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Abstract. A binary tanglegram is a pair 〈S, T 〉 of binary trees whose
leaf sets are in one-to-one correspondence; matching leaves are connected
by inter-tree edges. For applications, for example in phylogenetics, it is
essential that both trees are drawn without edge crossings and that the
inter-tree edges have as few crossings as possible. It is known that finding
a drawing with the minimum number of crossings is NP-hard and that
the problem is fixed-parameter tractable with respect to that number.

We prove that under the Unique Games Conjecture there is no
constant-factor approximation for general binary trees. We show that
the problem is hard even if both trees are complete binary trees. For
this case we give an O(n3)-time 2-approximation and a new and simple
fixed-parameter algorithm. We show that the maximization version of
the dual problem for general binary trees can be reduced to a version of
MaxCut for which the algorithm of Goemans and Williamson yields a
0.878-approximation.

1 Introduction

In this paper we are interested in drawing so-called tanglegrams [16], that is,
pairs of trees whose leaf sets are in one-to-one correspondence. The need to
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(a) arbitrary drawing (b) drawing of our 2-approximation

Fig. 1. A binary tanglegram showing two evolutionary trees for pocket gophers [9]

visually compare pairs of trees arises in applications such as the analysis of
software projects, phylogenetics, or clustering. In the first application, trees may
represent package-class-method hierarchies or the decomposition of a project into
layers, units, and modules. The aim is to analyze changes in hierarchy over time
or to compare human-made decompositions with automatically generated ones.
Whereas trees in software analysis can have nodes of arbitrary degree, trees from
our second application, that is, (rooted) phylogenetic trees, are binary trees. This
makes binary tanglegrams an interesting special case, see Fig. 1. Hierarchical
clusterings, our third application, are usually visualized by a binary tree-like
structure called dendrogram, where elements are represented by the leaves and
each internal node of the tree represents the cluster containing the leaves in its
subtree. Pairs of dendrograms stemming from different clustering processes of
the same data can be compared visually using tanglegrams.

In this paper we consider binary tanglegrams if not stated otherwise. From
the application point of view it makes sense to insist that (a) the trees under
consideration are drawn plane (namely, without edge crossings), (b) each leaf of
one tree is connected by an additional edge to the corresponding leaf in the other
tree, and (c) the number of crossings among the additional edges is minimized. As
in the bioinformatics literature (e.g., [13, 16]), we call this the tanglegram layout
(TL) problem; Fernau et al. [7] refer to it as two-tree crossing minimization.
Note that we are interested in the minimum number of crossings for visualization
purposes. The number is not intended to be a tree-distance measure. Examples
for such measures are nearest-neighbor interchange and subtree transfer [3].

Related problems. In graph drawing the so-called two-sided crossing mini-
mization problem (2SCM) is an important problem that occurs when computing
layered graph layouts. Such layouts have been introduced by Sugiyama et al. [17]
and are widely used for drawing hierarchical graphs. In 2SCM, vertices of a bi-
partite graph are to be placed on two parallel lines (layers) such that vertices
on one line are incident only to vertices on the other line. As in TL the objective
is to minimize the number of edge crossings provided that edges are drawn as
straight-line segments. In one-sided crossing minimization (1SCM) the order of
the vertices on one of the layers is fixed. Even 1SCM is NP-hard [6]. In contrast
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to TL, a vertex in 1SCM or 2SCM can have several incident edges and the lin-
ear order of the vertices in the non-fixed layer is not restricted by the internal
structure of a tree. The following is known about 1SCM. The median heuristic
of Eades and Wormald [6] yields a 3-approximation and a randomized algorithm
of Nagamochi [14] yields an expected 1.4664-approximation. Dujmovič et al. [4]
gave an FPT algorithm that runs in O�(1.4664k) time, where k is the minimum
number of crossings in any 2-layer drawing of the given graph that respects the
vertex order of the fixed layer. The O�(·)-notation ignores polynomial factors.

