
Mining the Categorized Software Repositories

to Improve the Analysis of Security
Vulnerabilities

Alireza Sadeghi, Naeem Esfahani, and Sam Malek

Department of Computer Science
George Mason University

{asadeghi,nesfaha2,smalek}@gmu.edu

Abstract. Security has become the Achilles’ heel of most modern soft-
ware systems. Techniques ranging from the manual inspection to auto-
mated static and dynamic analyses are commonly employed to identify
security vulnerabilities prior to the release of the software. However, these
techniques are time consuming and cannot keep up with the complexity
of ever-growing software repositories (e.g., Google Play and Apple App
Store). In this paper, we aim to improve the status quo and increase
the efficiency of static analysis by mining relevant information from vul-
nerabilities found in the categorized software repositories. The approach
relies on the fact that many modern software systems are developed us-
ing rich application development frameworks (ADF), allowing us to raise
the level of abstraction for detecting vulnerabilities and thereby making
it possible to classify the types of vulnerabilities that are encountered
in a given category of application. We used open-source software reposi-
tories comprising more than 7 million lines of code to demonstrate how
our approach can improve the efficiency of static analysis, and in turn,
vulnerability detection.

Keywords: Security Vulnerability, Mining Software Repositories,
Software Analysis.

1 Introduction

According to the Symantec’s Norton report [1], in 2012 the annual financial loss
due to cybercrime exceeded $110 billion globally. An equally ominous report from
Gartner [2] predicts 10 percent yearly growth in cybercrime-related financial loss
through 2016. This growth is partly driven by the new security threats targeted
at emerging platforms, such as Google Android and Apple iPhone, that provision
vibrant open-access software repositories, often referred to as app markets.

By providing a medium for reaching a large consumer market at a nomi-
nal cost, app markets have leveled the software industry, allowing small en-
trepreneurs to compete head-to-head against prominent software development
companies. The result has been a highly vibrant ecosystem of application soft-
ware, but the paradigm shift has also given rise to a whole host of security

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 155–169, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

156 A. Sadeghi, N. Esfahani, and S. Malek

issues [1]. Numerous culprits are at play here, and some are not even technical,
such as the general lack of an overseeing authority in the case of open markets
and inconsequential punishment for those caught provisioning applications with
vulnerabilities or malicious capabilities.

From the standpoint of application security, the state-of-the-practice needs
to move away from the reactive model of patching the security vulnerabilities to
proactive model of catching them prior to product release [3]. One approach is to
manually inspect the security of application software prior to its release, which is
an expensive and error-prone process. Alternatively, as a step toward addressing
the above issues, static code analysis is gaining popularity for automatically
finding security problems in application software [4].

While more efficient than manual inspection, the ability to improve the ef-
ficiency of static code analysis is gaining prominence for two reasons: (1) App
market operators and overseeing authorities need to employ source code analysis
techniques in large scale. On September 26, 2012 Android team unveiled that
Google Play hosts 675,000 apps [5]. In less than 10 months, the number of apps
in Google Play hit 1,000,000, meaning that more than 1,000 apps were added per
day during that time period. On top of this, thousands of apps are updated every
day that also need to be analyzed. (2) Recent research [6] has shown the benefit
of continuously running static analysis tools in real-time and as programmers
are developing the code, thereby helping them catch vulnerabilities earlier in the
development phase. In such settings, even a slight improvement in efficiency is
highly desirable and sought-after.

An opportunity to tackle this issue is presented by the fact that software
products are increasingly organized into categorized repositories, where each
item is mapped to a flat or hierarchical category. Some examples are SourceForge
for open source and Google Play for Android applications. Other than facilitating
the users in searching and browsing, categorized repositories have shown to be
good predictors of the common features found within software of a particular
category [7].

In this paper, we explore the utility of categorized repositories in inform-
ing the security inspection and analysis of software applications. The fact that
the majority of apps provisioned on such repositories are built using a common
application development framework (ADF) presents us with an additional op-
portunity. The information encoded in the source code of software developed on
top of an ADF (e.g., Android) is richer than information encoded in the source
code of traditional software (e.g., one developed from scratch in Java or C++).
The reason for this is that an app developed on top of an ADF leverages li-
braries, services, and APIs provisioned by the ADF that disclose a significant
amount of information about the app’s behavior/functionality. This information
can be used for various purposes, including security assessment, since many of
the security issues encountered in modern software are due to the wrong usage
of ADF [1]. In this paper, we show how this information can be used to build
a predictor for vulnerabilities one may find in the app of a particular category.

