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Abstract. Separation logic is a recent approach to the analysis of pointer pro-
grams in which resource separation is expressed with a logical connective in as-
sertions that describe the state at any given point in the program. We extend this
approach to express properties of memory separation between different points in
the program, and present an algorithm for determining independences between
program statements which can be used for parallelization.

1 Introduction

Automatic parallelization techniques are generally based on a detection of indepen-
dence between statements in a program, in the sense that two statements accessing
separate resources can be executed in parallel. Such techniques have been extensively
studied and successfully applied for programs with simple data types and arrays, but
there has been limited progress for programs that manipulate pointers and dynamic
data structures [8,9,12]. Separation logic is a recent approach to the study of pointer
programs [15] in which the separation of resource is expressed with the logical con-
nective ‘∗’. This approach has been implemented in many program analysis tools for
the purposes of shape analysis and safety verification [17,4,1]. However, these analyses
cannot be used for program parallelization, because the ∗ connective only expresses
separation of memory at a single program point and therefore cannot determine inde-
pendences between statements in a program. In this paper we extend the separation logic
approach to express memory separation properties throughout a program’s lifetime.

The basic idea is to extend separation logic formulae with labels, which are used
to keep track of memory regions through an execution. Symbolic execution based on
separation logic [2,5] is extended so that occurrences of the same label, even in differ-
ent formulae referring to different program points, refer to the same memory locations
throughout the execution. However, the symbolic execution mechanism is such that
memory locations cannot always be represented by the same label through an entire
execution: fresh labels have to be introduced during the execution to replace existing
labels and the new labels may represent memory regions that overlap with old ones.
For this reason, we keep an intersection log which relates labels that may represent
possibly overlapping memory regions. To keep track of the memory locations that are
accessed by a command, we keep a footprint log which records the labels of the part of
the call-site formula that the command depends on. These labels are clearly determined
for primitive commands. For procedure calls and while loops, the labels are determined
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by a frame inference method [2] that keeps track of the labels by using a form of label
respecting entailment between formulae.

Our approach fits in the line of work of using static analysis to detect independent
statements in programs that manipulate pointer data structures [9,7,10,12,13]. Our de-
parture point is the use of separation logic-based shape analysis. A logic-based approach
is also advocated in [10], where aliasing axioms and theorem proving are used to detect
independence. However, this method has difficulty handling structural modifications to
the data structure, which do not cause problems in our case. Our method also does not
rely on reachability properties of data structures, as in [9]. Such approaches encounter
difficulties with data structure ‘segments’, such as non-nil-terminated list segments, and
the situation is even worse when there is internal sharing within the data structure, as
in the case of doubly linked lists. Our approach does not suffer from these inherent
limitations as it is based on detecting the footprints of statements, that is, the cells that
are actually accessed rather than all the ones that may possibly be accessed. We illus-
trate this on a program that converts a singly linked list segment into a doubly linked
segment. A somewhat different approach to parallelization is proposed in [16], where
commutativity analysis is used for identifying operations that produce the same output
regardless of the order of execution. This method works together with an independence
analysis, and works better depending on the strength of the independence analysis, and
it will therefore be interesting to explore its combination with our method in future
work.

In this paper we illustrate our method in a restricted setting adapted from [2], work-
ing with simple list and tree formulae. Our proposed method is engineered so that it
can be applied as a post-processing phase starting from the output of an existing shape
analysis based on separation logic, and requires only minor changes to existing sym-
bolic execution engines. We begin in the next section by introducing labelled symbolic
heaps, which are standard symbolic heap formulae extended with labels. In the next
section we describe the programming language we work with and an intermediate lan-
guage which is actually used in the analysis. We then describe the extended symbolic
execution algorithm for determining independences, and discuss examples. In the fol-
lowing section we describe the frame inference method that keeps track of the labels
in the inferred frame axiom. In the final section we demonstrate the soundness of the
method with respect to an action trace semantics of programs.

2 Labelled Symbolic Heaps

The concrete heap model is based on a set of fields Fields, and disjoint sets Loc of
locations and Val of non-addressable values, with nil ∈ Val. We assume a finite set
Var of program variables and an infinite set Var′ of primed variables. Primed variables
will not be used in programs, only within the symbolic heaps where they will be implic-
itly existentially quantified. We then set Heaps = Loc ⇀fin (Fields → Val ∪ Loc)
and Stacks = (Var ∪ Var′) → Val ∪ Loc. We work with a class of separation logic
formulae called symbolic heaps, as described in [2,5], except that we introduce labels,
l ∈ Lab, on the spatial assertions in symbolic heaps.
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x, y, .. ∈ Var program variables
x′, y′, .. ∈ Var′ primed variables

l, k.. ∈ Lab labels
f1, f2, .. ∈ Fields fields

E, F ::= nil | x | x′ expressions
ρ ::= f1 : E1, ..., fk : Ek record expressions

Π ::= true | E = E | E �= E | Π ∧ Π pure assertions
S ::= E �→ [ρ] | ls(E, F ) | dls(Ef , Eb, Ff , Fb) | tree(E) simple spatial assertions
Σ ::= emp | 〈S〉l | Σ ∗ Σ labelled spatial assertions
SH ::= Π ��Σ symbolic heaps

The simple spatial assertions we consider in this paper are for list segments, doubly
linked list segments and binary trees, the formal semantics of which are given below.
Every simple spatial assertion (conjunct) in a symbolic heap has a label, which shall
be used to keep track of the part of the heap that the conjunct is describing. The empty
label • ∈ Lab shall be used in situations where the label is unspecified. Except for the
empty label, we require that every label has at most a unique occurrence in a symbolic
heap. We let L(Π ��Σ) denote the set of labels in the symbolic heap Π ��Σ.

