in a manner homogeneous to
a single Process. This pattern can be generalized to contain k instances rather than just two.

We can then define (Fig. 5) a ProcessRing type that models the boundary synchro-
nizations necessary to close a process ring.

We compare here two approaches to encode a system of n process. The Recur-
sive(grain) approach consists in building process groups such that no process group
definition ever contains more than grain process group instances.

The Group(grain) approach consists in building a process group type containing
n/grain subgroups of sizes ranging from grain to grain+1. The subgroups are defined
in this approach as a simple composition of grain (or grain + 1) elementary Process
instances. The overall depth is thus two: the Process group composite contains subgroup
composite instances that contain elementary type instances.

Hierarchical Set Decision Diagrams and Regular Models 11

Fig. 5. A composite ITS representing the actions closing a Process ring and a full system as a
composite of a Buffer and a ProcessRing

For instance, let us compare for n = 18 the encodings of Robin(18). Recursive(2)
would yield M2 = (P�P),M4 = (M2�M2),M8 = (M4�M4),M16 = (M8�M8), and
finally M18 = (M16 �M2). Recursive(3) would yield M3 = (P �P �P),M9 = (M3 �
M3 � M3),M18 = (M9 � M9) with more shallow hierarchy. Group(4) would build a
model M4 = (P�P�P �P),M5 = (P�P �P�P�P),M18 = (M5�M5�M4�M4).

Comparing Strategies. The Recursive approach fixes the maximum number of vari-
ables in an SDD assignment sequence, and lets “depth” in the hierarchy grow with
loggrain(n). The Group approach fixes the depth at 2 and fixes the length of assignment
sequences in the “deeper” level to grain. The number of variables in the outer level thus
grows with n/grain.

We have run experiments with these strategies, for three examples taken from Smart
benchmarks [5]. Robin is the protocol we have used as running example in this paper.
Philosophers models Dijkstra’s classical dining philosophers. Slotted Ring describes
a ring communication protocol with one slot per participant. These three models are
regular, i.e. parametric in the number of participants in the protocol. They are thus all
appropriate to apply our encoding strategies.

We report performance for Robin using the XOR construct. Without it, locality of
events which is critical to saturation performance is broken. As a result, even if the final
state space representation size is the same, the poorer encoding of the transition relation
yields high degree polynomial complexity in n due to peaks in representation size.

Table 1 presents the results obtained with two of these regular models. In this exper-
iment we let the grain vary in both Recursive and Group approaches.

Our experiments shows on Robin and Philosophers that the Recursive strategy can
be extremely efficient w.r.t. to the Group strategy.

The results on Philosophers have been omitted due to space constraints, but per-
formance is sublinear O(n) in the Group approach (with larger grain yielding better
performance) and logarithmic O(ln(n)) in recursive approaches.

For Robin, the final state space representation size is O(ln(n)), like Philosophers.
However, the assymetry of the initial state enforces n iterations to cover all positions of
the token in the ring, yielding overall linear complexity in n.

However, the recursive encoding of the model description, even when it is possible
(i.e. the model is regular) does not ensure that the state-space computation will be easy,
as the Ring example shows. In this model the recursive approach does not yield a final
representation size in O(ln(n)). Although the system is regular, system-wide dependen-
cies between component states force a larger representation, in which most arcs bear a
single value. The increased depth in the data structure even introduces overhead in this
case, thus the Group approach is more effective.

12 Y. Thierry-Mieg et al.

Table 1. Compared performances of Recursive and Group approaches for a sampling of grain
parameter. “–” entries indicate failure due to exhaustion of memory.

Recursive Group
grain⇒ 3 5 1 5 10

Model States T. Mem. T. Mem. T. Mem. T. Mem. T. Mem.
Size # (s) (MB) (s) (MB) (s) (MB) (s) (MB) (s) (MB)

Slotted Ring
50 1.7×1052 4.9 59.7 2.2 48.1 2.5 112.7 1.9 55.9 2.5 50.2

100 2.6×10105 94.7 463.9 27.9 300.1 19.7 814.4 14.5 410.5 17.6 342.6
200 8.4×10211 - - 489.9 2285.2 - - - - 128.7 2735.7

Robin
100 2.8×1032 0.24 12.5 0.26 11.8 26.9 102.8 1.0 23.8 0.7 14.8
400 2.3×10123 1.0 45.4 1.2 43.8 998.2 1118.7 62.9 318.5 15.5 169.2
1000 2.4×10304 3.0 117.8 3.12 106.6 > 1000 > 2473.2 > 1000 > 1718.1 307.7 1006.5

The setting Group(1) closely mimics a flattened composition of processes of the
form (P � P � · · ·� P). Since this is the encoding other DD based tools would use (no
hierarchy), it is a good baseline comparison.

