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Abstract. A hallmark of object-oriented programming is the ability to perform
computation through a set of interacting objects. A common manifestation of this
style is the notion of a package, which groups a set of commonly used classes
together. A challenge in using a package is to ensure that a client follows the
implicit protocol of the package when calling its methods. Violations of the pro-
tocol can cause a runtime error or latent invariant violations. These protocols can
extend across different, potentially unboundedly many, objects, and are specified
informally in the documentation. As a result, ensuring that a client does not vio-
late the protocol is hard.

We introduce dynamic package interfaces (DPI), a formalism to explicitly
capture the protocol of a package. The DPI of a package is a finite set of rules
that together specify how any set of interacting objects of the package can evolve
through method calls and under what conditions an error can happen. We have
developed a dynamic tool that automatically computes an approximation of the
DPI of a package, given a set of abstraction predicates. A key property of DPI is
that the unbounded number of configurations of objects of a package are summa-
rized finitely in an abstract domain. This uses the observation that many packages
behave monotonically: the semantics of a method call over a configuration does
not essentially change if more objects are added to the configuration. We have
exploited monotonicity and have devised heuristics to obtain succinct yet general
DPIs. We have used our tool to compute DPIs for several commonly used Java
packages with complex protocols, such as JDBC, HashSet, and ArrayList.

1 Introduction

Modern object-oriented programming practice uses packages to encapsulate compo-
nents, allowing programmers to use these packages through well-defined application
programming interfaces (APIs). While programming languages such as Java and C#
provide a clear specification of the static APIs of a package in terms of classes and their
(typed) methods, there is usually no specification of the implicit protocol that constrains
the temporal ordering of method calls on different objects. If the protocol is limited to
a single object of a single class, it can be specified in form of a state machine whose
states are the abstract states of the object and whose edges are the invocations of its

� Shahram Esmaeilsabzali was at MPI-SWS when this work was done.
�� Damien Zufferey was at IST Austria when this work was done.

S. Gnesi and A. Rensink (Eds.): FASE 2014, LNCS 8411, pp. 261–275, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



262 S. Esmaeilsabzali et al.

methods [2, 14, 16]. For example, a lock object has two states: locked and unlocked.
While in the unlocked (resp. locked) state, a call to the lock (resp. unlock) method takes
it to the locked (resp. unlocked) state. Any other method call results in an error. The no-
tion of state-machine interfaces has been studied extensively, and there are many tools
to generate interfaces using static or dynamic techniques [2, 9, 13, 15]. However, exist-
ing notions of state machines on object states must be generalized when considering a
package. First, the internal state of an object should be considered in the context of the
internal states of other objects; e.g., in the Java Database Connectivity (JDBC) package,
a Statement object can execute safely only if its corresponding Connection object is
open. Second, the execution of a method on an object can change the internal state of
other objects in the environment; e.g., calling the executeQuery method on a JDBC
Statement object closes its corresponding open ResultSet object. Finally, the pro-
tocol can constrain the states and transitions of unboundedly many interacting objects;
e.g., considering a collection object and its iterators, modifying the collection directly
invalidates all of its iterators.

The problem of generalizing interfaces from single to multiple objects has been stud-
ied recently [10–12]. However, what is missing is a clear definition of what constitutes
an interface in the presence of unboundedly many objects on the heap. Our first contri-
bution is the introduction of dynamic package interface (DPI), which allows to capture
the protocol of a package in a succinct manner. The DPI of a package is a set of rules,
each of which specifies the effect of a method call on an object within an abstract config-
uration of objects. An abstract configuration denotes an unbounded number of concrete
configurations of objects from a package. A rule has a source and a destination config-
uration, together with a mapping that specifies how the objects in the source change to
the objects in the destination.