Labels shall be interpreted in the context of a symbolic execution rather than on a
single symbolic heap. This is because they shall be used to relate the states at different
points through the execution of a program, and thus do not hold meaning on an individ-
ual state. The interpretation of symbolic heaps is therefore the standard one (ignoring
the labels), given by a forcing relation s, h |= A where s ∈ Stacks, h ∈ Heaps, and A
is a pure assertion, spatial assertion, or symbolic heap. We write h = h0 ∗h1 to indicate
that the domains of h0 and h1 are disjoint, and h is their graph union. We assume the
fields n, b, l, r ∈ Fields, where n is the next field for list segments, b is the back field
for doubly linked segments, and l and r are the left and right fields for trees.

�x�s = s(x) �x′�s = s(x′) �nil�s = nil

s, h |= E1 = E2 iff �E1�s = �E2�s
s, h |= E1 �= E2 iff �E1�s �= �E2�s
s, h |= true always
s, h |= Π0 ∧ Π1 iff s, h |= Π0 and s, h |= Π1

s, h |= 〈E0 �→ [f1 :E1,...,fk :Ek]〉l iff h = [�E0�s → r] where r(fi) = �Ei�s for i ∈ 1..k
s, h |= 〈ls(E, F )〉l iff there is a linked list segment from E to F
s, h |= 〈dls(Ef , Eb, Ff , Fb)〉l iff there is a doubly linked list segment from Ef to Ff

with initial and final back pointers Eb and Fb

s, h |= 〈tree(E)〉l iff there is a tree at E
s, h |= emp iff h = ∅
s, h |= Σ0 ∗ Σ1 iff ∃h0h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= Π ��Σ iff ∃v.s(x′ �→v), h |= Π and s(x′ �→v), h |= Σ
where x′ is the collection of primed variables in Π |Σ
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The formal semantics of the data structure formulae is given as the least predicates
satisfying the following inductive definitions:

ls(E,F ) ⇔ (E = F ∧ emp) ∨ (E �= F ∧ ∃y.E �→ [n : y] ∗ ls(y, F ))
dls(Ef ,Eb,Ff ,Fb) ⇔ (Ef = Ff ∧ Eb = Fb ∧ emp)∨

(Ef �= Ff ∧ Eb �= Fb ∧ ∃y.Ef �→ [n : y, b : Eb] ∗ dls(y,Ef , Ff , Fb))
tree(E) ⇔ (E = nil ∧ emp) ∨ (∃x, y.E �→ [l : x, r : y] ∗ tree(x) ∗ tree(y))

3 Programming Language

We consider a standard programming language with procedures.

b ::= E = E | E �= E boolean expressions
A ::= x := E | x := E → f | E1 → f := E2 | new(x) atomic commands
c ::= i : A | i : f(

#  »
E1;

#  »
E2) | i : if b c1 c2 | i : while b c | c1; c2 indexed commands (i ∈ I)

p ::= . | f( #»x ; #»y ) {local #»z ; c} ; p programs

A program is given by a number of procedure definitions. We assume that every
command i : c in a procedure body has a unique index i from some set of indices
I . We let I (c) be the set of indices of all command statements in c. In a procedure
with header f( #»x ; #»y ), #»x = x1, .., xn are the variables not modified in the body, and
#»y = y1, .., ym are the variables that are. We assume that all variables occurring free
in the body are declared in the header. We define free(c) and mod(c) sets as the set of
free and modified variables of c. For atomic commands these are defined as usual. For
procedures we have free(f( #»x ; #»y )) = { #»x , #»y } and mod(f( #»x ; #»y )) = { #»y }.

For a given program, we assume that we have separation logic specifications for the
procedure calls and loop invariants for the while loops. These may be obtained from an
interprocedural shape analysis based on separation logic, such as that described in [4],
or could be given as annotations by hand [3]. Formally, a specification is represented
by a spec table, T : SH ⇀ P(SH), which is a partial function from symbolic heaps
to sets of symbolic heaps. A spec table T for a command represents the set of Hoare
triples in which, for every P ∈ dom(T ), there is a triple with pre-conditionP and post-
condition

∨
Q∈T (P )Q. In the case of while loops, the loop invariant may be given as

a set of symbolic heaps, the intended formula being the disjunction of all the symbolic
heaps in this set. For a while loop while b c with invariant S, we obtain the spec table
as the partial function that is only defined on symbolic heapsΠ ��Σ ∈ S, and maps each
of these inputs to the set {¬b ∧Π ��Σ | Π ��Σ ∈ S}. Given these specifications, for our
analysis we shall consider an intermediate language for commands in which procedure
calls and while loops are replaced by specified commands, com[T ], where T is a spec
table.

c ::= i : A | i : com[T ] | i : if b c1 c2 | c1; c2
A com[T ] command is some command which satisfies the specification given by T . We
assume that all symbolic heaps in the spec tables of specified commands have empty
labels. Atomic and specified commands may be referred to as basic commands, and
may be denoted by i : B. For any command c, we let Ib(c) be the set of indices of all
basic commands in c.



