
Modularizing Triple Graph Grammars

Using Rule Refinement

Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab, Germany
surname@es.tu-darmstadt.de

Abstract. Model transformation plays a central role in Model-Driven
Engineering. In application scenarios such as tool integration or view
specification, bidirectionality is a crucial requirement. Triple Graph Gram-
mars (TGGs) are a formally founded, bidirectional transformation lan-
guage, which has been used successfully in various case studies from
different applications domains.

In practice, supporting the maintainability of TGGs is a current chal-
lenge and existing modularity concepts, e.g., to avoid pattern duplication
in TGG rules, are still inadequate. Existing TGG tools either provide no
support at all for modularity, or provide limited support with restrictions
that are often not applicable.

In this paper, we present and formalize a novel modularity concept
for TGGs: Rule refinement, which generalizes existing modularity con-
cepts, solves the problem of pattern duplication, and enables concise,
maintainable specifications.

Keywords: model transformation, triple graph grammars, modularity.

1 Introduction and Motivation

Model-Driven Engineering (MDE) is an established, viable means of coping with
the increasing complexity of modern software systems, promising an increase in
productivity, interoperability and a reduced gap between problem and solution
domains. Model transformation plays a central role in MDE and bidirectionality
is often a crucial requirement especially in application scenarios that require
model synchronization such as tool integration and view specification [3].

Triple Graph Grammars (TGGs) [9] are a rule-based, formally founded tech-
nique of specifying a consistency relation between models in a source and target
domain, which allows for bidirectional model transformation. TGG rules consist
of patterns representing the precondition and postcondition of a change to a
model and are fully declarative, i.e., no control flow or similar constructs can be
used to specify exactly how the change should be realized. In contrast to, e.g.,
programmed graph transformations, TGGs, therefore, require a rule structuring
mechanism to avoid redundancy, i.e., identical patterns in multiple rules. When
TGGs with a considerable number of rules are required, supporting productivity
and maintainability becomes crucial.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 340–354, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

Modularizing Triple Graph Grammars Using Rule Refinement 341

As initially presented by Klar et al. [7], a viable means of addressing these
challenges is to avoid pattern duplication in TGG rules by reusing rule fragments.
Existing modularity concepts [7,5], however, pose strong restrictions on the way
rules can be reused. Examples for such restrictions include: (i) that the context
of a basis rule (the rule to be reused by refining it appropriately) can only be
extended but not changed, and (ii) a lack of support for multiple basis rules. Our
observation is that these restrictions are too strong and thus prevent reuse in
many cases, especially in combination with the limited support for modularity
on the metamodel level provided by EMF/Ecore.

Our contribution in this paper is to:
1. Present a novel flexible concept of rule refinement for TGG rules as a gen-

eralization of previous work by Klar et al. [7] and Greenyer et al. [5]. This
is done intuitively in Sect. 2 with a running example.

2. Compare our approach with [7,5] and explain in detail why the generaliza-
tions we suggest are necessary. This is done in Sect. 3, where we discuss
related existing modularity concepts for TGGs and graph transformations.

3. Provide a comprehensive formalization of rule refinement in Sect. 4.

We conclude with a summary and an overview of areas of future work in Sect. 5.

2 Rule Refinements for TGGs

Our running example is inspired by the families to persons transformation ex-
ample in the ATL transformation zoo1. It represents a tool integration scenario,
e.g., between the residents registration office and the tax office of a city.

Figure 1 depicts the triple of source, correspondence, and target metamodels
for the transformation, referred to as a TGG schema. The source metamodel (left
of Fig. 1) comprises a FamilyRegister, which contains multiple Families. A Family
consists of Members, which play the role of a son, father, mother, or daughter
in the family as indicated by the references connecting Family with Member.

FamilyRegister PersonsRegisterFamilyToPersons

Family

Member

Person Adult

isResp :EBoolean

Child

MotherFather

FamilyToPerson

MemberToPerson

Source Correspondence Target

Fig. 1. TGG schema for the running example

1 http://www.eclipse.org/atl/atlTransformations/#Families2Persons

http://www.eclipse.org/atl/atlTransformations/#Families2Persons

342 A. Anjorin et al.

The target metamodel (right of Fig. 1) comprises a PersonsRegister containing
Persons. A Person is either a Child, or an Adult, i.e., a Father or Mother. Although
the concept of a family is not explicitly present in the target metamodel, an Adult
can be responsible for a number of children (isResp attribute in Adult and wards
reference to Child) as this is relevant for tax calculation. The source and target
metamodels are connected by a correspondence metamodel (hexagonal elements
in Fig. 1) specifying which source and target types correspond to each other.

In addition to a TGG schema, a TGG consists of TGG rules that describe how
triples of source, correspondence and target models are built-up simultaneously.
Figure 2 depicts three of the seven rules implementing the families to persons
transformation. A TGG rule consists of elements (nodes and edges). Nodes are
depicted as label:Type, e.g., family:Family, while edges are depicted as Type with-
out labels. Elements created by a TGG rule are depicted as green nodes/edges
with a “++” markup, while context elements are depicted as black nodes/edges
without any markup and must be present for the rule to be applied.