Mining the Categorized Software Repositories 157

This result is important, as it allows us to improve the efficiency of static analysis
techniques for security assessment of software.

Running all possible static analysis rules, which encode patterns of vulnera-
bility one may find in the code, on an application software is a time consuming
and resource intensive process. For instance, in our experiments, in some cases
it took up to 5.4 hours and 1.3 hours to statically analyze a single Java and
Android application, respectively. Given an app belonging to a given category,
we are able to use our predictor to focus the analysis on the vulnerabilities that
are commonly encountered in that category. The predictor helps us pick and
apply the static analysis rules that are empirically shown to be effective for the
different categories of apps.

Our experimental results for Android apps that make extensive use of a par-
ticular ADF have been very positive. Our approach improved the efficiency of
static analysis in the case of Android apps by 68%, while keeping the vulnerabil-
ity detection rate at 100%. The results are useful, although not as significant, for
plain Java applications that do not make use of any ADF, leading to efficiency
improvement of 37%, while 4% of vulnerabilities are missed.

The remainder of this paper is organized as follows. Section 2 provides the
required background as well as motivation for this work. Section 3 outlines the
overview of our approach, while Section 4 describes the details. Sections 5 and 6
describe the research experimental setup, results, and analysis. Section 7 outlines
the threats to validity of our experiments. Finally, the paper concludes with a
discussion of related research and our future work.

2 Background and Motivation

Static analysis entails analysis of computer software without actually executing
the software. While static analysis techniques originated in the compiler commu-
nity for optimization of source code [8], they have found new applications in the
past decade, as they have also shown to be effective for finding vulnerabilities in
the source code [4]. Due to the complexity of statically reasoning about source
code, static analysis is usually performed on an abstract model of code, such
as control flow or data flow. The type of analysis done depends on the types of
vulnerabilities that one aims to find. In this research, we have used three static
analysis techniques for detecting vulnerabilities in Android apps: content, data
flow, and control flow analysis

Content analysis deals with the pre-specified values that are known to cre-
ate vulnerabilities in a program. By detecting “bad” content, the vulnerability
can be discovered and prevented. For instance, a well-known attack against any
phone app with communication capabilities is to trick that app to communicate
(e.g., call, text message, etc.) with premium-rate numbers, which can be pre-
vented by detecting the pattern of premium-rate numbers.

Data flow analysis considers the flow of information in the system tracking how
data from input sources, such as phone identification, user input, and network
interface lead to to output sinks. Data flow analysis is an effective approach

158 A. Sadeghi, N. Esfahani, and S. Malek

Fig. 1. An example of a sequence pattern used by control flow analysis to detect
privilege escalation vulnerability: (a) state model representing the pattern and (b)
realization of the pattern as a rule in Fortify

for detection of information leak or malicious input injection vulnerabilities by
identifying unsafe sinks and input values respectively. Android apps have plenty
of vulnerabilities that can be detected by this approach. In a recent study, Enck
et al. [9] found that about 17% of the top free Android apps on the Google Play
market transmit private user information, such as the phone’s ID or location
information over the web. They also reported that some apps log this private
information to the phone’s shared log stream, which is accessible to other apps
running on the phone.

Control flow analysis entails processing the sequence of program execution,
such as method calls. When a vulnerability can be modeled as a sequence of
actions, we use control flow analysis. In this case, static analysis determines
whether program execution can follow a certain sequence of actions that lead
to a vulnerable status. For instance, control flow analysis can be used to detect
privilege escalation in Android apps. Privilege escalation occurs when a malicious
app exploits a second app to access resources that it does not have permission.

Fig. 1a depicts a control flow sequence pattern that we have developed for de-
tecting privilege escalation vulnerability. Control flow sequence patterns model
the transition of the system from a start state to two final states (one for er-
ror and one for success) through several possible intermediate states. The error
state in Fig. 1a is a result of a flow in the program, where startActivity occurs
without checking the permission of the calling application (by calling checkCall-
ingPermission method). Fig. 1b shows the realization of this pattern as a rule
in Fortify Static Code Analysis environment [10].