Our first technical ingredient is a representation of abstract configurations using
nested graphs [17]. In a nested graph, a subgraph can be marked to be repeatable, and
repetitions can be nested. Nested graphs naturally represent unbounded heap configu-
rations. For example, Figure 1 shows a (two-level) nested graph representing an open
JDBC Connection object with its many corresponding closed Statement objects,
each with many closed ResultSet objects.

Our second ingredient is an abstract semantics of Java-like languages over the do-
main of nested graphs that is monotonic (in fact, the abstract transition system is well-
structured [1]): if a method can be called in a “smaller” configuration, it can be also
called in a “larger” configuration, with the resulting configurations maintaining the re-
lationship. Monotonicity enables us to define the DPI rules of a package only over
its maximal abstract configurations, letting each rule subsume infinitely many similar
“smaller” rules. We prove that the set of maximal configurations has a finite represen-
tation, and thus the DPI of a package has a finite number of rules [6].

Our second contribution is a dynamic analysis technique to compute an approxima-
tion of the DPI of a package directly from the source code. Our tool explores the usage
scenarios of a package by running a universal client that in each of its finite number of
steps, nondeterministically, either creates a new object or invokes a method of an exist-
ing object. Each step of the universal client results in a rule. The universal client can end
up computing hundreds or thousands of distinct rules, which makes the resulting DPI
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practically not useful. The challenge is to generalize these rules to obtain a compact
DPI by exploiting similarity. Often, a pair of rules for the same method are incompa-
rable only because their sources and destinations are slightly different. For example,
in one rule for the close method of the Statement class, the source configuration
has closed ResultSet objects but not an open one, and vice versa, another rule might
have an open ResultSet object but not closed ones. It makes sense, however, to com-
bine these two rules because the effect of the two rules are essentially the same: the
Statement object and its open ResultSet object are closed.

We have devised three heuristics that generalize a set of explored rules into a smaller,
more general set. Our extrapolation heuristic compares the configurations of different
rules and deduces whether the configuration of a certain rule can be expanded by re-
peating part of it based on the repetitions observed in the configurations of other rules.
Our merge heuristic combines two rules that are based on similar method invocations
into one rule. Our exception isolation heuristic combines two similar exception rules
into one. While merging is similar to the union of the two rules, exception isolation is
closer to an intersection that isolates the root cause of an exception. Our heuristics are
all grounded in the monotonicity property of our abstract semantics.

We have used our tool to compute the DPIs of Java packages such as JDBC (26
rules), HashSet (16 rules), and ArrayList (15 rules). The rules of these DPIs can be
traced to their documentation, as well as to the programming errors discussed in on-
line discussion groups. Our tool more often than not computes the expected number
of rules for these packages, but not all these rules are the most general ones. Our tool
never computes a rule that is not consistent with the behaviour of a package. This is an
indication that our heuristics are effective.

A more formal treatment of our work can be found in the technical reports [5, 6].

2 Overview and Outline

We now explain the notion of DPI, and describe the main steps that our tool carries
out to compute the DPI of a package. We use Java Database Connectivity (JDBC), a
package that provides database connectivity, as our running example.

We consider four commonly-used classes of JDBC and their methods. The Driver-
Manager class allows to create a new connection to a database by invoking its static
getConnection method. The string parameter of the method specifies the type of
database, its address, and the needed credentials to access it. A Connection object
can serve multiple Statement objects, each of which can be used to read or change
the content of the database. The createStatement method of the Connection class
creates a new Statement object. SQL commands and queries are executed through the
execute and executeQuery methods of the Statement class. Both methods accept
a string argument that is an SQL statement. The executeQuery method returns a new
ResultSet object, which is a collection of rows retrieved from the database; the next
method can be used to traverse these rows. A Connection, Statement, or ResultSet
object is open initially, but can be closed via their corresponding close methods. In-
voking the executeQuerymethod on a Statement object causes an open ResultSet

object that references it to be closed, while creating a new open ResultSet object. If an
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object, or one of the objects that it references directly or transitively, is closed, invoking
a non-close method on it would raise an exception.