The TGG rule r1: FamilyToPersonsRule creates a family register and a persons
register simultaneously and connects them appropriately with a correspondence
link. The TGG rules r2: FamilyToFatherRule and r3: MemberToFatherRule spec-
ify how fathers are handled: According to r2, a family with a father Member
corresponds to a Father in a PersonsRegister, if the Father is responsible for chil-
dren (isResp := true in the node person:Father). Note that the created father
and family are connected with a FamilyToPerson correspondence. In contrast, r3
creates a Father that is not responsible for any children and requires, therefore,
an adult who corresponds to the family as context.
The remaining rules of the TGG for the running example are:
r4: FamilyToMotherRule, which is identical to r2 but creates a Mother instead of
a Father in the target model and connects the created Member via the mother
reference instead of father.
r5: MemberToMotherRule, identical to r3 in an analogous manner as r4 to r2.
r6/7: MemberToSonRule and MemberToDaughterRule, which are both identical
to r3 but connect the created Member to the Family via the son/daughter refer-
ence instead of the father reference in the source model. Furthermore, the rules
create a Child instead of a Father in the target model, connecting the Child to
the responsible adult via the wards reference.

Looking closer at the rules r2 and r3, one can observe that r3 is a copy of
r2 with an additional element in the target domain and a few changes (some
elements are required as context instead of being created and the attribute as-
signment is adjusted). Similar to code duplication in programs, such pattern
duplication in the rules of a TGG has an averse effect on productivity and
maintainability. For our running example, pattern duplication increases for the
remaining rules r4− r7 turning the rule specification process into an error-prone
copy-and-paste task. Changing the transformations now implies multiple changes
in different rules resulting in a maintenance nightmare, which gets worse with
time as the relationships between rules is not explicit, i.e., new developers cannot
know what must be adjusted. To avoid pattern duplication, a means of reusing

Modularizing Triple Graph Grammars Using Rule Refinement 343

familyRegister :
FamilyRegister

++
personsRegister :
PersonsRegister

++
familyToPersons :
FamilyToPersons

++

r1: FamilyToPersonsRule

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

family : Family
++

member :
Member

++

person : Father
isResp := true

++

familyToPersons :
FamilyToPersons

familyToPerson :
FamilyToPerson

++

memberToPerson :
MemberToPerson

++

r2: FamilyToFatherRule

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

family : Family

member :
Member

++
person : Father
isResp := false

++

familyToPersons :
FamilyToPersons

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

++

adult : Adult
isResp == true

r3: MemberToFatherRule

persons

++

target

++
father

source target

++

source

++

target

++
source

++

target

++

source

++

persons

++persons

++
father

source target

source target

++

source

++

target

++
family family

Fig. 2. TGG rules for handling fathers without rule refinements

common patterns in multiple rules is required. In addition, the reuse mechanism
must be flexible enough to handle cases where the common pattern is not exactly
the same but is only slightly changed. Our concept of rule refinements addresses
this challenge by providing a concise pattern language with which higher-order
transformations (using rule patterns to transform rule patterns) can be specified.

Figure 3 depicts the complete TGG for the running example using rule refine-
ments. The TGG is now represented as an acyclic network of rules, with a

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

family : Family adult : Adult
isResp == true

familyToPerson :
FamilyToPerson

familyRegister :
FamilyRegister

personsRegister :
PersonsRegister

familyToPersons :
FamilyToPersons

family : Family

member :
Member

person : Father
isResp := false

memberToPerson :
MemberToPerson

family : Family

person : Father
isResp := true

familyToPerson :
FamilyToPerson

family : Family

member :
Member

person : Mother
isResp := true

family : Family

member :
Member

person : Mother
isResp := false

family : Family

member :
Member

family : Family

member :
Member

r1: FamilyToPersonsRule

r8: AbstractFamilyToAdultRule r9: AbstractFamilyToFatherRule

r3: MemberToFatherRule

r2: FamilyToFatherRule

r4: FamilyToMotherRule

r5: MemberToMotherRule

r6: MemberToSonRule

r7: MemberToDaughterRule

person : Child

adult : Adult
isResp == true

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

familyToPerson :
FamilyToPerson

memberToPerson :
MemberToPerson

Fig. 3. Refinement network for complete TGG from running example

344 A. Anjorin et al.

refinement relation depicted as dashed arrows between rules, e.g., from r2 to r9.
The rule r9 is referred to as the basis rule of r2, which in turn refines r9. The refine-
ment network depicted in Fig. 3 is resolved to a TGG as follows. A rule r without
a basis rule is trivially resolved to r() with exactly the same elements as r. Paren-
theses indicate that the rule is “resolved” by refining its basis rules. This is the
case for r1, r8 and r9, which are resolved to r1(), r8() and r9() in this manner.