Previous work. Dwyer and Schreiber [5] studied drawing a series of tangle-
grams in 2.5 dimensions, i.e., the trees are drawn on a set of stacked two-
dimensional planes. They considered a one-sided version of TL by fixing the
layout of the first tree in the stack, and then, layer-by-layer, computing the leaf
order of the next tree in O(n2 log n) time each. Fernau et al. [7] showed that TL is
NP-hard and gave a fixed-parameter algorithm that runs in O�(ck) time, where
c is a constant estimated to be 1024 and k is the minimum number of crossings
in any drawing of the given tanglegram. They showed that the problem can be
solved in O(n log2 n) time if the leaf order of one tree is fixed. This improves the
result of Dwyer and Schreiber [5]. They also made the simple observation that
the edges of the tanglegram can be directed from one root to the other. Thus
the existence of a planar drawing can be verified using a linear-time upward-
planarity test for single-source directed acyclic graphs [1]. Later, apparently not
knowing these previous results, Lozano et al. [13] gave a quadratic-time algo-
rithm for the same special case, to which they refer as planar tanglegram layout.
Holten and van Wijk [10] presented a visualization tool for general tanglegrams
that heuristically reduces crossings (using the barycenter method for 1SCM on
a per-level base) and draws inter-tree edges in bundles (using Bézier curves).

Our results. Let us call the restriction of TL to (complete) binary trees the
(complete) binary TL problem. We first analyze the complexity of binary TL,
see Sect. 2. We show that binary TL is essentially as hard as the MinUncut

problem. If the (widely accepted) Unique Games Conjecture holds, it is NP-hard
to approximate MinUncut—and thus TL—within any constant factor [12]. This
motivates us to consider complete binary TL. It turns out that this special case
has a rich structure. We start our investigation by giving a new reduction from
Max2Sat that establishes the NP-hardness of complete binary TL.

The main result of this paper is a simple recursive factor-2 approximation
algorithm for complete binary TL, see Sect. 3. It runs in O(n3) time and extends
to d-ary trees. Our algorithm can also process general binary tanglegrams—
without guaranteeing any approximation ratio. It works very well in practice
and is quite fast when combined with a branch-and-bound procedure [15].

Next we consider a dual problem: maximize the number of edge pairs that do
not cross. We show that this problem (for general binary trees) can be reduced
to a version of MaxCut for which the algorithm of Goemans and Williamson
yields a 0.878-approximation.
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Finally, we investigate the parameterized complexity of complete binary TL.
Our parameter is the number k of crossings in an optimal drawing. We give a
new FPT algorithm for complete binary TL that is much simpler and faster than
the FPT algorithm for general binary TL by Fernau et al. [7]. The running time
of our algorithm is O(4kn2), see Sect. 4. An interesting feature of the algorithm
is that the parameter does not drop in each level of the recursion.

Formalization. We denote the set of leaves of a tree T by L(T ). We are given
two rooted trees S and T with n leaves each. We require that S and T are
uniquely leaf-labeled, that is, there are bijective labeling functions λS : L(S) → Λ
and λT : L(T ) → Λ, where Λ is a set of labels, for example, Λ = {1, . . . , n}. These
labelings define a set of new edges {uv | u ∈ L(S), v ∈ L(T ), λS(u) = λT (v)},
the inter-tree edges. The TL problem consists of finding plane drawings of S
and T that minimize the number of induced crossings of the inter-tree edges,
assuming that edges are drawn as straight-line segments. We insist that the
leaves in L(S) are placed on the line x = 0 and those in L(T ) on the line x = 1.
The trees S and T themselves are drawn to the left of x = 0 and to the right
of x = 1, respectively. For an example see Fig. 1. Given uniquely leaf labeled
trees S and T , we denote the resulting instance of TL by 〈S, T 〉.

The TL problem is purely combinatorial: Given a tree T , we say that a linear
order of L(T ) is compatible with T if for each node v of T the nodes in the
subtree of v form an interval in the order. Given a permutation π of {1, . . . , n},
we call (i, j) an inversion in π if i < j and π(i) > π(j). For fixed orders σ of L(S)
and τ of L(T ) we define the permutation πτ,σ, which for a given position in τ
returns the position in σ of the leaf having the same label. Now the TL problem
consists of finding an order σ of L(S) compatible with S and an order τ of L(T )
compatible with T such that the number of inversions in πτ,σ is minimum.