We can observe that using larger variable domains (i.e. increasing the grain) tends
to reduce complexity in both approaches. This trend is reversed when the grain is so
large that the depth is very shallow in Recursive, or the outer assignment sequence is
too short in Group.

5 Comparative Performance Analysis

This section presents performance comparisons of our tool that relies on ITS and SDD
to the tool Smart based on MDD [5]. To allow us to easily use Smart’s benchmark
models, our tool uses place transition nets as an elementary type rather than LTS.

Comparison to Smart is indicated as it is, to our knowledge, the only other symbolic
model-checker that uses a saturation algorithm. Comparisons to NuSMV were also per-
formed, but are not really comparable, as without saturation it cannot compete. In fact,
no answer in a reasonable time was given for the parameters we use in our benchmark.
This confirms the experimentations presented in [5].

Figure 6 presents the comparisons run for five parametric models taken from the
Smart’s own benchmark. These models were chosen as being representative of both
tools behavior, with extreme cases represented by Philo (SDD more efficient) and Ring
(MDD more efficient). Three of them are the regular models introduced in section 4.
In those models, the number of variables increases with n, while variable domains are
fixed and typically small (less than 20 values). We also included two parametric models
which are not regular, and could not be encoded using the approaches of the previous
section. FMS and Kanban model flexible manufacturing systems. Parameter n defines
the number of available resources rather than the size of the manufacturing plant. In
these models the number of variables is fixed, while variable domains evolve with n.

Both tools use the best available settings, and compute the full reachable state-space.
The state space size is in all cases exponential in the parameter n.

Philosophers: the Recursive approach (see section 4) is so successful that time and
memory are still negligible for the value n = 1000. The complexity is in O(n) in Smart,

Hierarchical Set Decision Diagrams and Regular Models 13

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

ITS Time (s)

FMS
Kanban

Philosophers
Robin

Slotted Ring (Group)
Slotted Ring (Recursive)

 0.01

 0.1

 1

 10

 100

 1000

 0 200 400 600 800 1000

Smart Time (s)

FMS
Kanban

Philosophers
Robin

Slotted Ring

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000

ITS Memory (kB)

FMS
Kanban

Philosophers
Robin

Slotted Ring (Group)
Slotted Ring (Recursive)

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 200 400 600 800 1000

Smart Memory (kB)

FMS
Kanban

Philosophers
Robin

Slotted Ring

Fig. 6. Compared performances of ITS/SDD (left) vs. Smart (right), using the best settings for
each tool. The x axis is the parameter n setting model’s complexity. The logarithmic y axis repre-
sents time in seconds (top) and memory in kilo-bytes (bottom).

thanks to saturation, but it is O(ln(n)) with SDD. For instance, we compute reachable
states of the Philosophers for n = 103000 in 36 seconds using 386 MB of RAM.

Robin: the complexity in Smart is high degree polynomial, where our Recursive solu-
tion is O(n).

Ring: We report here both the results of the Recursive strategy (with grain=3) and of
the Group strategy (with grain=10). Both strategies remain in high degree polynomial
complexity comparable to Smart.

In this model, many arcs carry a single value even when using SDD. Since the result-
ing tree structure is similar, the theoretical complexity of both solutions is comparable.
However, the lower memory footprint per node of MDD vs SDD factors up to give Smart
the advantage. It was able to compute Ring up to n = 250 when ITS failed above n = 200.

Kanban and FMS: the superiority of SDD over MDD is clearly affirmed when vari-
ables have a large domain. In these models, the number of variables is fixed, but the
variable domains grow in O(n). In both these models, the complexity in Smart is near
exponential where we obtain a low order polynomial.

For Kanban, in ITS/SDD we use the natural encoding that synchronizes four in-
stances of a single type, yielding 4 variables of domain O(n3). However, an alternate
flatter partitioning is used in Smart benchmarks, with 16 variables of domain size O(n).
This encoding limits the potential number of arcs per node, as the “rough” partition fails
past n≈ 50.