The rule r2 now has a resolved basis r9() and is further resolved to r2(r9())
by adding all elements from r2 to r9(), replacing nodes with the same label.
In a similar manner, r4 is resolved to r4(r9()). The following three points are
to be noted here: Firstly, person: Father in r9() is replaced by person: Mother,
showing that types of elements can be changed when refining, if all edges in the
resolved basis rule can be reconnected to the new element. Secondly, the father
edge between family and member in r9() is deleted as it is not in r4. Finally, a
mother edge between family and member is created as it is in r4 but not in r9().

Resolving r3 involves multiple refinement as it refines both r8 and r9. This is
accomplished bymerging all resolved basis rules to a single basis rule, which is then
refined as usual. In this case,⊕(r8(), r9()) is constructed bymerging elements with
the same label together, e.g., familyRegister from r8() is mergedwith familyRegister
in r9() to form the same element in ⊕(r8(), r9()). Note that infix notation is not
used here as the merge operator is n-ary. Elements such as adult and person that
cannot be identified with a counterpart are added directly to ⊕(r8(), r9()) as new
elements. Note that (i) merging is only possible if the types of identified elements
are exactly the same and (ii) context elements have priority over created elements,
i.e., family in r8() and family in r9() are identified with each other and merged to a
context variable family in⊕(r8(), r9()). This means that the stronger precondition
is taken for the merged rule. The resolved rule r3(⊕(r8(), r9())) is then constructed
as usual with r3 as refining rule and ⊕(r8(), r9()) as its resolved basis rule. As r3
contains no elements, there is nothing else to be done.

Rules r5, r6, and r7 are resolved to r5(r3(⊕(r8(), r9()))), r6(r3(⊕(r8(), r9()))),
and r7(r6(r3(⊕(r8(), r9())))) by replacing and creating elements as already de-
scribed above. The final TGG consists of resolved rules r1(), r2(r9()), . . . , r7(. . .),
excluding the abstract rules r8 : AbstractFamilyToAdultRule and r9 : AbstractFam-
ilyToFatherRule (italicized in Fig. 3).

Our concept of rule refinement helps to avoid pattern duplication in rules
by enabling a flexible composition and reuse of (sub)patterns. For our running
example, although 9 rules are now required instead of 7, due to 2 extra abstract
rules (r8 and r9), the total sum of elements in the rules is reduced from 117 to
65, i.e., almost a 50% reduction of the required number of elements. Current
industrial projects with 50 – 100 TGG rules and an average of 15 – 20 elements
per rule would hardly be tractable without using refinements.

3 Related Work

In the following, we compare our approach to existing modularity concepts for
TGGs in particular and graph transformation in general. We refer to [11] for a
broad survey of modularity concepts for model transformation languages.

Modularizing Triple Graph Grammars Using Rule Refinement 345

Modularity Concepts for TGGs: Klar et al. [7] introduce a reuse mechanism for
TGGs, which avoids pattern duplication by allowing rules to refine a basis rule.
Greenyer et al. [5] extend this idea by introducing reusable nodes, i.e., nodes in
TGG rules that can be created or parsed as context as required. As this can be
simulated with our rule refinement concept, our approach can be viewed as a
generalization of [7,5] with the following extensions:

1. We support and formalize multiple basis rules, i.e., multiple refinement,
which is crucial for a flexible composition of modular TGG rules.

2. In the approach of [7], every rule can only create a single distinct correspon-
dence type. This leads to a confusing mix of two different and orthogonal
concepts: (i) Support for inheritance and abstract types in the metamodels
(especially the correspondence metamodel) according to [4], and (ii) Refine-
ment of TGG rules. In our approach, this restriction is removed completely;
both reuse concepts are clearly separated and can be combined freely.

3. Rather strong restrictions are posed in [7,5] to guarantee the property that
a basis TGG rule is always applicable when its refining rules are. We have
decided to lift these restrictions as: (i) TGGs are usually operationalized to
derive, e.g., forward and backward transformations. The mentioned prop-
erty does not apply to these operational scenarios in general and is thus of
questionable use in practice. (ii) The approach in [7] is formulated for MOF2
which supports advanced modularity concepts such as inheritance on edge
types. The de facto standard EMF/Ecore is simpler in this respect and, as
a consequence, requires a more flexible modularity concept for rules.

4. Both approaches use some form of rule priorities to resolve ambiguities
caused by conflicts between basis and refining rules. As neither approach
employs backtracking due to efficiency reasons, this can either lead to wrong
decisions [5], or requires the user to constantly adjust priorities as rules are
added and changed [7]. To resolve such conflicts, we utilize instead a look-
ahead [8] as a form of application condition, which simulates rule application
to detect obvious dead-ends in the transformation. We are thus able to han-
dle a well-defined class of TGGs without backtracking or user intervention.

Modularity Concepts for Graph Transformations: There are numerous modular-
ity concepts in the mature field of graph transformation. The concept of variable
nodes in rules [6], which can be expanded to instantiate concrete rules, leads to
“template” rules and requires separate, explicit expansion rules. Compared to
our approach, this increases flexibility but also complexity. A related approach
is amalgamation [2], where fragments of a rule can be denoted as being allowed
to be matched arbitrarily many times. In this manner, a single rule can be also
expanded at runtime by matching such fragments as often as necessary.