2.1 System Input

Besides the names of classes and the signatures of their methods, our tool receives
a set of abstraction predicates over the attributes of the classes. A predicate is either
scalar, defined over the simple, non-reference attributes of the classes, or reference,
determining which objects of a class are related to which objects of another class via a
certain reference attribute. For simplicity, we assume these predicates are input by the
user, but standard techniques based on Boolean methods and reference-valued fields in
classes can be used to identify these predicates [15].

For example, in JDBC, the Statement class has an active attribute that deter-
mines whether it is open or not. This attribute is a unary scalar predicate, but in general
a scalar predicate may read multiple fields from referenced objects. We also use the
applicationConnection field of the Statement class to define a reference predi-
cate that determines which Statement object points to which Connection object. We
define similar scalar predicates for the Connection and ResultSet classes, which de-
termine whether their objects are open or closed. We also define a reference predicate
that determines which ResultSet objects reference which Statement objects.

We require that the set of reference attributes do not create a cycle when evalu-
ated over objects: i.e., when objects are considered as nodes and the true valuations of
reference attributes as directed edges, the resulting graph is acyclic. This is necessary
as some of our algorithms rely on computing the topological ordering of heap-related
graphs. This requirement can be relaxed: it is possible to allow the more general class
of the depth-bounded graphs [6].

2.2 Nested Object Graphs

The enabling technique that allows us to compute a succinct, general DPI for a package
is the ability to model a heap configuration, i.e., a set of concrete (e.g., Java) objects in
the heap that reference each other, as a nested object graph.

conn

Connection[A]
c open

Statement[B]
¬s open

ResultSet[C]
¬r open

∗

∗stmt

Fig. 1. A nested object graph

A nested object graph is a labeled, directed graph whose
subgraphs can be marked as repeatable. The nodes of a
nested object graph represent objects and its directed edges
represent references between the objects. The nodes and
edges of the graph are labelled according to the input scalar
and reference abstraction predicates, respectively. When a
subgraph of a nested object graph is marked as repeatable,
it denotes that arbitrary-many sets of objects similar to the
objects in the subgraph can exist in the heap. Repetition
can be nested, and hence the name “nested object graph.”
As an example, the nested object graph in Figure 1 repre-
sents all possible heap configurations consisting of an open
Connection object with zero or more (in fact, possibly unboundedly many) closed
Statement objects, each of which has zero or more closed ResultSet objects. Rep-
etitions are specified via “*” next to nodes or subgraphs. Node C, for example, which
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represents the ResultSet objects, is marked repeatable in a nested manner: each group
of repeatable ResultSet objects is associated with a Statement object, which itself
is marked as repeatable via the “*” next to the subgraph specified by the dotted line.
The repetition structure of a nested object graph is captured by assigning nesting levels
to the nodes of the graph. The larger the nesting level is, the more levels of repetition it
belongs to [6]. For example, the nesting levels of nodes A, B, and C in Figure 1 are 0,
1, and 2, respectively.

2.3 DPI Rules

The dynamic package interface (DPI) of a package is a set of rules, each of which
represents a family of method calls. A rule for a method call essentially specifies how
a certain family of similar method calls change the shape of their corresponding heaps.
A rule consists of:

– A source and a destination nested object graph, which represent all possible con-
crete heap configurations before and after the method call;

– A source and a destination cast nested object graph, each of which is a nested object
graph some of whose nodes are labelled with roles, such as “callee”, “parameter 0”,
and “new”; these graphs represent the heap configurations that are directly, in the
sense that we will make clear, involved in the method call;

– An object mapping, which maps the nodes of the source nested object graph to the
nodes of the destination nested object graph, possibly non-deterministically; and

– A role mapping, which maps the nodes of the source cast nested object graph to the
nodes of the destination cast nested object graph; a node that is labelled by a role is
mapped deterministically, but other nodes could be mapped non-deterministically.