2 Complexity

In this section we consider the complexity of binary TL, which Fernau et al. [7]
have shown to be NP-complete for general binary tanglegrams. We strengthen
their findings in two ways. First, we show that it is unlikely that an efficient
constant-factor approximation for general binary TL exists. Second, we show
that TL remains hard even when restricted to complete binary tanglegrams.

We start by showing that binary TL is essentially as hard as the MinUncut

problem. This relates the existence of a constant-factor approximation for TL to
the Unique Games Conjecture (UGC) by Khot [11]. The UGC became famous
when it was discovered that it implies optimal hardness-of-approximation results
for problems such as MaxCut and VertexCover, and forbids constant factor-
approximation algorithms for problems such as MinUncut and SparsestCut.
We reduce the MinUncut problem to the TL problem, which, by the result
of Khot and Vishnoi [12], makes it unlikely that an efficient constant-factor
approximation for TL exists.

The MinUncut problem is defined as follows. Given an undirected graph
G = (V, E), find a partition (V1, V2) of the vertex set V that minimizes the
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number of edges that are not cut by the partition, that is, min(V1,V2) |{uv ∈ E :
u, v ∈ V1 or u, v ∈ V2}|. Note that computing an optimal solution to MinUncut

is equivalent to computing an optimal solution to MaxCut. Nevertheless, the
MinUncut problem is more difficult to approximate.

Theorem 1. Under the Unique Games Conjecture it is NP-hard to approximate
the TL problem for general binary trees within any constant factor.

Proof. As mentioned above we reduce from the MinUncut problem. Our re-
duction is similar to the one in the NP-hardness proof by Fernau et al. [7].

Consider an instance G = (V, E) of the MinUncut problem. We construct
a TL instance 〈S, T 〉 as follows. The two trees S and T are identical and there
are three groups of edges connecting leaves of S to leaves of T . For simplicity we
define multiple edges between a pair of leaves. In the actual trees we can replace
each such leaf by a binary tree with the appropriate number of leaves.

Suppose V = {v1, v2, . . . , vn}, then both S and T are constructed as follows.
There is a backbone path (v1

1 , v2
1 , v

1
2 , v2

2 , . . . , v
1
n, v2

n, a) from the root node v1
1 to a

leaf a. Additionally, there are leaves lS(vj
i ) and lT (vj

i ) attached to each node vj
i

for i ∈ {1, . . . , n} and j ∈ {1, 2} in S and T , respectively. The edges form the
following three groups.

Group A contains n11 edges connecting lS(a) with lT (a).
Group B contains for every vi ∈ V n7 edges connecting lS(v1

i ) with lT (v2
i ), and

n7 edges connecting lS(v2
i ) with lT (v1

i ).
Group C contains for every vivj ∈ E a single edge from lS(v1

i ) to lT (v1
j ).

Next we show how to transform an optimal solution of the MinUncut instance
into a solution of the corresponding TL instance. Suppose that in the optimal
partition (V ∗

1 , V ∗
2 ) of G there are k edges that are not cut. Then we claim that

there exists a drawing of 〈S, T 〉 such that k ·n11 +O(n10) pairs of edges cross. It
suffices to draw, for each vertex vi ∈ V ∗

1 (vi ∈ V ∗
2 ), the leaves lS(v1

i ) and lT (v2
i )

above (below) the backbones, and the nodes lS(v2
i ) and lT (v1

i ) below (above)
the backbones. It remains to count: there are k · n11 A–C crossings, no A–B
crossings, O(n10) B–C crossings, and O(n4) C–C crossings.