Fortify is a powerful static analysis tool, however, there are plenty of analysis
tools that could reveal different kinds of vulnerabilities. Ware and Fox [11], used
eight different static analysis tools (namely Checkstyle [12], Eclipse TPTP [13],
FindBugs [14], Fortify [10], Jlint [15], Lint4j [16], PMD [17], and QJ-Pro [18])
to identify the vulnerabilities in Java projects. Then they compared the result
of using these tools side-by-side. Among 50 distinct vulnerabilities detected by
combination of eight tools, no individual tool could detect more than 27 dis-
tinct items. This implies that using a single tool increases the chance of missing
vulnerabilities (i.e., having false negatives). Therefore, one should apply various

Mining the Categorized Software Repositories 159

Fig. 2. Overview of the approach: (a) rank rules and (b) efficient vulnerability analysis

tools with many detection rules. However, this affects the analysis time and ham-
pers the efficiency. This is exactly the challenge that we are aiming to resolve in
this paper. In the next section, we provide an overview of our approach, which
prioritizes the rules based on the likelihood of detecting vulnerabilities. Applying
rules based on their priorities improves the efficiency of static analysis.

3 Approach Overview

Fig. 2 depicts an overview of our approach. Categorized Repository of software
applications is the first input to our framework. In this repository, each ap-
plication is labeled with a predefined class or category. Here, we assume such
categorized applications can be gathered from on-line repositories (e.g., F-Droid
and SourceForge) without any classification effort. Otherwise, machine learning
techniques could be used to find the category of each application [7].

The second input to our framework is Vulnerability Detection Rules, which
define the interesting patterns in the source code. Since our research focus is on
security issues, we are interested in the rules that define patterns of vulnerability
in the code.

Static Analysis Tool Set inspects the code repository and looks for any in-
stance that matches the patterns defined in the rules. The result is an Analysis
Report. Analysis Report consists of all locations in the code that are detected
as potential vulnerabilities. Static analysis recurs for each application in the
repository and generates the corresponding report.

The generated list of latent vulnerabilities for a categorized repository of ap-
plications serves as our training data set. Given this data, the Probabilistic Rule
Classifier ranks each vulnerability based on its frequency in the Analysis Re-
port. In this regard, Probabilistic Rule Classifier applies conditional probabil-
ity to find the likelihood of occurrence of each vulnerability in each category.

160 A. Sadeghi, N. Esfahani, and S. Malek

The result of this is Rule Ranking. In this ranking, a frequency score is assigned
to each security rule for a given category. Higher score means that it is more
likely for the corresponding rule to detect a vulnerability in that category.

Fig. 2b depicts the application of Rule Ranking in improving the analysis
of vulnerabilities. Rule Selector uses the category of a given Categorized App
and picks the most efficient rules from Vulnerability Detection Rules for that
category based on Rule Ranking. Static Analysis Tool Set uses Selected Rules
to efficiently analyze the Categorized App and detect its possible vulnerabilities,
which are reported as Detected Vulnerabilities.

4 Probabilistic Rule Classification and Selection

As depicted in Fig. 2, the result of running Static Analysis Tool Set is the Anal-
ysis Report. This report contains the application’s source code locations that
match the predefined vulnerability patterns specified in Vulnerability Detection
Rules. The tool set tries all the rules and finds all matches in the source code.
However, some of the rules may not match at all. We depict the set of all Vul-
nerability Detection Rules as R and the set of rules where at least one match has
been found for them as M . If we know these rules upfront, we can improve the
efficiency of static analysis by removing the irrelevant rules (i.e., M = R −M).
We call this rule reduction.

We can extend our definition by considering the categorical information. Ap-
plications categorized in the same class have some common features implemented
by similar source code patterns and API calls to common libraries [7]. Conse-
quently, it is more likely for a set of applications in a given category c ∈ C
(where C is the set of all categories) to have common vulnerabilities. We use
this insight and extend our definition as follows: Mc is the set of rules that are
matched at least once inside an application with category c.

It takes only one false positive to include the corresponding rule r in Mc. As
the number of projects in the category and the number of files in the projects
increases, it becomes more likely for all the rules to be included in Mc due to
false positives, hence Mc converges to R. In other words, for each rule some
kind of matching (which may be a false positive) is found. This is the problem
with simply checking the membership of rule r in Mc as the binary measure of
relevance of rule r to category c. We need a measure that expresses the likelihood
of rule r being relevant to a given category c. This is the classical definition
of conditional probability of P (r|c). Calculating this value helps us to confine
the static analysis rules for each application category to the rules that detect
widespread vulnerability in that category.