Each tuple in the object mapping or the role mapping is annotated with multiplicity
information that specifies how many of the concrete objects represented by the source
node are transferred to the destination node: one or many. The semantics of the compu-
tation of object mapping and role mapping of a rule should ensure that a concrete object
is either mapped via the role mapping or the object mapping, but not both.

As an example, Figure 2 shows the rule that our system computes for executeQuery
method calls that raise no exceptions. The rule specifies that an open ResultSet is
closed when its corresponding Statement object performs executeQuery; instead, a
new ResultSet object is created. Figure 2(a) specifies the role mapping of the rule, via
dotted arrows that connect the nodes in the source cast nested object graph to the nodes
in the destination cast nested object graph. The “callee” and “new” labels determine
the callee and the newly created objects, respectively. Figure 2(b) specifies the object
mapping of the rule via dotted arrows that, for the sake of brevity, connect the subgraphs
of the nested object graphs. While in this rule the object mapping does not specify any
change in its corresponding objects, in general that is not the case. Both nested object
graphs and cast nested object graphs of the rule exhibit repetitions. It is this ability to
express unbounded number of concrete heap configurations that allows us to compute
general, yet concise rules.

Exception Rules. When a method call does not raise any exception, we are looking for
general rules with the largest possible nested object graphs (because it captures more
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(b) Object mappings. An arrow over a nested subgraph denotes that the nodes of its source are
mapped to their isomorphic nodes in the destination.

Fig. 2. The most general rule for executeQuery, with no exception
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(b) Closed Connection.

Fig. 3. The two most general rules for next with ResultSet not open exception
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Algorithm 1. ComputeDPI
Input: A set of classes and methods and a set of abstraction predicates
Result: A set of general rules, Rules, each of which represents a family of method calls

1 Rules = ∅;
2 while ¬Threshold do
3 Pick a snapshot, a concrete Java object, execute one of its methods;
4 Compute, r, the corresponding rule of the method call;
5 if there is no r′ ∈ Rules that “covers” r then Rules = Rules ∪ {r};
6 end
7 Remove any r ∈ Rules that is “covered” by another rule;
8 Extrapolate r ∈ Rules using r′ ∈ Rules, when possible; prune rules that are covered by r;
9 Merge all pairs of mergeable rules in Rules;

10 Isolate all pairs of similar exception rules in Rules;

concrete cases). On the other hand, when a call raises an exception, it is desirable to have
the smallest rule that isolates the cause of the exception. Furthermore, for exception
rules, we use a ternary logic that assigns an unknown value “*” to a predicate of an
object when the evaluation of the predicate does not affect whether the exception will
be raised or not. These characterizations of the most general rules for a method call
are inspired by the monotonic semantics that we have developed for object-oriented
programs [6]. For a safe method call, it should be possible to replicate its result in a
context with more objects. For a method call with an exception, there is no context with
more objects that can avoid the exception.

Figure 3 shows the two rules that our tool computes for the next method when
it raises the ResultSet not open exception. In Figure 3(a), the “*” values for the
s open and c open predicates denote that regardless of whether the corresponding state-
ment or connection objects of a Resultset object are open or not, the method call over
the Resultset raises the exception when it is closed. Figure 3(b) shows the case when
the Resultset is actually open, but its corresponding Connection is not. These rules
point out succinctly the root cause of a bug discussed in an Apache forum.1

2.4 Computation Stages

Creating a rule from a specific method call is only the first step to compute a DPI.
Algorithm 1 outlines the main steps that our tool takes to compute succinct DPIs.