352 M. Raza, C. Calcagno, and P. Gardner

4 Independence Detection

In this section we describe the algorithm for determining when two statements in a given
program are independent in the sense that they do not access a common heap location
in any possible execution. The basic idea is to perform a symbolic execution [2] with
labelled symbolic heaps, in which the labels keep track of regions of memory through
the execution. The symbolic footprint of every program statement is recorded as the set
of labels which represent the memory regions that are accessed in the execution of that
statement. In order to determine independences between footprints, an intersection rela-
tion between labels needs to be maintained, which relates any two labels that represent
possibly overlapping regions of memory.

Formally, we define a symbolic state as a triple (Π ��Σ,F , I), where Π ��Σ is a la-
belled symbolic heap, F is a footprint log, and I is an intersection log. The footprint
log is as a partial function F : I ⇀ P(Lab) which maps indices of commands to
sets of labels which represent their footprint, and is updated for every command in-
dex when the command is encountered during symbolic execution. The intersection
log I ∈ P(P2(Lab)) is a set of unordered pairs of labels which determines a relation
between labels that represent possibly overlapping regions of the heap.

4.1 Symbolic Execution Rules

Symbolic execution is based on a set of operational and rearrangement rules which
determine the transformation of the symbolic states through the execution. The rules are
displayed in figure 1, where they should be read from top to bottom, and they employ
some expressions which we define below. The operational rules describe, for each kind
of command, the effect of the command on the symbolic heap on which it executes
safely. The footprint log is updated for the index of the command with the labels of the
accessed portion of the symbolic heap, and the intersection log is updated when fresh
labels are introduced that may possibly intersect with old ones. The first four rules are
those for the atomic commands, where the footprint log is updated with the label of the
accessed cell. The rules for mutation and lookup use the following definitions:

mutate(ρ, f, F ) =

(
f : F, ρ′ if ρ = f : E,ρ′

f : F, ρ if f /∈ ρ
lookup(ρ, f) =

(
E if ρ = f : E, ρ′

x fresh if f /∈ ρ

In the case of allocation, a fresh label is introduced for the newly allocated cell, but
the intersection log is unchanged as the new label does not intersect with any old ones.

The last operational rule is for the specified commands. In this case the pre- and
post- conditions in the command’s spec table determine the transformation of the sym-
bolic heap. However, the assertion at the call-site may be larger than the command
pre-condition, since the pre-condition only describes the part of the heap that is ac-
cessed by the command. For this reason, the frame assertion needs to be discovered,
which is the part of the call-site heap that is not in the pre-condition of the command.
We describe the frame inference method in detail in section 6. For now, we use the
expression frame(Π ��Σ,Π1 ��Σ1) to denote the frame assertion obtained for call-site
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assertion Π ��Σ and pre-condition Π1 ��Σ1. The transformed symbolic heap is obtained
by the conjunction of the frame assertion with the post-condition. The frame inference
method ensures that the frame assertion preserves its labels from the call-site assertion.
The post-condition assertion, which has all empty labels in the spec table, is assigned
fresh non-empty labels with the expression freshlabs(Σ2, Σ

′
2), which means that Σ′

2 is
the formula Σ2 with fresh non-empty labels on all simple conjuncts.

As an example, consider the case where the call-site state is (〈x �→ [l : y, r : z]〉1 ∗
〈tree(y)〉2 ∗ 〈tree(z)〉3,F , I) and the specified command is a call to a procedure
which rotates a tree at y, having a spec table with pre- and post- condition 〈tree(y)〉•.
In this case the inferred frame assertion is 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3. The fresh
label 4 may be assigned to the post-condition, giving the transformed symbolic heap to
be 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉4 ∗ 〈tree(z)〉3.

The footprint labels of the specified command are determined by the labels of the pre-
and post- condition assertions. In the example, the footprint of the procedure call will
be {2, 4}. Since fresh labels are introduced in the post-condition, the intersection log
should be updated with the information of which labels the new labels may possibly
intersect with. In the rule, we use the expression relFresh(L1, L2, I) to update the
intersection log I when a fresh set of labels L1 is introduced in such a way that any
label in L1 may possibly intersect with any label in the set L2, or with any label that
intersects with some label in L2 according to I.

relFresh(L1, L2, I) = I ∪ {{l1, l} | l1 ∈ L1 ∧ (l ∈ L2 ∨ ∃l′ ∈ L2. {l, l′} ∈ I)}

In our example, if I = {{1, 5} , {2, 5} , {3, 5}} then the transformed intersection log
is given by relFresh({4} , {2} , I) = {{1, 5} , {2, 5} , {3, 5} , {4, 2} , {4, 5}}, meaning
that the fresh label 4 possibly intersects with 2 and everything that 2 was already pos-
sibly intersecting with in I. Note that this example shows that the relation determined
by the intersection log is not transitive. The intended relation is of course reflexive and
symmetric, and this is taken into account in the independence detection algorithm.