Now suppose there exists an α-approximation algorithm for the TL problem
with some constant α. Applying this algorithm to the instance 〈S, T 〉 defined
above yields a drawing D(S, T ) with at most α ·k ·n11 +O(n10) crossings. Let us
assume that n is much larger than α. We show that from such a drawing D(S, T )
we would be able to reconstruct a cut (V1, V2) in G with at most α·k edges uncut.
First, observe that if a node lS(v1

i ) is drawn above (below) the backbone in
D(S, T ), then lT (v2

i ) must be drawn on the same side of the backbone, otherwise
it would result in n18 A–B crossings. Similarly lS(v2

i ) must be on the same side as
lT (v1

i ). Then observe that if a node lS(v1
i ) is drawn above (below) the backbone

in D(S, T ), then lS(v2
i ) must be drawn below (above) the backbone, otherwise

there would be O(n14) B–B crossings. Finally, observe that if we interpret the
set of vertices vi for which lS(v1

i ) is drawn above the backbone as a set V1 of a
partition of G, then this partition leaves at most α · k edges from E uncut.
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Hence, an α-approximation for the TL problem provides an α-approximation
for the MinUncut problem, which contradicts the UGC. ��

The above negative result for (general) binary TL is our motivation to investi-
gate the complexity of complete binary TL. It turns out that even this special
case is hard. Unlike Fernau et al. [7] who show hardness of binary TL by a reduc-
tion from MaxCut using extremely unbalanced trees, we use a quite different
reduction from a variant of Max2Sat (see full version for the proof [2]).

Theorem 2. The TL problem is NP-hard even for complete binary tanglegrams.

3 Approximation

We now present our main result, a 2-approximation algorithm for complete bi-
nary TL that runs in O(n3) time. The idea is to split a given tanglegram recur-
sively at the roots of the two trees into two subinstances, each again consisting
of a pair of complete binary trees. Let 〈S, T 〉 be a subinstance of 〈S0, T0〉 with
subtrees S ⊆ S0 and T ⊆ T0 rooted at nodes vS ∈ S0 and vT ∈ T0, respectively
(see Fig. 2). When treating 〈S, T 〉, we use the following pieces of information.

Firstly, associated with vS and vT we have labels �S and �T that indicate
what choices in the recursion so far led to the current subinstances. A label is a
bit string that represent the choices (swap/do not swap children) made at each
node, from the first recursive step to the current one (see Fig. 3).

We also assign labels to some other subtrees of 〈S0, T0〉 apart from S and T .
Given a leaf v ∈ T0\T , we define the largest T -avoiding tree of v to be the largest
complete binary subtree of T0 that contains v, but not T . Largest S-avoiding
trees are defined analogously for leaves in S0. Each largest S- or T -avoiding tree
receives a label in the same way as S and T . Note that the labels of the avoiding
trees are relative to the labels of vS and vT , that is, a different subinstance leads
to different labels. If we refer (in the context of a subinstance 〈S, T 〉) to the label
of a leaf v ∈ T0, we mean the label of the largest T -avoiding tree of v.

Secondly, since S and T are part of a larger tree, some leaves of S may not
have the matching leaf in T (and vice versa). This means that at some previous
step such leaves were matched to leaves in some other subtrees, above or below
〈S, T 〉. We do not know exactly to which leaves they are matched, but we do
know, for each leaf, the label of the subtree that contains the matching leaf.

At each level of the recursion we have to choose between one out of four con-
figurations. Let the current subinstance be given by 〈S, T 〉 = 〈(S1, S2), (T1, T2)〉.
At each node vS on the left side, we must choose between having S1 above S2
or the other way around. On the right side for vT , there are also two different
ways of placing T1 and T2. For each of the four configurations we invoke the
algorithm twice recursively: for the top half and for the bottom half. We return
the configuration with the smallest number of crossings.

When counting the crossings that a configuration creates, we distinguish two
types: current-level and lower-level crossings.
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Fig. 2. Context of subinstance
〈S, T 〉 = 〈(S1, S2), (T1, T2)〉

Fig. 3. Labels for a particular subinstance 〈S, T 〉.
The numbers at the nodes show the choices taken
(swap/do not swap children) that led to S and T .
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Fig. 4. Different types of current-level crossings. Type (d) is considered current-level
only if the right leaves of the crossing edges have different labels, that is, if �T ′ �= �T ′′ .