By applying Bayes Theorem [19] to the Analysis Reports (recall Fig. 2), we
can calculate P (r|c), indicating the probability of a given rule matching an
application from a category:

P (r|c) = P (c|r)× P (r)

P (c)
(1)

Mining the Categorized Software Repositories 161

Here, P (c) is the probability of an application belonging to a category c, cal-
culated via dividing the number of applications belonging to category c by the
total number of applications under study. P (r) is the probability of a rule r
matching, calculated via dividing the number of matches for rule r by the total
number of matches for all rules on all applications. Finally, P (c|r) is the prob-
ability that a given application category c have the rule r matching, calculated
via dividing the total number of times applications of category c were matched
with rule r by the total number of matches for applications of that category.

As we described earlier P (r|c) is used by the Rule Selector to reduce the
number of rules used in static analysis. We can exclude a rule r from the static
analysis of an application belonging to category c, when P (r|c) ≤ ε, where ε is a
user-defined threshold indicating the desired level of rule reduction. We indicate
the set of excluded rules for category c as Ec, and in turn, assess the reduction
in the number of rules for category c as following:

Reductionc = (|Ec|/|R|)× 100 (2)

The value selected for the threshold presents a trade-off between the reduction
of rules (i.e., the improvement in efficiency) and the coverage of static analysis.
As more rules are removed, the static analysis is done faster, but the coverage
decreases, increasing the chances of missing a vulnerability in the code. We will
discuss the selection of threshold in Section 6.

5 Experiment Setup

The first step for using our approach is to populate Categorized Repository and
Vulnerability Detection Rules (depicted as the two inputs in Fig. 2) with a set
of application (denoted as set App) and a set of rules (recall R from Section 4),
respectively. In this section, we describe how we collected App and R for our
evaluation purposes and set up the experiments. We evaluated our approach on
applications developed using Java and Android (as a representative ADF).1

We considered applications with two characteristics in the evaluation process:
categorized and open-source. The first characteristic is the basis of our hypothesis
and almost all App repositories (e.g., F-Droid and Google Play) support it. The
second characteristic is based on the requirements of some static analysis tools
(e.g., Fortify) and manual inspection. Among the available repositories, the best
candidates for Java and Android are Source Forge and F-Droid, respectively. The
additional benefit of using Source Forge and F-Droid together is that they have
categorized the applications very similarly, allowing us to compare the results
from these repositories. Table 1 shows the number of applications gathered from
each category. We depict the set of applications in the same category c as Appc.
Categories with two labels (one in parentheses) indicate alternative category

1 Research artifacts and experimental data are available at
http://www.sdalab.com/projects/infovul

http://www.sdalab.com/projects/infovul

162 A. Sadeghi, N. Esfahani, and S. Malek

Table 1. Number of application in each category

C ID Category Java Android

c1 Business-Enterprise 47 -
c2 Communications (Phone) 55 14
c3 Development 54 17
c4 Game 30 51
c5 Graphics 29 -
c6 Home-Education 51 21
c7 Internet 30 53
c8 Multimedia (Audio-Video) 51 51
c9 Navigation - 32
c10 Office - 101
c11 Reading - 17
c12 Science-Engineering 42 -
c13 Security-Utilities 17 -
c14 System 35 95
c15 Wallpaper - 8

Total Number of Applications 441 460

Table 2. Experiment environment statistics

Experiment Stats Java Android

Total Lines of Code 6,166,755 1,360,881
Number of Categories 11 11
Number of Exclusive Rules 156 50
Total Number of Vulnerabilities 38,312 2,633

names used in the two repositories. For instance, the Multimedia category in
Android, is called Audio/Video category in Java.

We used HP Fortify [10] as the main static analysis tool (recall Static Analysis
Tool Set from Fig. 2). While Fortify provides a set of built-in rules for various
programming languages, it also supports customized rules, which are composed
by third-parties for specific purposes. For Java we utilized built-in rules provided
by Fortify, while for Android we used rules provided by Enck et al. [9]. However,
as we mentioned in Section 2, a single tool has a high chance of missing some of
the vulnerabilities. Hence, we also used FindBugs [14], Jlint [15], and PMD [17]
to reinforce the static analysis and reduce the false negative rate.