The rearrangement rules are needed to make an expressionE explicit in the symbolic
heap so that an operational rule for a command that accesses the heap cell at E can be
applied. Apart from the first simple substitution rule, these are basically unfolding rules
for each of the inductively defined data structure predicates, where fresh labels in the
unfolding are related to the original label using relFresh.

4.2 Independence Detection Algorithm

The independence detection algorithm is given in Figure 2. Given a command c with
a set of preconditions Pre, the getInd(c,Pre) function returns a set Ind ⊆ P2(Ib(c))
such that {i, j} ∈ Ind implies that the basic statements with indices i and j are indepen-
dent. For a conditional i : if b c1 c2, we can test independence with a statement j : c by
testing independence between j : c and all the basic statements in the conditional. The
track(S, c) function takes a command c and a set S of initial symbolic states, applies
the execution rules from Figure 1, and returns the set of all possible output symbolic
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OPERATIONAL RULES

(Π ��Σ,F ,I)

(x = E[x′/x] ∧ (Π ��Σ)[x′/x],F [i → ∅], I)
i : x := E, x′fresh

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F ,I)

(x = F [x′/x] ∧ (Π ��Σ ∗ 〈E 	→ [ρ]〉l)[x
′/x],F [i → {l}], I)

i : x := E → f, x′ fresh, lookup(ρ, f) = F

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F , I)

(Π ��Σ ∗ 〈E 	→ [ρ′]〉l,F [i → {l}], I)
i : E → f := F, mutate(ρ, f, F ) = ρ′

(Π ��Σ,F ,I)

((Π ��Σ)[x′/x] ∗ 〈x 	→ []〉l,F [i → {l}], I)
i : new(x), x′ fresh , l fresh

(Π ��Σ,F , I)

(Π ∧ Π2 ��Σ′
2 ∗ ΣF ,F [i → L(Σ′

2) ∪ (L(Σ)\L(ΣF ))], relFresh(L(Σ′
2), L(Σ)\L(ΣF ), I))

†

† i : com[T ], Π2 ��Σ2 ∈ T (Π1 ��Σ1), ΣF = frame(Π ��Σ, Π1 ��Σ1), freshlabs(Σ2, Σ′
2)

REARRANGEMENT RULES

(Π ��Σ ∗ 〈F 	→ [ρ]〉l,F , I)

(Π ��Σ ∗ 〈E 	→ [ρ]〉l,F ,I)
Π � E = F

(Π ��Σ ∗ 〈ls(F, F ′)〉l, F ,I)

(Π ��Σ ∗ 〈E 	→ [n : x′]〉l1
∗ 〈ls(x′, F ′)〉l2

,F , relFresh({l1, l2} , {l} , I))
†

† Π ��Σ ∗ ls(F, F ′) � F 
= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈dls(F, Fb, F ′, F ′
b)〉l

,F , I)

(Π ��Σ ∗ 〈E 	→ [n : x′, b : Fb]〉l1
∗ 〈dls(x′, E, F ′, F ′

b)〉l2
,F , relFresh({l1, l2} , {l} , I))

†

† Π ��Σ ∗ dls(F, Fb, F ′, F ′
b) � F 
= F ′ ∧ E = F and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈dls(F, Fb, F ′, F ′
b)〉l

,F , I)

(Π ��Σ ∗ 〈dls(F, Fb, E, x′)〉l1
∗ 〈E 	→ [n : F ′, b : x′]〉l2

,F , relFresh({l1, l2} , {l} , I))
†

† Π ��Σ ∗ dls(F, Fb, F ′, F ′
b) � F 
= F ′ ∧ E = F ′

b and x′ fresh and l1, l2 fresh

(Π ��Σ ∗ 〈tree(F )〉l,F ,I)

(Π ��Σ ∗ 〈E 	→ [l : x′, r : y′]〉l1
∗ 〈tree(x′)〉l2

∗ 〈tree(y′)〉l3
,F , relFresh({l1, l2, l3} , {l} , I))

†

† Π ��Σ ∗ tree(F ) � F 
= nil ∧ E = F and x′, y′ fresh and l1, l2, l3 fresh

Fig. 1. Rules for symbolic execution with footprint tracking
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states. The footprint and intersection logs from all of these states are used by the getInd
function to find the independences. Once we have detected heap independences, we can
use the free and mod sets of commands to determine stack independences, and then
apply standard parallelization techniques such as those discussed in [7,9].

getInd(c, Pre) =
S := ∅
for all Π ��Σ ∈ Pre

assign fresh non-empty labels in Π ��Σ
F := ∅
I := ∅
S := S ∪ track(

{
(Π ��Σ,F ,I)

}
, c)

Ind := {i, j | i, j ∈ Ib(c)}
for all i, j ∈ Ib(c)

for all (Π ��Σ,F ,I) ∈ S
if there exist l ∈ F(i) and k ∈ F(j)

such that l = k or {l, k} ∈ I
then remove {(i, j)} from Ind

return Ind

track(S, c) =
if c is empty then return S
else let c = i : c′; c′′

S′ := ∅
for all (Π ��Σ,F ,I) ∈ S

if c′ is atomic command A and (Π ��Σ,F ,I) matches premise
of operational rule for A then add the conclusion to S′

elseif c′ is atomic command A accessing heap cell E and
(Π ��Σ,F , I) matches premise of a rearrangement rule for E
then add the conclusion to S′

elseif c′ = com[T ] then
for all P ∈ dom(T ) for which frame inference succeeds

for all Q ∈ T (P )
add the conclusions of operational rule for com[T ] to S′

elseif c′ = if b c1 c2 then
S1 := track((b ∧ Π ��Σ,F , I), c1)
S2 := track((¬b ∧ Π ��Σ,F ,I), c2)
S′ := S′ ∪ S1 ∪ S2

else return fail
return track(S′, c′′)