Current-level crossings are crossings that can be avoided at this level by choos-
ing one of the four configurations for the subtrees, independently of the choices
to be done elsewhere in the recursion. Figure 4 illustrates the four different types.
For type (d), we remark that crossings are considered to be current-level only
if the largest S- and T -avoiding trees that contain the endpoints of the edges
outside S and T are different. Crossings of type (d) where that is not the case
cannot be counted at this point. We call them indeterminate crossings.

Lower-level crossings are crossings that appear based on choices taken by
solving the subinstances of S and T recursively. We cannot do anything about
them at this level, but we know their exact number after solving the subinstances.

Here is a sketch of the algorithm.

1. For all four choices of arranging {S1, S2} and {T1, T2}, compute the total
number of lower-level crossings recursively. Before each recursive call 〈Si, Tj〉,
we assign proper labels to some of the leaves of S and T , as follows. All leaves
in Si that connect to T3−j (that is, T1 if j = 2, T2 otherwise) get the label
�T with a 0 or 1 appended depending on whether Tj is above or below T3−j .
Then we do the analogue for all leaves of Tj connected to S3−i.
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2. For each choice 〈Si, Tj〉 compute the number of current-level crossings (de-
tails below).

3. Return the choice that has the smallest sum of lower-level and current-level
crossings.

The labels are needed to propagate as much information as possible to the
smaller subinstances. For example, even though at this stage of the recursion it
is clear that the leaves of, say T3−j, are above the leaves of the subtrees below T ,
once we recurse into the top subinstance, this information will be lost, implying
that what was a current-level crossing at this stage, will become an indeterminate
crossing later. The labeling allows to prevent this loss of information.

The number of current-level crossings can be computed in linear time as fol-
lows. We go through all inter-tree edges incident to leaves of S and put each
edge into one of at most O(log n) different classes, depending on the labels of
the endpoints outside S. Then we repeat the same for T . This takes linear time.
Depending on where the largest S- or T -avoiding trees go (above or below), all
edge pairs belonging to a specific pair of labels do or do not intersect. Hence we
can count the total number of current-level crossings by multiplying the cardi-
nalities of the O(log2 n) pairs of classes whose edges all intersect each other.

The running time of the algorithm satisfies the recurrence T (n) ≤ 8T (n/2)+
O(n), which solves to T (n) = O(n3). We now prove that the algorithms yields a
2-approximation. In the full version [2] we show that our analysis is tight.

Theorem 3. Given a complete binary tanglegram 〈S0, T0〉 with n inter-tree edges,
the recursive algorithm computes in O(n3) time a drawing of 〈S0, T0〉 that has at
most twice as many crossings as an optimal drawing.

Proof sketch. Fix an optimal drawing δ of 〈S0, T0〉. The algorithm tries, for a
given subinstance 〈S, T 〉 of 〈S0, T0〉, all four possible layouts of S = (S1, S2)
and T = (T1, T2). Assume that in δ, 〈S, T 〉 is drawn as 〈(S1, S2), (T1, T2)〉. We
distinguish between four different areas for the endpoints of the edges: above
〈S, T 〉, in 〈S1, T1〉, in 〈S2, T2〉, and below 〈S, T 〉. We number these regions from 0
to 3 (see Fig. 5(a)). This allows us to classify the edges into 16 groups (two of
which, 0–0 and 3–3, are not relevant). We denote the number of i–j edges, that
is, edges from area i to area j, by nij (for i, j ∈ {0, 1, 2, 3}). Figures 5(b) and 5(c)
show the 14 relevant groups of edges.

The only edge crossings that our recursive algorithm cannot take into account
are the indeterminate crossings, which occur when the two edges connect to
leaves above or below 〈S, T 〉 that are in the same largest S- or T -avoiding tree.
This is the case if both leaves have the same label. Such crossings cannot be
predicted from the current subinstance because they depend on the relative
position of the other two endpoints of the edges. We can, however, bound the
number of these crossings.

We observe that any crossing of that type at the current subinstance was, in
some previous step of the recursion, a crossing between two 1–2 edges or two
2–1 edges. We can upper-bound the number of these crossings by

(
n12
2

)
+

(
n21
2

)
.