4 Formalization of Rule Refinements

The basic idea is to establish a suitable and compact language for describing
rule refinements, i.e., the changes required to produce a new rule from a set of
basic rules. We first of all define the syntax of the language, which is chosen to

346 A. Anjorin et al.

fit to the existing TGG syntax for rules, and specify how a rule refinement is
decomposed into a set of primitive transformation steps. The semantics of rule
refinement is then given by executing these primitive (atomic) transformations
in a certain sequence to yield the corresponding higher-order (refinement can be
seen as rewriting of triple rules) model transformation. Furthermore, refinements
can be composed into complex networks with support for multiple refinement
and abstract rules. For presentation purposes and due to space limitations, we
focus in the following discussion on formal details necessary for rule refinement
for TGGs, omitting details concerning, e.g., attribute manipulation, inheritance,
and negative application conditions. We refer to [1,4,8] for further details.

4.1 Preliminaries: Models, Metamodels and Model Transformation

Models and metamodels are formalized as graphs, with a conforms to relation-
ship between a model and its metamodel represented by a structure preserving
map, i.e., a graph morphism type from a typed graph to its type graph.

Definition 1 (Typed Graph and Typed Graph Morphism)
A graph G = (V,E, s, t) consists of a finite set V of nodes and a finite set E of
edges, and two functions s, t : E → V that assign to each edge source and target
nodes, respectively.

A graph morphism f : G → G′, with G′ = (V ′, E′, s′, t′), is defined as a pair of
functions f := (fV , fE) where fV : V → V ′, fE : E → E′ and
∀e ∈ E : fV (s(e)) = s′(fE(e)) ∧ fV (t(e)) = t′(fE(e)).
A type graph is a distinguished graph TG = (VTG, ETG, sTG, tTG).
A typed graph is a pair (G, type) of a graph G and a graph morphism
type: G → TG.

Given (G, type) and (G′, type′), f : G → G′ is a typed graph morphism iff
type = type′ ◦ f .2 The set of all graphs of type TG is denoted as L(TG).

The following definition provides a rule-based, declarative formalization for model
transformation. Changes to a model are represented as a rule, i.e., a pair of
graphs representing the state of the model before and after the transformation.

Definition 2 (Monotonic Creating Rule, Graph Grammar). Given a
type graph TG, a monotonic creating rule r = (L,R) consists of a pair of typed
graphs L,R ∈ L(TG), with L ⊆ R.3 A graph grammar GG := (TG,R) consists
of a type graph TG and a set R of monotonic creating rules.

As TGG rules describe the simultaneous evolution of triples of typed graphs, all
concepts are generalized accordingly. In the following, plain letters such as G
denote typed triple graphs, whereas letters with a subscript such as GS denote
single typed graphs.

2 f ◦ g denotes the morphism obtained by composing f and g and reads “f after g”.
3 L ⊆ R denotes L

r−→ R, where r is an injective typed graph morphism.

Modularizing Triple Graph Grammars Using Rule Refinement 347

Definition 3 (Typed Triple Graph, Typed Triple Graph Morphism)

A triple graph G := GS
γS←− GC

γT−→ GT consists of typed graphs GX ∈ L(TGX),
X ∈ {S,C, T }, and morphisms γS : GC → GS and γT : GC → GT .

Given a triple graph H = HS
γ′
S←− HC

γ′
T−→ HT , a triple morphism

f := (fS , fC , fT) : G → H, is a triple of typed morphisms fX : GX → HX ,
X ∈ {S,C, T }, s.t. fS ◦ γS = γ′

S ◦ fC and fT ◦ γT = γ′
T ◦ fC .

A type triple graph is a triple graph TG = TGS
ΓS←− TGC

ΓT−→ TGT .
A typed triple graph is a pair (G, type) of a triple graph G and triple morphism
type : G → TG.
Given (G, type) and (G′, type′), f : G → G′ is a typed triple graph morphism
iff type = type′ ◦ f . L(TG) denotes the set of all triple graphs of type TG.

Definition 4 (Triple Rules, Triple Graph Grammar (TGG))
Given a type triple graph TG, a triple rule r = (L,R) is a monotonic creating
rule, where L,R ∈ L(TG), and L ⊆ R.

A triple graph grammar TGG := (TG,R) is a pair consisting of a type triple
graph TG and a finite set R of triple rules.

Example 1. The TGG schema for our running example depicted in Fig. 1 is,
according to our formalization, a type triple graph. The TGG rule r2 depicted
in Fig. 2 is a triple rule, i.e., a pair of typed triple graphs (Lr2 , Rr2) where Lr2

consists of all black elements and Rr2 of all black and green (“++”) elements.

Although TGGs can be used directly to generate triples of consistent models,
e.g., for test generation, TGGs are often operationalized in practice to derive
a pair of unidirectional forward and backward transformations for bidirectional
model transformation. As our concept of rule refinement is completely resolved at
compile time, details of TGG operationalization are not necessary to understand
our formalization and are omitted. We refer to [8] for further details.