We ran Static Analysis Tool Set with the inputs discussed above to detect
vulnerabilities in the experiments and prepare Analysis Report. The results are
summarized in Table 2. We then fed the Analysis Report to Probabilistic Rule
Classifier to calculate the Rule Ranking for each category. Before delving into
the effects of this ranking on the static analysis, which is presented in Section 6,
we provide some additional insights about the generated Analysis Report in
this section. To that end, we extracted the detected vulnerabilities in each cat-
egory from Analysis Reports to profile the applications in our study. However,
since the number of applications under study in each category (i.e., |Appc|) are

Mining the Categorized Software Repositories 163

Fig. 3. Normalized Density of Vulnerabilities (NDoV) based on application categories
for different domains: (a) Android and (b) Java

different, the raw measurements are misleading. Therefore, we define the Density
of Vulnerability (DoVc) metric for a given category c as follows:

DoVc =

∑
r∈R

∑
a∈Appc

|Vr,a|
|Appc| (3)

Here, Vr,a is the set of vulnerabilities in the application a, which are detected
by applying rule r. Since the total number of vulnerabilities may be different
for Android and Java, the DoVc is not comparable between the two domains.
Therefore, we define Normalized Density of Vulnerability (NDoVc) for a given
category c as follows:

NDoVc =
DoVc∑
c∈C DoVc

(4)

Fig. 3, which is practically the probability distribution of the vulnerabili-
ties in the two experiments, presents NDoVc values for Android and Java do-
mains. In Android domain, Communication (c2) and Game (c4) are the most
vulnerable and safest categories respectively. This result is reasonable, as the
applications in the Communication category call many security-relevant APIs
(e.g., Telephony), while applications in the Game category mostly call benign
APIs (e.g., Graphic). We observe similar trends for Java domain, where Security-
Utilities (c13) and Science-Engineering (c12) have the highest and lowest vul-
nerability rates, respectively. The results show that the different categories have
starkly different levels of vulnerability.

6 Evaluation

The ultimate contribution of our research is to improve the efficiency of soft-
ware security analysis. Therefore, evaluation of our approach entails measuring
the efficiency improvement from using the suggested ranking. Additionally, we
want to investigate our hypothesis that the abstractions afforded by ADF indeed
enable further efficiency gains.

As you may recall from Section 4, the value of ε presents a trade-off between
the reduction of rules and the coverage of static analysis. If ε is too low, reduc-
tion, and in turn, improvement in efficiency would be insignificant. On the other

164 A. Sadeghi, N. Esfahani, and S. Malek

Fig. 4. The overall reduction vs. the overall coverage of the remaining rules for: (a)
Android and (b) Java

hand, if ε is too high, the chance of missing detectable vulnerabilities in static
analysis increases. We have already described how we exclude rules (recall Ec

from Section 4) and assess rule reduction for a given category c (recall Equa-
tion 2). Coverage of the remaining rules (i.e., Ec = R−Ec) for a given category
c represents the percentage of the vulnerabilities detected in that category by
only using the rules that are not excluded and is defined as follows:

Coveragec =

∑
r∈Ec

∑
a∈Appc

|Vr,a|
∑

r∈R

∑
a∈Appc

|Vr,a| × 100 (5)

Fig. 4 shows the overall reduction and coverage of all categories for various ε
values in Android and Java domains. We calculated these values using 10-Fold
Cross Validation technique [20]. We partitioned the set of apps under study into
10 subsets with equal size and used them to conduct 10 independent experiments.
In each experiment, we treated 9 subsets as the training set and the remaining
subset as the test set. Recall from Table 2 that our data set comprised of 441 Java
and 460 Android applications. We calculated Reductionc and Coveragec values
for each test set based on the P (r|c) values learned from the corresponding
training set. Then, we calculated the intermediate reduction and coverage for
each experiment as the weighted average of Reductionc and Coveragec values;
the weights were assigned proportional to the number of applications fallen in
category c for that experiment. Finally, we calculated the overall reduction and
coverage as the average of intermediate reduction and coverage values obtained
from the 10 experiments.

According to Fig. 4, in Android domain, with ε = 0 (i.e., when only the
rules with learned detection probability of 0 are excluded), reduction is 68%,
while coverage is at 100%, meaning that all vulnerabilities that are detectable
using all of the rules in our experiment are indeed detected. In other words, the
remaining 32% of the rules are as powerful as all of the rules in detecting all of
the vulnerabilities and achieving 100% coverage. However, in Java domain, the
results are significantly different as reduction with ε = 0 is 37%. Additionally,
the remaining 63% of rules can only provide 96% coverage. In other words, they
are not as powerful as all of the rules in detecting Java vulnerabilities.