Fig. 2. Independence Detection Algorithm

5 Examples

We begin by illustrating our algorithm on a tree rotation program which is based on
the main example from [9]. We have the procedure rotateTree(x; ) {local x1, x2; c},
where the body c is shown in figure 3. The procedure takes a tree at x and rotates it
by recursively swapping its left and right subtrees. Given the spec table with a single
pre-condition 〈tree(x)〉• and single post-condition 〈tree(x)〉•, the execution of the
independence detection algorithm is shown in figure 3. At the end of the execution,
for final footprint log F6, we have F6(i6) = {3, 5} and F6(i7) = {4, 6}. Since these
labels do not intersect according to the final intersection log I3, we have that the two
recursive calls i6 and i7 are independent, and therefore may be executed in parallel.
Similar examples are given by other divide-and-conquer programs, such as copyTree
and mergeSort on linked lists, in which our algorithm determines the recursive calls to
be independent.

Previous approaches to independence detection such as [9] have been based on
reachability properties of certain pointer data structures, e.g., statements referring to
the left and right subtrees of a tree can be determined to be independent since no heap
location is reachable from both of them. The limitations of this approach can be seen
even on simple list segment programs, where reachability analysis is unable to guar-
antee independence since the list segment may in fact be part of a larger cyclic data
structure. Worse is the situation where there is internal sharing within the data struc-
ture, such as in the case of doubly linked lists. In contrast, our approach does not suffer
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`
〈tree(x)〉

1
, ∅, ∅

´
i1 : if(x �= nil){`

x �= nil ��〈tree(x)〉1, ∅, ∅
´

`
x �= nil ��〈x �→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
, ∅, I1

´
i2 : x1 := x → l;`

x1=x
′∧x �=nil ��〈x �→ [l :x′, r :y′]〉

2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F1 = i2→{2},I1

´
i3 : x2 := x → r;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x′, r :y′]〉
2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F2 =F1[i3→{2}], I1

´
i4 : x → l := x2;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :y′]〉
2
∗ 〈tree(x′)〉

3
∗ 〈tree(y′)〉

4
,F3 =F2[i4→{2}], I1

´
i5 : x → r := x1;`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x′)〉
3
∗ 〈tree(y′)〉

4
,F4 =F3[i5 →{2}],I1

´
i6 : rotateTree(x1; );`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(y′)〉
4
,F5 =F4[i6→{3, 5}], I2

´
i7 : rotateTree(x2; );`

x2=y
′∧x1=x

′∧x �=nil ��〈x �→ [l :x2, r :x1]〉2 ∗ 〈tree(x1)〉5 ∗ 〈tree(x2)〉6,F6 =F5[i7→{4, 6}], I3
´

}

where I1 = {{1, 2}, {1, 3}, {1, 4}}, I2 = I1 ∪ {{5, 3}, {5, 1}}, I3 = I2 ∪ {{6, 4}, {6, 1}}

Fig. 3. Independence detection for rotateTree

from these inherent limitations since it is based on detecting the footprints of state-
ments. We illustrate this with the example in figure 4. In this case we have the pro-
cedure setBack(x, y, z; ) {local x1; c}, which transforms a singly linked list segment
from x to y into a doubly linked segment by recursively traversing the segment and
setting the back pointers. The body c is shown in the figure. The parameter z is the
back pointer to be set for the head element. In this case we have the spec table with a
single pre-condition 〈ls(x, y)〉• and single post-condition 〈dls(x, z, y, z′)〉•, where z′

is the existentially quantified pointer to the last element. As can be seen in figure 4, our
algorithm detects the recursive call at i4 to be independent of the statement i3, and they
can hence be executed in parallel. A reachability-based approach will fail to determine
this independence even though the statements are accessing disjoint locations.

6 Frame Inference with Label Respecting Entailment

We have discussed how, in the case of the operational rule for specified commands,
there is a need to infer the frame assertion in order to match the call-site assertion to the
command’s pre-condition. Given a call-site assertionΠ ��Σ and command pre-condition
Π1 ��Σ1, the objective is to find a frame assertion ΣF such that Π ��Σ 
 Π1 ��Σ1 ∗ ΣF .
We adapt the frame inference method of [2], which uses a proof theory for entailments
between symbolic heaps. However, in our case, as well as inferring the formula, we also
require that the frame assertion should correctly preserve its labels from the original
call-site assertion since these are used to determine the footprint labels of the specified
command. For this purpose we introduce the notion of label respecting entailment.
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`
〈ls(x, y)〉