4.2 Syntax of Refinements

We now formalize the syntactic structure of a refinement, which consists of two
triple rules connected in such a manner that it is clear which elements are to be
deleted, replaced, or newly created. We take a compositional approach and define
a series of refinement primitives, representing executable atomic modifications to
the basis rule. Complex refinements are composed by combining these primitives.

L R

L∗ R∗

ΔL ΔR

δL

δL∗

δR

δR∗

Definition 5 (Refinement). A refinement Δ(r∗, r) con-
sists of two triple rules r∗ = (L∗, R∗) and r = (L,R), con-
nected by triple morphisms δL, δL∗ , δR, δR∗ and typed triple
graphs ΔL, ΔR, with ΔL ⊆ ΔR, such that the diagram de-
picted on the right commutes. The rule r∗ refines its basis
rule r. Note that δL, δL∗ , δR, δR∗ are not necessarily typed.

348 A. Anjorin et al.

Definition 6 (Refinement Network). A Refinement Network is an acyclic
graph N (V,E, s, t) where each node n ∈ V in the network is a triple rule and
each edge e ∈ E indicates that s(e) refines t(e) in the sense of Def. 5.

Definition 7 (DeleteEdge). A DeleteEdge source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the five diagrams depicted in Fig. 4
below. DeleteEdge target refinements are defined analogously, i.e., with non-
trivial components only in the target components of L,R,ΔL, ΔR, L

∗, and R∗.

δL δR

δL∗ δR∗

L R

L∗ R∗

ΔL ΔR

a : A ∅ ∅

a : A ∅ ∅

a : A ∅ ∅

a : A
∅ ∅

b : B
e:E

a : A
∅ ∅

b : B

a : A
∅ ∅

b : B

a : A b : Be:E ++
++

a : A b : B
++

a : A b : Be:E
++

a : A b : B

a : A b : Be:E

a : A b : B

b : Ba : A e:E++
++

b : Ba : A
++

a : A e:E++
++

a : A
++

b : B
++

b : B
++

⇔

Fig. 4. DeleteEdge source refinements

The first DeleteEdge diagram is depicted in both a detailed syntax to the left,
and an equivalent compact syntax to the right. In the detailed syntax, elements
in the typed graphs are denoted by label:type giving a label for the element and
its type. The graph morphisms δLS , δL∗

S
, δRS , δR∗

S
, depicted as arrows, are given

by requiring all element labels to be unique in each graph and mapping equally
labelled nodes (not necessarily of the same type) to each other, and equally
labelled edges of the same type to each other. In the compact syntax, only non-
trivial graphs are shown (in this case only the source components). The basis
rule is placed above the black horizontal line, while the refining rule is placed
below. Elements in RS \LS are annotated with a “++” markup4 to differentiate
them from elements in LS. This allows for a compact notation, which is used for
all other cases. Fig. 4 depicts in sum five different diagrams for DeleteEdge.

Definition 8 (CreateEdge). A CreateEdge source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the five diagrams depicted in Fig. 4 but
with the roles of L/L∗ and R/R∗ exchanged. CreateEdge target refinements are
defined analogously.

4 Additionally emphasized by depicting them in green instead of black.

Modularizing Triple Graph Grammars Using Rule Refinement 349

Example 2. Consider the refinement Δ(r4, r9()) in Fig. 3. In this case, the edge
father in r9 is removed via a DeleteEdge primitive, while the edge mother in r4
is added via a CreateEdge. We denote this in the following as DeleteEdge(father)
and CreateEdge(mother), respectively.

a : A' a : A'
++

a : A'
++

a : A
++

a : A

a : A'

a : Aa : A
++

Definition 9 (ReplaceNode)
A ReplaceNode source refinement is a refinement
Δ(r∗, r), which is isomorphic to one of the four
diagrams depicted to the right. ReplaceNode target
refinements are defined analogously.

Note that the type of the replaced node can be changed in general, i.e., the graph
morphisms δLS , δL∗

S
, δRS , δR∗

S
are not necessarily type preserving (cf. Def. 5).

a : A a : A
++

Definition 10 (CreateNode). A CreateNode source refine-
ment is a refinement Δ(r∗, r), which is isomorphic to one of
the two diagrams depicted to the right. CreateNode target re-
finements are defined analogously.

Definition 11 (DeleteCorr).ADeleteCorr refinement is a refinementΔ(r∗, r),
which is isomorphic to one of the five diagrams in Fig. 5.

δL δR

δL∗ δR∗

L R

L∗ R∗

ΔL ΔR

a : A ∅ ∅

a : A ∅ ∅

a : A ∅ ∅

a : A

a : A b : B
++++

a : A b : B
++

a : A b : B

a : A b : B

a : A b : B

a : A b : B

b : Ba : A
++

b : Ba : A
++

a : A
++

a : A
++

b : B
++

b : B
++

⇔
b : B

a : A ∅ b : B

a : A ∅ b : B

c : C

c : C

c : C

++
c : C

++
c : C

++
c : C

Fig. 5. DeleteCorr refinements

Note that, analogously to Fig. 4, the first DeleteCorr refinement is depicted
in a detailed formal syntax to the left and a compact syntax to the right. Due
to space limitations, the latter is used for the rest of the refinements.