These results support our hypotheses. They emphasize the effectiveness of our
probabilistic ranking as we could achieve full coverage of Android vulnerabilities

Mining the Categorized Software Repositories 165

with 68% reduction of unnecessary rules. In our experiments, no rule was excluded
from all categories. This implies that every rule is useful, but, may be unnecessary
in some categories. Moreover, as we expected, the use of ADF has a positive in-
fluence on the effectiveness of our approach. This is because the rules specified in
terms of ADF are at a level of abstraction that lend themselves naturally to pos-
itive or negative correlation with a particular application category. The results
show that in the domains where ADFs are heavily used, our approach could be
used to significantly improve the performance of static analysis by removing the
irrelevant rules.

The divergence of coverage and reduction in Java domain is very high com-
pared to Android domain. The loss of coverage with ε = 0.04 for Android is 16%,
while for Java the loss is 93%. This clearly shows that our approach is most ef-
fective in domains where an ADF is used for the implementation of application
software. As a result, in the remainder of evaluation, we focus on the results
obtained in Android domain.

Table 3 provides the detailed results of experiments for Android apps when ε =
0. The number of excluded rules (i.e., |Ec|) in the categories varies between 24 to
43 rules out of total 50 vulnerability detection rules. In other words, Reductionc

is between 48% to 86% for different categories that leads to the average reduction
of 68%, as shown before in Fig. 4a.

Table 3 presents the average and 95% confidence interval for the analysis time
of an Android app in each category. Here, Uninformed column corresponds to
the time spent for source code analysis if all vulnerability detection rules (i.e.,
R) are applied, while Informed is when unnecessary rules (i.e., Ec) are excluded
from the analysis procedure. The last column in Table 3 shows the significant
time savings by pruning the useless rules from source code analysis. From the
last row of the table, we can see that our approach on average achieves a 67%
speed up compared to the uninformed approach of simply analyzing the source
code for all types of vulnerability.

Table 3. Analysis time for Android apps for ε = 0

Android Rule Exclusion Analysis Time (mins) Saved Analysis
Category |Ec| Reductionc Uninformed Informed Time (mins)

Development 43 86 43.48±8.3 6.09±1.16 37.39±7.14
Education 35 70 59.29±17.76 17.79±5.33 41.5±12.43
Game 39 78 48.92±4.94 10.76±1.09 38.16±3.85
Internet 33 66 49.83±6.65 16.94±2.26 32.89±4.39
Multimedia 29 58 60.47±11.22 25.4±4.71 35.07±6.51
Navigation 31 62 44.61±8.25 16.95±3.14 27.66±5.12
Office 30 60 44.25±4.11 17.7±1.64 26.55±2.46
Phone 30 60 70.36±22.47 28.14±8.99 42.21±13.48
Reading 40 80 62.4±18.25 12.48±3.65 49.92±14.6
System 24 48 47.17±11.93 24.53±6.2 22.64±5.73
Wallpaper 42 84 44.27±12.04 7.08±1.93 37.19±10.12
All categories 34 68 52.28±11.45 16.54±3.62 35.74±7.83

166 A. Sadeghi, N. Esfahani, and S. Malek

7 Threats to Validity

With regard to the internal threats, there is one issue. Since we needed access
to open source applications for our experiments, the training set was limited
to 460 open-source Android apps, which is small in comparison to 700,000 (not
necessarily open source) apps currently available on Google Play. However, since
we have covered almost all available categories that exist in Google Play with
a similar app distribution, our experimental app set could be considered as an
admissible representation of the global Android app market. Extending our study
to a larger set of applications is likely to improve the accuracy of our approach.

An external threat is related to our non-overlapping decisive app categoriza-
tion method. In this research, we have assumed each app belongs to a single
prespecified category. This is a reasonable assumption as many app markets
(e.g., F-Droid as well as Google Play) assign an app to one category. But when
software repositories allow an application to belong to multiple categories, an
app may possess the features, and thus vulnerabilities of more than one category.
Our approach in its current form is not applicable to such settings. For this we
would need to precede our approach with a preprocessing step in which we first
determine the category that best matches the characteristics of an application,
or alternatively provide a probabilistic measure of confidence with which the
application belongs to a particular category.

8 Related Work

Prior research could be classified into two thrusts: (1) security vulnerability
prediction and (2) Android security threats and analysis techniques. In this
section, we review the prior literature in light of our approach.

The goal of the first thrust of research is to inform the process of security
inspection by helping the security analyst to focus on the parts of the system
that are likely to harbor vulnerabilities. While most prior approaches on vulner-
ability prediction are platform-independent and try to predict the occurrence
of vulnerability regardless of the application domain [21–23], some have focused
on a specific platform or domain, such as Android [24] or Microsoft Windows
vulnerabilities [25].