1
, ∅, ∅

´
i1 : if(x �= y){`

x �=y ��〈ls(x, y)〉1, ∅, ∅
´

`
x �=y ��〈x �→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
, ∅, I1

´
i2 : x1 := x → n;`

x1 =x
′∧x �=y ��〈x �→ [n : x′]〉

2
∗ 〈ls(x′, y)〉

3
,F1 = i2 →{2}, I1

´
i3 : x → b := z;`

x1 =x
′∧x �=y ��〈x �→ [n : x′, b : z]〉

2
∗ 〈ls(x′, y)〉

3
,F2 = F1[i3→{2}], I1

´
i4 : setBack(x1, y, x)`

x1 =x
′∧x �=y ��〈x �→ [n : x′, b : z]〉

2
∗ 〈dls(x1, x, y, z

′)〉
4
,F3 = F2[i4 →{3, 4}], I2

´
}

where I1 = {{2, 1}, {3, 1}} and I2 = I1 ∪ {{4, 3}, {4, 1}}

Fig. 4. Independence detection for setBack

The standard meaning of an entailment Π1 ��Σ1 
 Π2 ��Σ2 between two symbolic
heaps is given as ∀s, h. s, h |= Π1 ��Σ1 implies s, h |= Π2 ��Σ2. For label respecting
entailment, we have the additional constraint that a label appearing on both sides of the
entailment ‘refers to the same heap locations’ on both sides. The formal definition of
this form of entailment is based on the following property of labelled symbolic heaps.

Lemma 1. If s, h |= Π ��Σ ∗ 〈S〉l and l �= •, then there is a unique h′ such that h =
h′ ∗ h′′ and s, h′ |= Π ��〈S〉l. In this case we define subheap(s, h,Π ��Σ ∗ 〈S〉l, l) = h′,
and it is undefined otherwise.

Definition 1 (Label respecting entailment). The entailment Π1 ��Σ1 
 Π2 ��Σ2 holds
iff for all s, h, s, h |= Π1 ��Σ1 implies s, h |= Π2 ��Σ2, and if l ∈ L(Σ1) and l ∈ L(Σ2)
and l �= • then subheap(s, h,Π1 ��Σ1, l) = subheap(s, h,Π2 ��Σ2, l).

We have adapted the proof theory for entailments from [2] for label respecting entail-
ment in figure 5. We omit the normalization rules and rules for the tree and doubly
linked segment predicates as they adapt in a very similar manner. In the figure, the
expression op(E) is an abbreviation for E �→ [ρ], ls(E,F ), dls(E,Eb, F, Fb) or
tree(E). The guard G(op(E)) asserts that the heap is non-empty, and is defined as

G(E �→ [ρ]) � true G(ls(E, F )) � E �= F G(tree(E)) � E �= nil

G(dls(E, Eb, Ff , Fb)) � E �= Ff G(dls(Ff , Fb, Ef , E)) � E �= Fb

The label respecting aspect of these rules can be best appreciated by considering the
way in which the frame inference method works. Assume we are given a call-site asser-
tionΠ ��Σ and procedure pre-conditionΠ1 ��Σ1. To findΣF such that Π ��Σ 
 Π1 ��Σ1 ∗
ΣF , we apply the proof rules upwards starting from the entailment Π ��Σ 
 Π1 ��Σ1, as
instructed by the following theorem which we inherit from [2].

Theorem 1. Suppose that we have an incomplete proof:

Π ′ ��ΣF � true ��emp...
Π ��Σ � Π1 ��Σ1

Then there is a complete proof of the label respecting entailmentΠ ��Σ 
 Π1 ��Σ1 ∗ΣF .



358 M. Raza, C. Calcagno, and P. Gardner

Π

�
�emp � true

�
�emp

Π

�
�Σ � Π′

�
�Σ′

Π

�
�Σ � Π′ ∧ E = E

�
�Σ′

Π ∧ P

�
�Σ � Π′

�
�Σ′

Π ∧ P

�
�Σ � Π′ ∧ P

�
�Σ′

〈S〉l � 〈S′〉k Π

�
�Σ � Π′

�
�Σ′

Π

�
�〈S〉l ∗ Σ � Π′

�
�〈S′〉k ∗ Σ′

l, k ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′))

〈S〉l � 〈S〉k

Π

�
�Σ � Π′

�
�Σ′

Π

�
�Σ � Π′

�
�〈ls(E, E)〉l ∗ Σ′

l ∈ {•} ∪ Lab\L(Σ′)

Π∧E1 
=E3 �
�〈E1 �→E2〉l1

∗Σ � Π′

�
�〈E1 �→E2〉l2

∗〈ls(E2, E3)〉l3
∗Σ′

Π∧E1 
=E3 �
�〈E1 �→E2〉l1

∗Σ � Π′

�
�〈ls(E1, E3)〉l4

∗Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π

�
�〈ls(E1, E2)〉l1

∗ Σ � Π′

�
�〈ls(E1, E2)〉l2

∗ 〈ls(E2, nil)〉l3
∗ Σ′

Π

�
�〈ls(E1, E2)〉l1

∗ Σ � Π′

�
�〈ls(E1, nil)〉l4

∗ Σ′
l4 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1,l2,l3})

Π ∧ G(op(E3))

�
�〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ � Π′

�
�〈ls(E1, E2)〉l3

∗ 〈ls(E2, E3)〉l4
∗ Σ′

Π ∧ G(op(E3))