350 A. Anjorin et al.

Definition 12 (CreateCorr)
A CreateCorr refinement is a refinement Δ(r∗, r), which is isomorphic to one
of the five diagrams in Fig. 5 but with the role of L/L∗ and R/R∗ exchanged.

Definition 13 (Refinement Primitive)
A refinement primitive is a DeleteEdge, ReplaceNode, CreateNode, CreateEdge,
CreateCorr or DeleteCorr refinement.

4.3 Semantics of Refinement

To formalize the semantics of our rule refinement concept, we start by defining
how a given refinement can be decomposed into primitives:

Algorithm 1. Refinement Decomposition

A refinement Δ(r∗ = (L∗, R∗), r = (L,R)) can be decomposed into sets PS , PC , PT of
refinement primitives as follows:
(i) For all nodes n in VR∗

S
, if n �∈ range(δR∗

S
,V) then add a corresponding CreateNode

to PS , else add a ReplaceNode to PS.
(ii) For all edges e∗ in ER∗

S
, if e∗ �∈ range(δR∗

S
,E) then add a CreateEdge to PS.

(iii) For all edges e in ERS , if e �∈ range(δRS,E) and s(e) ∈ range(δRS,V) and
t(e) ∈ range(δRS,V), then add a DeleteEdge to PS .

(iv) Perform steps (i) - (iii) for target components VR∗
T
, ER∗

S
, ERT , and PT .

(v) For all correspondence nodes c∗ in VR∗
C
, if c∗ �∈ range(δR∗

C
,V), then add a

CreateCorr to PC .
(vi) For all correspondence nodes c in VRC , if c �∈ range(δRC,V) and

γS(c) ∈ range(δRS,V) and γT (c) ∈ range(δRT ,V), then add a DeleteCorr to PC .

Example 3. From our running example, using the same notation to represent
primitives as introduced in Ex. 2, Δ(r4, r9()) is decomposed (Alg. 1) to:
PS = {ReplaceNode(family), ReplaceNode(member), DeleteEdge(father),
CreateEdge(mother)}, PC = {CreateCorr(familyT oPerson)},
PT = {ReplaceNode(person)}.
Theorem 1 (Completeness of Refinement Decomposition). Given an
arbitrary refinement Δ(r∗, r), decomposition in sets of refinement primitives
PS , PC , PT according to Alg. 1 is possible and unique.

Proof. (Sketch) Algorithm 1 and induction over sets of nodes/edges in Δ(r∗, r).

Note that Def. 5 only fixes the syntax for Δ(r∗, r), which is then interpreted
(i.e., assigned semantics) according to Alg. 1. This is the reason why omitting
a node n in r∗ does not mean it should be deleted, but rather that it is not to
be refined in any way and does not induce any refinement primitive.

Algorithm 2 specifies the executable, atomic higher-order transformation each
primitive represents. Based on this, we are now able to define the transformation
a refinement represents via decomposition in primitives and execution of the
primitives in a fixed order (given by the dependencies between primitives).

Modularizing Triple Graph Grammars Using Rule Refinement 351

Algorithm 2. Refinement Primitive Resolution

Given a triple rule r = (L,R), a refinement primitive Δ(r∗, r) is resolved to yield a new
rule r∗(r) from r by executing the corresponding higher-order model transformation
given in pseudo code as follows (target primitives are handled analogously):
DeleteEdge(e): Remove e from ERS and, if e ∈ EL∗

S
, from ELS . Adjust source and

target functions appropriately by removing entries for e.
CreateEdge(e): Add e to ERS and, if e ∈ EL∗

S
, also to ELS . Adjust source and target

functions appropriately by adding entries for e.
ReplaceNode(n, m): If all incident edges to n can be transferred to m whilst retain-

ing type conformity, remove n from and add m to VRS (repeat for VLS if m ∈ VL∗
S
).

Transfer all incident edges. If this violates type conformity abort (primitive can
not be resolved).

DeleteCorr(c): Remove c from VRC and, if c ∈ VL∗
C
, from VLC . Adjust graph mor-

phisms between source/target and correspondence components appropriately by
removing entries for c.

CreateCorr(c): Add c to VRC and, if c ∈ VL∗
C
, also to VLC . Adjust graph morphisms

between source/target and correspondence components appropriately by adding
entries for c.

Definition 14 (Refinement Resolution). A refinement Δ(r∗, r) is resolved
to yield a new rule r∗(r) by decomposing it into sets of primitives PS , PC , PT

according to Alg. 1 and resolving the primitives (Alg. 2) in the following order:
(i) All DeleteCorrs in PC , (ii) all DeleteEdges in PS and PT ,
(iii) all ReplaceNodes in PS and PT , (iv) all CreateNodes in PS and PT ,
(v) all CreateEdges in PS and PT , and finally, (vi) all CreateCorrs in PC .

The next step on the way to formalizing a network of refinements is to specify
how multiple refinement is handled via a merge operator defined on rules.