The first stage of the algorithm (lines 1-7) is the exploration stage, in which a univer-
sal client non-deterministically explores the behaviour of the package. Each step of the
universal client is recorded using a source and a destination snapshot, each of which is
a set of Java objects in the heap. The result of each step of the universal client is a rule.
If a new rule is covered by another already-explored rule, it is considered redundant and
discarded (line 5). Intuitively, a rule r′ covers rule r if r′ subsumes the behaviour of r
by having “larger” elements. The exploration stage continues until a maximum number

1 https://issues.apache.org/jira/browse/DERBY-5545

https://issues.apache.org/jira/browse/DERBY-5545


268 S. Esmaeilsabzali et al.

of redundant rules are encountered. After this threshold is reached, the redundant rules
in the set of explored rules are removed (line 7).

After the exploration stage, we apply three heuristics to the set of explored rules. Our
extrapolation heuristic generalizes a rule by expanding its (cast) nested object graphs
into more general graphs that represent more heap configurations. Our merge heuristic
combines a pair of similar rules into one. Similarly, the exception isolation heuristic
combines a pair of similar exception rules. These heuristics decrease the number of
distinct explored rules of a DPI substantially; e.g., in the case of JDBC, from about
2000 distinct rules to 26 final rules.

3 Method Calls and Rules

From a Method Call to a Rule. A key step in computing a rule from a method call is to
derive the source and destination nested object graphs and cast nested object graphs of a
rule from the source and destination snapshots of the method call. The object mapping
and role mapping of a rule are simply computed by tracking how objects change from
the source to the destination snapshot, and ensuring that if an object is mapped by
the role mapping it is not mapped by the object mapping. The computation of nested
object graphs is the same for source and destination snapshots, except that a destination
snapshot can have newly created objects. For the sake of brevity, at below, we assume
that we deal with the source (cast) nested object graph of a rule.

The corresponding snapshot of a cast nested object graph consists of the callee ob-
ject, actual parameter objects, and all other objects that transitively reach these objects
through their references, as well as all objects that are transitively reached from these
objects through their references. The corresponding snapshot of a nested object graph
consists of all objects in the cast nested object graph plus all objects that can reach these
objects transitively. To compute these snapshots, we use the input reference predicates.
Next, we describe how to compute a nested object graph.

The first step is to turn the snapshot into a directed labelled graph by using the input
scalar and reference predicates. We call such a graph a heap graph. Figure 4(a) shows a
heap graph corresponding to 9 JDBC objects, using the predicates described in Section
2. Each node of the graph is labelled with the name of its class, the evaluations of
its scalar predicates, as well as a unique id that is enclosed inside a pair of brackets.
Each edge of the heap graph is labelled with the name of its corresponding reference
predicate. Figure 4(b) is another heap graph resulting from the invocation of method
executeQuery on the Java object that the node with id 4 in Figure 4(a) represents. The
nodes with the same identifiers in the two graphs represent the same Java objects.

The second step is to reduce a heap graph to a nested object graph. The idea is that if
an object or a pattern for a set of interconnected objects appears more than once, then it
is marked as repeatable. The reduction from a heap graph to a nested object graph can be
considered as a bisimulation reduction: two nodes in a heap graph are equivalent iff they
have the same evaluations for their scalar predicates, and furthermore, they mimic one
another by reaching equivalent nodes following their similar reference edges. Figure 5
shows two nested object graphs that our tool computes for the heap graphs in Figure 4.
Repetition of a single node is denoted just by a “*” next to it. Repetition of a subgraph
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Fig. 4. Two heap graphs for invocation of executeQuery on object 4
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Fig. 5. Two nested object graphs

(not shown in this figure) is denoted by a dotted line around the subgraph together with a
“*”; e.g., as in Figure 2(b). The nodes of the nested object graphs are graphically similar
to heap graphs except that they are shown by solid rectangles and they are labelled with
alphabetic ids. As examples of repetition, node e in Figure 5(a) is the equivalence class
for the nodes 5, 6, and 7 in Figure 4(a), and node m in Figure 5(b) is the equivalence
class for the nodes 8 and 9 in Figure 4(b).