Let calg be the number of crossings in the solution produced by the algorithm,
and let copt be the number of crossings of δ. Then
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Fig. 5. For an instance 〈(S1, S2), (T1, T2)〉 the locations of the edge endpoints are di-
vided into four areas (numbered 0–3); each edge is classified accordingly (a). This
defines 14 groups of relevant edges, where nij denotes the number of i–j edges (b & c).

calg ≤ copt +
(

n12

2

)
+

(
n21

2

)
≤ copt + (n2

12 + n2
21)/2. (1)

Since our (sub)trees are complete, we have n10 + n12 + n13 = n01 + n21 + n31
and n01 + n02 + n03 = n10 + n20 + n30. These two equalities yield n12 ≤ n01 −
n10 + n21 + n31 and n01 − n10 ≤ n20 + n30, respectively, and thus we obtain
n12 ≤ n20 + n30 + n21 + n31 or, equivalently, n2

12 ≤ n12 · (n20 + n30 + n21 + n31).
It is easy to verify that all the terms on the right-hand side of the last inequal-

ity count crossings that cannot be avoided and must be present in the optimal
solution as well. Hence n2

12 ≤ copt, and symmetrically n2
21 ≤ copt. Plugging this

into (1) yields calg ≤ 2 · copt. ��

General binary trees. Our recursive algorithm can also be applied to general,
non-complete tanglegrams. Then, however, the approximation factor does not
hold any more. Nöllenburg et al. [15] have evaluated several heuristics for TL;
our recursive algorithm turned out to be a successful method for both complete
and general binary tanglegrams.

Generalization to d-ary trees. The algorithm can also be generalized to
complete d-ary trees. The recurrence relation of the running time changes to
T (n) ≤ d · (d!)2 · T (n/d) + O(n) since we need to consider all d! subtree order-
ings of both trees, each triggering d subinstances of size n/d. This resolves to
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T (n) = O(n1+2 logd(d!)). At the same time the approximation factor increases
to 1 +

(
d
2

)
.

Maximization version. Instead of the original TL problem, we now consider
the dual problem TL� of maximizing the number of pairs of edges that do not
cross. The tasks of finding optimal solutions for these problems are equivalent,
but from the perspective of approximation it makes quite a difference which
of the two problems we consider. Now we do not assume that we draw binary
trees. Instead, if an internal node has more than two children, we assume that
we may only choose between a given permutation of the children and the reverse
permutation obtained by flipping the whole block of children.

In contrast to the TL problem, which is hard to approximate as we have shown
in Theorem 1, the TL� problem has a constant-factor approximation algorithm.
We show this (see full version [2]) by reducing TL� to a constrained version of
the MaxCut problem, which can be approximately solved with the semidefinite
programming rounding algorithm of Goemans and Williamson [8].

Theorem 4. There exists a 0.878-approximation for the TL� problem.

4 Fixed-Parameter Tractability

We consider the following parameterized problem. Given a complete binary TL
instance 〈S, T 〉 and a non-negative integer k, decide whether there exists a TL of
S and T with at most k induced crossings. Our algorithm for this problem uses a
labeling strategy, just as our algorithm in Sect. 3. However, here we do not select
the subinstance that gives the minimum number of lower-level crossings, but we
consider all subinstances and recurse on them. Thus, our algorithm traverses a
search tree of branching factor 4. For the search tree to have bounded height,
we need to ensure that whenever we go to a subinstance, the parameter value
decreases at least by one. For efficient bookkeeping we consider current-level
crossings only. At first sight this seems problematic: if a subinstance does not
incur any current-level crossings, the parameter will not drop. The following key
lemma—which does not hold for general binary trees—shows that there is a way
out. It says that if there is a subinstance without current-level crossings, then
we can ignore the other three subinstances and do not have to branch.