An Important distinction between our work and the prior research is the
features of application software that are selected for prediction. Some vulnera-
bility prediction approaches are based on various software metrics. For example
Scandariato and Walden [24] have considered a variety of source code metrics,
including size, complexity and object-oriented metrics, Shin et al. [23] have ap-
plied complexity, code churn, and developer activity metrics, and Zimmermann
et al. [25] have used the same metrics together with coverage and dependency
measures. Some other vulnerability prediction approaches have considered the
raw source code and applied text retrieval techniques to extract the features.
For example, Hovsepyan et al. [21] have transferred Java files into feature vec-
tors, where each feature represents a word of the source code, while Neuhaus

Mining the Categorized Software Repositories 167

et al. [22] have not included all of the words in the source code in the analy-
sis, and instead established a correlation between vulnerabilities, imports, and
function calls.

In our research, we took advantage of categorized software repositories to pre-
dict the potential vulnerabilities of an application. In contrast to the prior work,
we have used meta-data of apps (i.e., category), which is predefined and does
not require any preprocessing techniques, together with the information obtained
through static analysis of the code. We believe our approach complements the
prior research, as it presents an alternative method of detecting and classifying
presence of vulnerabilities.

The second thrust of research has studied Android security threats and analy-
sis techniques at different levels of system stack, from operating system level [26,
27] to application level [9, 27–29]. However, in most cases, Android architecture
and its security model have been the main focus of the study [26–28], as op-
posed to the vulnerabilities that arise in the application logic. Shabtai et al. [26]
have clustered security threats based on their risk, described the available se-
curity mechanism(s) to address each threat, and assessed the mitigation level
of described solutions. Enck et al. [27] have enumerated security enforcement of
Android at two levels: system level and inter-component communication level.
They have developed a tool, named Kirin, to check the compliance of described
security mechanism with Android apps. Enck et al. [9] have also investigated
vulnerabilities of 1,100 Android apps by using static analysis. In this regard,
they have provided a set of vulnerability detection rules, which we have used in
our research.

A body of prior research has tried to automate the security testing of Android
apps. Mahmood et al. [28] suggested a whitebox approach for testing Android
apps on the cloud, where test cases are generated through lightweight program
analysis. In another research, Gilbert at el. [29] suggested AppInspector, which
tracks and logs sensitive information flows throughout app’s possible execution
paths and identifies security or privacy violations. Unlike our work, all prior
research has implicitly assumed that various vulnerabilities have the same like-
lihood, and consequently tackled them with equal priority. Our research com-
plements prior research by prioritizing the order in which vulnerabilities are
analyzed and tested.

9 Conclusion

The ability to streamline the security analysis and assessment of software is gain-
ing prominence, partly due to the evolving nature of the way in which software
is provisioned to the users. We identified two new sources of information that
when mined properly present us with a unique opportunity to improve the state-
of-the-art (1) meta-data available in the form of application category on such
repositories, and (2) vulnerabilities specific to the wrong usage of application
development framework (ADF).

In summary, the contributions of our work are as follows: (1) We were
able to derive a strong correlation between software categories and security

168 A. Sadeghi, N. Esfahani, and S. Malek

vulnerabilities, in turn allowing us to eliminate the vulnerabilities that are irrel-
evant for a given category. Most notably, we showed that we can achieve 68%
reduction in the vulnerability detection rules, while maintaining 100% coverage
of the detectable vulnerabilities in Android. (2) We developed a probabilistic
method of ranking the rules to improve the efficiency and enable prioritization
of static analysis for finding security vulnerabilities. (3) We empirically demon-
strated the benefits of ADF in the security vulnerability assessment process. An
app developed on top of an ADF leverages libraries, services, and APIs provi-
sioned by the ADF that disclose a significant amount of information about the
app’s behavior/functionality. We showed how this information can be used to
predict vulnerabilities one may find in the app of a particular category.

As part of our future work, we are interested to extend the research to situa-
tions in which an app belongs to more than one category. In addition, in this re-
search we focused on vulnerabilities, which are unintentional mistakes providing
exploitable conditions that an adversary may use to attack a system. However,
another important factor in security analysis is malicious capabilities, which are
intentionally designed by attackers and embedded in an app. Hence, as a com-
plement of this research, we plan to mine the categorized software repositories
to improve the malware analysis techniques.

Acknowledgements. This work was supported in part by awards W911NF-
09-1-0273 from the US Army Research Office, D11AP00282 from the US Defense
Advanced Research Projects Agency, and CCF-1252644 and CCF-1217503 from
the US National Science Foundation.