14 Y. Thierry-Mieg et al.

Papers by Ciardo et al. on Smart (e.g. [5]) that compare the performances of a
“rough” partition versus a “fine” one conclude that a fine partition is better for MDD. As
our experiments section 4 show, this is not the case for SDD. Smart is based on MDD,
which allow to represent integer domain variables rather than on SDD. Thus, when the
size of the set of local states of a component grows (i.e. the domain of variables is large),
performance is degraded.

This is due to the creation of MDD nodes having a large set of arcs. In contrast SDD
are resistant to large local state spaces, as arcs are fused when they lead to the same
successor node. Thus the number of arcs per node is not directly related to the number
of local states, but rather to the complexity of state dependencies between components.

6 Conclusion

This paper investigates how hierarchical Set Decision Diagrams (SDD) may provide
an efficient representation of the state space of composite systems. We have introduced
Instantiable Transition Systems (ITS) as a framework to define formalisms in a way that
allows to take advantage of the characteristics of SDD.

Our contributions are : 1) we have defined encoding strategies which allow take
advantage of the regularity of systems, 2) ITS allow to capture this regularity using the
notions of type and instance, 3) the definition of ITS is generic allowing to adapt it to
many formalisms.

Experimentation shows that our solution is competitive with existing symbolic so-
lutions such as SMART or NuSMV. In the case of very regular models, we can even
obtain a exponential compression factor in both time and memory.

Hierarchical Set Decision Diagrams are available as an open source C++ library
http://ddd.lip6.fr, which has already been used to build several efficient model-
checkers.

Definition of heuristics allowing to detect the regularity of a model and automatically
propose an appropriate encoding strategy is left to future work.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A., Somenzi, F.: Al-
gebraic decision diagrams and their applications. Formal Methods in System Design 10(2/3),
171–206 (1997)

2. Behrmann, G., Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Efficient timed reachability
analysis using clock difference diagrams. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 341–353. Springer, Heidelberg (1999)

3. Bryant, R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions
on Computers 35(8), 677–691 (1986)

4. Burch, J.R., Clarke, E.M., McMillan, K.L.: Symbolic model checking: 1020 states and be-
yond. Information and Computation (Special issue for best papers from LICS90) 98(2), 153–
181 (1992)

5. Ciardo, G., Lüttgen, G., Miner, A.S.: Exploiting interleaving semantics in symbolic state-
space generation. Formal Methods in System Design 31(1), 63–100 (2007)

http://ddd.lip6.fr

Hierarchical Set Decision Diagrams and Regular Models 15

6. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff,
J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003)

7. Ciardo, G., Miner, A.S.: Implicit data structures for logic and stochastic systems analysis.
SIGMETRICS Perform. Eval. Rev. 32(4), 4–9 (2005)

8. Couvreur, J.-M., Encrenaz, E., Paviot-Adet, E., Poitrenaud, D., Wacrenier, P.-A.: Data De-
cision Diagrams for Petri Net Analysis. In: Esparza, J., Lakos, C.A. (eds.) ICATPN 2002.
LNCS, vol. 2360, pp. 1–101. Springer, Heidelberg (2002)

9. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical Decision Diagrams to Exploit Model Struc-
ture. In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 443–457. Springer, Heidelberg
(2005)

10. Donatelli, S., Franceschinis, G.: The PSR Methodology: Integrating Hardware and Software
Models. In: Proceedings of the 17th International Conference on Application and Theory of
Petri Nets, London, UK, pp. 133–152. Springer, London (1996)

11. Hamez, A., Thierry-Mieg, Y., Kordon, F.: Hierarchical Set Decision Diagrams and Automatic
Saturation. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol. 5062, pp. 211–
230. Springer, Heidelberg (2008)

12. Wang, F.: Formal verification of timed systems: A survey and perspective. IEEE 92(8) (Au-
gust 2004)

	Hierarchical Set Decision Diagramsand Regular ModelsThis work has been partially supported by the ModelPlex European integrated project FP6-IP 034081 (Modeling Solutions for Complex Systems).
	Introduction
	Context
	Set Decision Diagrams
	Operations and Homomorphisms

	Instantiable Transition System
	ITS Definition
	A Composite Type
	An Elementary Type
	An Extended Composite Type

	Hierarchical Modeling Strategies
	Comparative Performance Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