The computation of a cast nested object graph is similar. The difference is that two
objects of the snapshot that have roles cannot be mapped to the same equivalence class.

Rule Coverage Relation. In order to determine whether a rule covers another rule, we
need to compare their corresponding (cast) nested object graphs. A nested object graph,
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ng, is subgraph isomorphic to nested object graph, ng′ if: (i) ng is subgraph isomorphic
to ng′ when their repetition structures are not considered; (ii) the isomorphism relation
relates only nodes that have same predicate valuations; and (iii) it is not the case that a
node v′ of ng′ is not part of a repetition pattern that its corresponding node v of ng is;
i.e., ng does not represent a heap configuration that its corresponding subgraph in ng′
cannot represent. We extend this definition to cast nested object graphs by additionally
requiring that only nodes with same role labels can be related by isomorphism.

A rule, r, is then covered by a rule, r′, if: (i) they are both over the same method; (ii)
both raise either no exceptions, or the same exception; (iii) the corresponding graphs of
r are pairwise subgraph isomorphic to the ones of r′; and (iv) for each tuple (u, v) of the
object mapping of r there is a tuple (u′, v′) in the object mapping of r′ such that u and
u′, as well as v and v′ are isomorphic; furthermore, it is not the case that the multiplicity
of the former tuple is “many” while the multiplicity of the latter tuple is “one”; and (v)
similar constraints as iv between the tuples of the role mappings of r and r′.

4 Generalization Heuristics

4.1 Extrapolation

Sometimes a rule could have covered many other rules if certain nodes in its source
and/or destination (cast) nested graphs were marked as repeatable. Our extrapolation
heuristic could mark such nodes as repeatable using the information in the graphs of
other rules.

To identify opportunities for extrapolation, our tool looks for deficient nodes in a
(cast) nested object graph. A node is deficient if it is not repeated and either the role
mapping or the object mapping takes it to a repeated node. Our hypothesis is that a de-
ficient node is not repeated because the exploration did not manage to produce enough
objects of that type. For instance, if we consider the graphs in Figure 5 as the source and
destination graphs of a rule , f and g, which are both mapped to m, are both deficient
nodes. Given a deficient node, our system explores all other rules to find a source or
a destination nested object graph into which the corresponding nested object graph of
the deficient node can be embedded w.r.t. the subgraph isomorphism relation. If accord-
ing to the embedding the node corresponding to the deficient node in the other graph
is repeated, then the deficient node will be marked as repeatable too. In our example,
our tool can find an embedding relation that leads to the extrapolation of f . However, g
cannot be extrapolated. Indeed, each JDBC Statement object cannot have more than
one open ResultSet object.

Repetition is propagated to all nodes pointing to the extrapolated node, in order to
ensure that there is no non-repeated node pointing to a node that is marked as repeatable.
Lastly, the multiplicities of mappings might need to be adjusted to ensure that a node
that is marked as repeatable is not mapped only once via a “one” multiplicity. The
extrapolation heuristic is applied to all rules after the exploration stage, and then all
redundant rules are removed.
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4.2 Merging

While the extrapolation stage prunes a substantial number of rules, there may still be
a large number of rules in a DPI, e.g., thousands of rules for JDBC. The reason is that
different rules for the same method might have explored different instances of heaps
that have incomparable sets of objects, and there are various exception cases. To fur-
ther reduce the number of the rules, we have developed the merging heuristic, which
combine sets of related rules into one.