L

R

L1 L2 · · · Ln

R1 R2 · · · Rn

L1,2,··· ,n

R1,2,··· ,n μR

μLe

μLm

ρL1 ρL2 ρLn

ρR1 ρR2 ρRn

Definition 15 (Merge Operator ⊕)
Given a finite set {r1, r2, . . . , rn} of rules ri = (Li, Ri),
r = (L,R) = ⊕(r1, r2, . . . , rn) can be constructed as de-
picted in the diagram to the right.
{L1,2,...,n, ρl1 , ρl2 , . . . , ρln} and {R1,2,...,n, ρr1 , ρr2 , . . . , ρrn}
are constructed as the co-products of L1, L2, . . . , Ln and
R1, R2, . . . , Rn, respectively. The typed triple morphism
μR : R1,2,...,n → R must be provided (e.g., via a labelling
function) and represents the decision which elements are
to be regarded as equal and, therefore, merged in R. L, μLe

and μLm are uniquely fixed by the choice of μR.

Example 4. From our running example, ⊕(r8(), r9()) is constructed by building
the co-product (disjoint union of edges and nodes) of the left-hand sides of the
rules (the black elements). This means L8,9 consists of all elements in r8() (of
interest is the node family!) and all black elements from r9(). R8,9 is constructed
analogously and consists of all elements in both rules. The merging morphism
μR (and thus L, μLe and μLm) is given implicitly by merging all elements with

352 A. Anjorin et al.

the same label together. Note that both family nodes are glued together to a
single family node, i.e., family is now a node in L as well as R and is, therefore,
a context node in the merged rule.

Theorem 2 (Merge Operator is Sound). The merge operator is commuta-
tive w.r.t. its arguments and uniquely defined for a given μR (Def. 15).

Proof. (Sketch) The co-product construction is basically a disjoint union defined
for graphs and is commutative. As Li ⊆ Ri for all rules ri, it is also easy to show
that the choice of μR fixes L, μLe and μLm with standard arguments.

Using the merge operator and refinement resolution, we can now provide an
algorithm for resolving a refinement network to a TGG (without refinements):

Algorithm 3. Refinement Network Resolution

A refinement network N (V,E, s, t) is resolved as follows:

1. Every node r without outgoing edges is regarded as a resolved triple rule r().
2. Every node r∗ with a single outgoing edge e to a resolved rule r() is regarded as a

refinement: Δ(s(e), t(e)).
3. Every node r∗ with multiple outgoing edges e1, e2, . . . , ek to resolved rules

r1(), r2(), . . . , rk() respectively, is regarded as a refinement over the result of merg-
ing all rules: Δ(r∗, r = ⊕(r1, r2, . . . , rk)).

4. Every refinement Δ(r∗, r(. . .)) is resolved according to Def. 14, transforming the
refinement network N in N ′ by removing all from r∗ outgoing edges e1, e2, . . . , ek,
and replacing r∗ with the resolved rule r∗(r(. . .)) in the network.

5. As N is acyclic, there exists a partial order k0, k1, . . . , kl in which the network can

be transformed with steps (1) – (4) until there are no edges left, i.e., N k1⇒ N1
k2⇒

. . .
kl⇒ Nl = (VNl , ∅).

6. A refinement network without any edges is resolved and consists only of TGG rules.
The final TGG is constructed from a resolved refinement network by excluding all
rules that are tagged by the user as being abstract.

Theorem 3 (Completeness of Refinement). A refinement network
N (V,E, s, t) can be resolved to a TGG if all induced ReplaceNode primitives
are restricted to using type preserving morphisms. If the refinement network can
be resolved, the resulting TGG is unique up to isomorphism.

Proof. The refinement network is acyclic so there exists at least one linearization
in which the network can be resolved according to Alg. 3 (decomposition is always
possible by Thm. 1). Demanding that all ReplaceNode primitives are restricted
to using type preserving morphisms ensures that all refinement primitives can
be resolved. There might be multiple sortings of the network but the resolution
process for a rule r only depends on its transitive dependencies, which are before
r in any valid sorting. The merge operator is commutative (Thm. 2), so the
resulting TGG is independent of the order in which basis rules are resolved.

Modularizing Triple Graph Grammars Using Rule Refinement 353

Example 5. A valid sorting for the refinement network of our running example is:
r1, r8, r9, r2, r4, r3, r5, r6, r7. The rules r1, r8 and r9 can be resolved to r1(), r8(), r9()
with Alg. 3.1. Resulting refinements are Δ(r2, r9()), and Δ(r4, r9()) according to
Alg. 3.2, and Δ(r3,⊕(r8(), r9())) according to Alg. 3.3. With Alg. 3.4, these four
refinements can be resolved to yield the new nodes r2(r9()),
r4(r9()), and r3(⊕(r8(), r9())) removing all outgoing edges from r2, r4 and r3 and
replacing r2, r4 and r3 with their resolved versions (Alg. 3.4). The remaining net-
work r3, r5, r6, r7 is resolved analogously.