�
�〈ls(E1, E2)〉l1

∗ 〈op(E3)〉l2
∗ Σ � Π′

�
�〈ls(E1, E3)〉l5

∗ Σ′
†

† l5 ∈ {•} ∪ Lab\(L(Σ) ∪ L(Σ′) ∪ {l1, l2, l3, l4})

Fig. 5. Rules for label respecting entailment

When applying the label-respecting proof rules upwards, labels can only be removed
from the left hand side of an entailment. Hence ΣF will retain its labels from the call-
site assertion Π ��Σ. By theorem 1, the entailment Π ��Σ 
 Π1 ��Σ1 ∗ ΣF is label re-
specting, and so we have that the labels common to the call-site assertion and the frame
assertion refer to the same heap locations. Notice that when applying this method in
practice, since we are only concerned about preserving the labels in the frame as-
sertion, we do not care about the labels on the right hand side of the entailments as
we go up the proof. They can hence be chosen to be the empty label when applying
the rules upwards. As a simple illustration, in the case where the call-site assertion
is 〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 and the command pre-condition is
〈tree(y)〉•, the following derivation gives us the correctly labelled frame assertion:

〈x �→ [l : y, r : z]〉1 ∗ 〈tree(z)〉3 � emp

〈x �→ [l : y, r : z]〉1 ∗ 〈tree(y)〉2 ∗ 〈tree(z)〉3 � 〈tree(y)〉•

7 Soundness

We demonstrate the soundness of our algorithm in detecting independences, a property
which is necessary if we are to use the algorithm to safely parallelize a program. For
this we adapt an action trace semantics of programs from [6]. The action traces are
composed of primitive actions α:

α ::= x := E | x := E → f | E1 → f := E2 | newl(x) | assume(b) where l ∈ Loc

The assume(b) action is used to implement conditionals, as shown in the trace seman-
tics of commands below. It filters out states which do not satisfy the boolean b. The
newl(x) command allocates the location l if it is not already allocated. We choose this
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α �α�(s, h), loc(α, s, h)

x := E {s[x �→�E�s], h}, ∅

x := E → f

(
{s[x �→v], h}, {l} if �E�s = l, l ∈ Loc and h(l)(f) = v

�, ∅ otherwise

E1 → f := E2

(
{s, h[l �→r]}, {l} if �E1�s = l, �E2�s = v, l ∈ Loc and r = h(l)[f → v]

�, ∅ otherwise

newl(x)

(
{s, h ∗ l �→ r}, {l} if l ∈ Loc\dom(h) and r(f) = nil for all f ∈ Fields

∅, ∅ otherwise

assume(b)

(
{s, h}, ∅ if �b�s

∅, ∅ otherwise

Fig. 6. Denotational semantics and location sets of primitive actions

instead of a non-deterministic allocation primitive (which is usually used in separation
logic works) as keeping traces deterministic will be useful for our purposes.

Semantically, the primitive actions correspond to total functions that are of the form
Stacks× Heaps → P(Stacks× Heaps)�. The � element represents a faulting ex-
ecution, that is, dereferencing a null pointer or an unallocated region of the heap. For
a primitive action α and a state (s, h) ∈ Stacks× Heaps, we define the location set
loc(α, s, h) as the set of locations that are accessed by α when executed on the state
(s, h). The denotational semantics and location sets of the primitive actions is given in
figure 6.

Definition 2 (Action trace). An action trace τ is a finite sequential composition of
atomic actions, τ ::= α; · · · ;α

Denotational semantics of action traces is given by the sequential composition of ac-
tions, which is defined as

�α1; α2�(s, h) =

8<
:

[
(s′,h′)∈�α1�(s,h)

�α2�(s
′, h′) if �α1�(s, h) �= �

� otherwise

Note that every trace τ is deterministic in that for any state (s, h), �τ�(s, h) either
faults or has at most a single outcome {(s′, h′)}.

T (x := E) = {x := E} T (x := [E]) = {x := [E]}

T ([E1] := [E2]) = {[E1] := [E2]} T (new(x)) = {newl(x) | l ∈ Loc}

T (com(T )) ⊆ {τ | ∀P ∈ dom(T ).∀(s, h) ∈ �P �.∃Q ∈ T (P ). �τ�(s, h) ⊆ �Q�}

T (c1; c2) = {τ1; τ2 | τ1 ∈ T (c1), τ2 ∈ T (c2)}

T (if b c1 c2) = {assume(b); τ1 | τ1 ∈ T (c1)} ∪ {assume(¬b); τ2 | τ2 ∈ T (c2)}

Fig. 7. Action trace semantics of commands
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The action trace semantics of commands of our programming language is given in
figure 7. Just as our commands are indexed, we assign unique indices to the primi-
tive actions in every action trace of every command as follows. For each atomic com-
mand i : A, every trace is a single primitive action α, and we index this as (i, 1) : α.
For each specified command i : com(T ), every trace α1; ...;αn is indexed as (i, 1) :
α1; ...; (i, n) : αn. For sequential composition the indices are obtained from the com-
ponent commands. For a conditional i : if b c1 c2, we index the assume actions as
(i, 1) : assume(b) and (i, 1) : assume(¬b) and the other indices are obtained from the
component commands. We shall write (i, j) : α ∈ τ to mean that τ = τ ′; (i, j) : α; τ ′′

for some τ ′ and τ ′′.