References

1. Symantec Corp.: 2012 norton study (2012)
2. Gartner Inc.: Gartner reveals top predictions for IT organizations and users for

2012 and beyond (2011)
3. McGraw, G.: Testing for security during development: why we should scrap

penetrate-and-patch. In: Are We Making Progress Towards Computer Assurance?
Proceedings of the 12th Annual Conference on Computer Assurance, COMPASS
1997, pp. 117–119 (1997)

4. McGraw, G.: Automated code review tools for security. Computer 41, 108–111
(2008)

5. Android: Official blog (officialandroid.blogspot.com)
6. Muslu, K., et al.: Making offline analyses continuous. In: Int’l Symp. on the Foun-

dations of Software Engineering, Saint Petersburg, Russia, pp. 323–333 (2013)
7. Linares-Vsquez, M., et al.: On using machine learning to automatically classify

software applications into domain categories. Empirical Software Engineering,
1–37 (2012)

8. Binkley, D.: Source code analysis: A road map. In: Int’l Conf. on Software Engi-
neering, Minneapolis, Minnesota, pp. 104–119 (2007)

9. Enck, W., et al.: A study of android application security. In: Proceedings of the
20th USENIX Security Symposium, vol. 2011 (2011)

Mining the Categorized Software Repositories 169

10. HP Enterprise Security: (Static application security testing)
11. Ware, M.S., Fox, C.J.: Securing java code: heuristics and an evaluation of static

analysis tools. In: Proceedings of the 2008 Workshop on Static Analysis, SAW 2008,
Tucson, Arizona, pp. 12–21. ACM (2008)

12. Checkstyle: Enforce coding standards (checkstyle.sourceforge.net)
13. Eclipse: Eclipse test & performance tools platform project,

http://www.eclipse.org/tptp

14. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM Sigplan Notices 39, 92–106
(2004)

15. Jlint: Find bugs in java programs (jlint.sourceforge.net)
16. Lint4j: Lint4j overview, http://www.jutils.com
17. PMD: Source code analyzer (pmd.sourceforge.net)
18. QJ-Pro: Code analyzer for java (qjpro.sourceforge.net)
19. Bertsekas, D.P., Tsitsiklis, J.N.: Introduction to Probability, 2nd edn. Athena Sci-

entific (2008)
20. Tan, P.N., et al.: Introduction to Data Mining, 1st edn. Addison Wesley (2005)
21. Hovsepyan, A., et al.: Software vulnerability prediction using text analysis tech-

niques. In: Proceedings of the 4th International Workshop on Security Measure-
ments and Metrics, pp. 7–10 (2012)

22. Neuhaus, S., et al.: Predicting vulnerable software components. In: Proceed-
ings of the 14th ACM Conference on Computer and Communications Security,
pp. 529–540 (2007)

23. Shin, Y., et al.: Evaluating complexity, code churn, and developer activity metrics
as indicators of software vulnerabilities. IEEE Transactions on Software Engineer-
ing 37, 772–787 (2011)

24. Scandariato, R., Walden, J.: Predicting vulnerable classes in an android applica-
tion. In: Proceedings of the 4th International Workshop on Security Measurements
and Metrics, pp. 11–16 (2012)

25. Zimmermann, T., et al.: Searching for a needle in a haystack: Predicting secu-
rity vulnerabilities for windows vista. In: 2010 Third International Conference on
Software Testing, Verification and Validation (ICST), pp. 421–428 (2010)

26. Shabtai, A., et al.: Google android: A comprehensive security assessment. IEEE
Security & Privacy 8, 35–44 (2010)

27. Enck, W., et al.: Understanding android security. IEEE Security & Privacy 7, 50–57
(2009)

28. Mahmood, R., et al.: A whitebox approach for automated security testing of an-
droid applications on the cloud. In: 2012 7th International Workshop on Automa-
tion of Software Test (AST), pp. 22–28 (2012)

29. Gilbert, P., et al.: Vision: automated security validation of mobile apps at app
markets. In: Proceedings of the Second International Workshop on Mobile Cloud
Computing and Services, pp. 21–26 (2011)

http://www.eclipse.org/tptp
http://www.jutils.com

	Mining the Categorized Software Repositoriesto Improve the Analysis of SecurityVulnerabilities
	1 Introduction
	2 Background and Motivation
	3 Approach Overview
	4 Probabilistic Rule Classification and Selection
	5 Experiment Setup
	6 Evaluation
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