4.4 Design Choices vs. Simplifications

In practice, correspondence graphs are often constructed as simple sets of corre-
spondence nodes without any edges. To simplify the discussion in this paper, this
common simplification is assumed, i.e., there are no CreateCorrEdge primitives.
DeleteNode and ReplaceEdge primitives, however, are omitted on purpose as
one could construct confusing refinement networks by introducing and removing
nodes arbitrarily in the refinement network via CreateNode and DeleteNode.

The merge operator requires a typed triple morphism μR that decides which
elements in the basis rules are to be merged together to result in a single ele-
ment in the resulting rule. There are different ways to specify this morphism in
practice. A user could provide the mapping explicitly by choosing the elements
to be merged (in a dialogue or with a textual specification), or the mapping can
be indicated implicitly by using equal labels for elements to be merged.

The readability of refinement networks has a considerable effect on usability.
Although tool support can provide a “preview” of the complete rules, experience
indicates that users actually appreciate the focus on a small section of the rule
that is changed with respect to the basis rule. Concerning debugging of refine-
ments, the resulting TGG can already be pretty printed in our textual concrete
syntax and an import in our visual modelling environment is in development.

According to the classification of modularization concepts according to [11],
our rule refinement is flattened, i.e., resolved at compile time. This means that
the dynamic semantics of TGGs with respect to the resulting TGG is neither
changed nor affected by using refinements. At first sight this might seem inef-
ficient, why not use the information concerning rule similarities to control the
choice of rules and possibly reduce unnecessary pattern matching? A similar
challenge is also relevant in the context of incremental pattern matching and
has already been analyzed in detail. We plan to employ the algorithm of [10] to
detect rule similarities and enable efficient pattern matching even in cases where
the extra information from refinements is not available or is insufficient (e.g., for
weakly typed metamodels).

5 Conclusion and Future Work

In this paper we have introduced and formalized rule refinement as a pragmatic
modularization concept for TGGs. Our approach generalizes existing work pro-
viding support for multiple refinement and increased flexibility as required for

354 A. Anjorin et al.

EMF/Ecore. Although we focus in this paper on TGGs, our approach can be
transferred to (transformation) languages with rules consisting of graph patterns.

An implementation of rule refinement as proposed in this paper is integrated
in the current version of our metamodelling and model transformation tool
eMoflon.5 As future work we plan to improve readability by providing a vi-
sualization of the flattened TGG, which can be produced on demand. We plan
to analyze our existing collection of TGGs to develop a catalogue of bad smells,
and a set of systematic refactorings, which can be used to introduce refinement
and reduce pattern duplication in existing TGG rules. A further important ex-
tension is to generalize our concept to refinement between complete TGGs, i.e.,
with primitives such as AddRule or ReplaceRule.

References

1. Anjorin, A., Varró, G., Schürr, A.: Complex Attribute Manipulation in TGGs with
Constraint-Based Programming Techniques. In: Hermann, F., Voigtländer, J. (eds.)
BX 2012. ECEASST, vol. 49. EASST (2012)

2. Biermann, E., Ehrig, H., Ermel, C., Golas, U., Taentzer, G.: Parallel Independence
of Amalgamated Graph Transformations Applied to Model Transformation. In:
Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl
Festschrift. LNCS, vol. 5765, pp. 121–140. Springer, Heidelberg (2010)

3. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.: Bidi-
rectional Transformations: A Cross-Discipline Perspective. In: Paige, R.F. (ed.)
ICMT 2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009)

4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer (2006)

5. Greenyer, J., Rieke, J.: Applying Advanced TGG Concepts for a Complex Transfor-
mation of Sequence Diagram Specifications to Timed Game Automata. In: Schürr,
A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 222–237.
Springer, Heidelberg (2012)

6. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and Expanding Graph
Transformation Rules for Refactoring. In: ENTCS, vol. 152, pp. 53–67 (2006)

7. Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Crnkovic,
I., Bertolino, A. (eds.) FSE 2007, pp. 285–294, No. 594074. ACM (2007)

8. Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars
with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765,
pp. 141–174. Springer, Heidelberg (2010)

9. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars.
In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903,
pp. 151–163. Springer, Heidelberg (1995)

10. Varró, G., Deckwerth, F.: A Rete Network Construction Algorithm for Incremental
Pattern Matching. In: Duddy, K., Kappel, G. (eds.) ICMT 2013. LNCS, vol. 7909,
pp. 125–140. Springer, Heidelberg (2013)

11. Wimmer, M., et al.: A Comparison of Rule Inheritance in Model-to-Model Trans-
formation Languages. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707,
pp. 31–46. Springer, Heidelberg (2011)

5 www.emoflon.org

	Modularizing Triple Graph GrammarsUsing Rule Refinement
	1 Introduction and Motivation
	2 Rule Refinements for TGGs
	3 Related Work
	4 Formalization of Rule Refinements
	4.1 Preliminaries: Models, Metamodels and Model Transformation
	4.2 Syntax of Refinements
	4.3 Semantics of Refinement
	4.4 Design Choices vs. Simplifications

	5 Conclusion and Future Work
	References