Definition 3 (Index subtrace). For a trace τ and a command index i, we define τ |i to
be the subtrace of τ containing all the actions of the form (i, j) : α. If there are no such
actions in τ then τ |i is undefined.

Lemma 2. For a command c, every trace τ ∈ T (c) is of the form τ |i1 ; ...; τ |in , where
i1, ..., in ∈ I (c).

We define the locations accessed by an atomic action in the execution of a trace.

Definition 4 (Location set of an action in a trace). The location set of an action
(i, j) : α in a trace τ from initial state (s, h) is defined as

loc((i, j) : α, τ, s, h) =

(
loc(α, s′, h′) if τ = τ1; (i, j) : α; τ2 and �τ1�(s, h) = {(s′, h′)}

∅ otherwise

We extend the definition of locations accessed by an action to the locations accessed by
a subtrace of τ .

Definition 5 (Location set of a subtrace). The location set of subtrace τ ′ of τ from
initial state (s, h) is defined as loc(τ ′, τ, s, h) =

⋃

(i,j):α∈τ ′
loc((i, j) : α, τ, s, h)

We now give the formal definition of independence between two basic statements in a
progam, for a given pre-condition.

Definition 6 (Independence). Given a command c and a pre-condition given by a
set of symbolic heaps Pre, for two basic commands with indices i and i′ in c, we say
that command i is independent of command i′, written indep(i, i′, c,Pre), iff for all
Π ��Σ ∈ Pre and for all (s, h) ∈ �Π ��Σ�, we have for every τ ∈ T (c) such that τ |i and
τ |i′ are defined, that loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

Given the trace model developed above, we can now formally state the soundness prop-
erty of the independence detection algorithm given in figure 2.

Theorem 2. For a command c and a pre-condition set Pre , if for two basic commands
with indices i and i′ in c we have {i, i′} ∈ getInd(c,Pre), then indep(i, i′, c,Pre).
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The complete proof of this result can be found in the technical report [14], and we
give here an outline. The algorithm of figure 2 works by applying the operational and
rearrangement rules of figure 1 through the program, possibly branching on disjunctive
outcomes and conditionals. We can therefore think of it as determining a set of symbolic
execution traces. A symbolic execution trace, S, is a sequence of symbolic states related
by applications of operational or rearrangement rules, beginning with some initial state
ψI in the pre-condition and ending with some ψF in the final set of symbolic states that
is used to test independences.

The concrete and symbolic executions are related by a notion of satisfaction between
an action trace and a symbolic execution trace. An action trace τ satisfies a symbolic
execution trace S if it is of the form τ |i1 ; ...; τ |in , where i1, ..., in are the command
indices for the operational rules that generate S, and every intermediate concrete state
in τ (after the execution of each index subtrace) satisfies the symbolic heap in the corre-
sponding symbolic states. Thus this notion of satisfaction depends only on the symbolic
heap component of symbolic states and not on the footprint and intersection logs. By
soundness of standard symbolic execution [2], we have that every concrete trace of the
program satisfies some symbolic execution trace generated by the algorithm.

This relation connecting concrete and symbolic executions is then used to interpret
the labels in the symbolic heaps and the footprint and intersection logs. The underly-
ing idea is that, given a concrete initial state (s, h) and an action trace τ satisfying a
symbolic execution trace S, every label l occurring in any of the symbolic states in S
corresponds to a fixed set of heap locations throughout the entire concrete execution of
τ from (s, h). This location set, denoted labloc(l,S, τ, s, h), is used to reason about the
heap locations that the labels in the footprint and intersection logs represent. We show
that for any two subtraces τ |i and τ |i′ of τ , if the footprint labels of i and i′ in the final
footprint log of S do not intersect according to the final intersection log of S, then the
two subtraces access disjoint locations, that is, loc(τ |i, τ, s, h) ∩ loc(τ |i′ , τ, s, h) = ∅.

The algorithm determines two commands with indices i and i′ to be independent if
they have non-intersecting footprint labels according to each of the final symbolic states
generated by the algorithm. Since every action trace satisfies some symbolic execution
trace, we have that in every action trace of the program, the subtraces of i and i′ access
disjoint locations, which means that i and i′ are independent by definition 6.

8 Conclusion and Future Work

In this work we have focussed on laying the foundations of our extended separation
logic framework for independence detection. We plan to extend the method we describe
to the more complex data structures handled by separation logic shape analyses [1], to
integrate our method with the existing space invader tool for shape analysis [17,4], and
conduct practical experiments, conceivably exploiting the scalability of this tool to large
programs. A notable aspect of this integration is that, while our framework relies on the
atomic predicates being precise, sometimes imprecise predicates, e.g. ‘possibly cyclic
list’, are used in shape analyses. However, these predicates are ‘boundedly imprecise’,
so that case analysis can be performed to obtain finite disjunctions of precise predicates
from imprecise ones. Another direction for future work is to improve the precision
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of label tracking by incorporating it into the shape analysis phase itself, which would
involve taking the footprint and intersection logs through the abstraction and fixpoint
calculations. Following this, we intend to investigate the application of our method to
other kinds of program optimizations.
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