Lemma 1. Let 〈S, T 〉 be a complete binary TL instance, and let vS be a node
of S and vT a node of T such that vS and vT have the same distance to their
respective root. Further, let (S1, S2) be the subtrees incident to vS and let (T1, T2)
be the subtrees incident to vT . If the subinstance 〈(S1, S2), (T1, T2)〉 does not in-
cur any current-level crossings, then each of the subinstances 〈(S1, S2), (T2, T1)〉,
〈(S2, S1), (T1, T2)〉, and 〈(S2, S1), (T2, T1)〉 has at least as many crossings as
〈(S1, S2), (T1, T2)〉, for any fixed ordering of the leaves of S1, S2, T1 and T2.

Proof. If the subinstance 〈(S1, S2), (T1, T2)〉 does not incur any current-level
crossings, there are no edges between S1 and T2 or between S2 and T1. We
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Fig. 6. Edge types and crossings of the instance 〈S,T 〉

only consider the first case; the second is symmetric. We categorize the inter-
tree edges originating from the four subtrees according to their destination—see
Fig. 6(a)—and denote the numbers of edges of the various types by n11, n21, n22,
l1, l2, r1, and r2. Since we consider complete binary trees, we obtain l1 = r1+n21,
r2 = l2 + n21, and r1 + n11 = l2 + n22.

We fix an ordering σ of the leaves of the subtrees S1, S2, T1, T2. We first com-
pare the number of crossings in 〈(S1, S2), (T1, T2)〉 with the number of crossings
in 〈(S2, S1), (T2, T1)〉, see Fig. 6(b). The subinstance 〈(S1, S2), (T1, T2)〉 can have
at most n21(n11+n22) crossings that do not occur in 〈(S2, S1), (T2, T1)〉. However,
〈(S2, S1), (T2, T1)〉 has at least l1(l2+n21+n22)+l2n11+r2(r1+n21+n11)+r1n22
crossings that do not appear in 〈(S1, S2), (T1, T2)〉. Plugging in the above equal-
ities for l1 and r2, we get (r1 +n21)(l2 +n21 +n22)+ l2n11 +(l2 +n21)(r1 +n21 +
n11) + r1n22 ≥ n21(n11 + n22). Thus, the subinstance 〈(S2, S1), (T2, T1)〉 has at
least as many crossings with respect to σ as 〈(S1, S2), (T1, T2)〉 has.

Next, we compare the number of crossings in 〈(S1, S2), (T1, T2)〉 with the
number of crossings in 〈(S1, S2), (T2, T1)〉, see Fig. 6(c). Now the number of
additional crossings of 〈(S1, S2), (T1, T2)〉 is at most n21n22, and the subinstance
〈(S1, S2), (T2, T1)〉 has at least (r1 +n11)(r2 +n22)+ r2n21 crossings more. With
the equality r1 + n11 = l2 + n22 and the inequality r2 + n22 ≥ n21 we get
(r1 + n11)(r2 + n22) + r2n21 ≥ n22n21. Thus, the subinstance 〈(S1, S2), (T2, T1)〉
has at least as many crossings with respect to σ as 〈(S1, S2), (T1, T2)〉 has.

By symmetry, the same holds for 〈(S2, S1), (T1, T2)〉. ��

Thus, to decompose the instance into four subinstances we spend O(n2) time.
Therefore we spend O(4kn2) time to produce all leaves of our bounded-height
search tree (omitting details). At each leaf of the search tree, we obtain a cer-
tain layout of 〈S, T 〉, and the accumulated number of current-level crossings is
at most k. This, however, does not mean that the total number of crossings is
at most k since we did not keep track of the indeterminate crossings. There-
fore, at each leaf we still need to check how many crossings the corresponding
layout has. This can be done in O(n log n) time. If one of the leaves yields at
most k crossings, the algorithm outputs “Yes” and the layout; otherwise it out-
puts “No”.
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Theorem 5. The algorithm sketched above solves the parameterized version of
complete binary TL in O(4kn2) time.
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2. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I.,
Wolff, A.: Drawing (complete) binary tanglegrams: Hardness, approximation, fixed-
parameter tractability (2008), http://arxiv.org/abs/0806.0920 Arxiv report

3. DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J., Zhang, L.: On distances between
phylogenetic trees. In: Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms
(SODA 1997), pp. 427–436 (1997)
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