To check whether two rules can be merged, we compare a part of their cast nested
object graphs that we call the upward part. The upward part of a cast nested object
graph is its subgraph that consists of the set of nodes that are labelled by roles plus
the nodes that are reached from these nodes. A pair of rules are mergeable if: (i) the
upward parts of their source and destination cast nested object graphs are pairwise iso-
morphic; and (ii) their role mappings restricted to the upward parts are similar and over
isomorphic nodes. For a mergeable pair of rules, the merge heuristic essentially first
computes their union and then performs a reduction over the resulting source and desti-
nation nested object graphs of the resulting rule. The reduction replaces a nested object
graph with its smallest subgraph that simulates all other subgraphs of the original graph.
This reduction is in the spirit of downward closed graphs where a nested object graph
not only represents all heap instances arising from the repetition of its repeatable sub-
graphs, but also represents any graph which is a subgraph of those – hence the term
“downward closed” [5]. Finally, the role mapping and object mapping of the resulting
rule are adjusted according to the reduction. As an example, assuming that the nested
object graphs in Figure 5 belong to a rule, then node c in Figure 5(a), for instance,
would be mapped to node C in Figure 2(b) during the merge operation. Similar to the
extrapolation heuristic, the multiplicities of mappings might need to be adjusted.

4.3 Exception Isolation

While the merge heuristic corresponds to the union of a set of rules, the exception iso-
lation heuristic corresponds to the intersection of a set of exception rules. This heuristic
deals only with the cast nested object graphs; the nested object graphs are discarded.
For a pair of rules that raise the same exception and whose cast nested object graphs are
isomorphic when their scalar abstraction predicates are not considered, this heuristic es-
sentially combines the corresponding nodes of the cast nested object graphs of the two
rules via a ternary logic. If the values of a predicate are different, the unknown value,
denote by “*”, is chosen. Nested object graphs of the rules are not useful because often
when an exception is raised the states of the corresponding objects of these graph do
not change. Furthermore, we are interested in identifying the smallest contexts in which
an exception can raise.

5 System

Figure 6 shows the high-level architecture of our system, implemented in Java.The ar-
rows specify the high-level information communicated between the components.
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Fig. 6. The main components of the system

The Package Abstraction component provides the information about the input pack-
age. It consists of a set of classes whose methods provide the names of classes of the
package under study, their methods, and predicate abstractions. These classes use Java
reflection to obtain these information. Furthermore, there are classes that provide the
actual parameters for the method calls of the universal client; these parameters have
random values.

The Package Explorer component implements the exploration stage of Algorithm 1.
To implement the snapshots whose objects can be accessed throughout the exploration,
our tool maintains the corresponding trace of method calls that resulted in the snapshot.
To call a method of an object of a snapshot, our tool recreates the entire snapshot by
replaying its corresponding trace. Cloning or saving an object, in general, would not
work, as not all classes implement these methods. A recreated snapshot has similar
objects as the original snapshot, assuming that, as far as the abstraction predicates are
concerned, method calls are deterministic. To relate the objects in a snapshot to the
objects in its replayed copy, we use a notion of logical id for each of the objects of the
snapshots; objects that have the same logical ids are treated as copy of one another.

To ensure that our exploration does not prematurely identify objects as non-repeatable
in a rule, we use a repetitive object creation scheme in our exploration: if a creator
method is chosen to be executed, we invoke the method n > 1 number of times con-
secutively, and only after that compute the rule with respect to the snapshot before
consecutive method calls and the snapshot after that. Also, after the initial exploration
stage, to achieve a good coverage, similar to other approaches [3], our system ensures
that all possible method calls on all objects of all rules in the repository are executed
and their corresponding rules are stored in the repository.

The Heuristics component implements the algorithms in Section 4. We use the graph
data structures in the JGraphT library to implement our graph algorithms.

Limitations. While we expect our tool to work in a straightforward manner on pack-
ages that solely work on the heap (e.g., Java collections), for packages that work with
external components, the Package Abstraction part is more complex, because an en-
vironment needs to be set up. Also, the feasibility of the replay mechanism should be
considered. These limitations are inherent to dynamic approaches.

6 Experiences

We have used our tool to compute the DPI of three Java packages: JDBC, ArrayList,
and HashSet. While our tool usually identifies the expected set of rules for the DPI,
some of these rules could, in principle, be more general. The converse, however, has
never happened in our experiments. A rule computed by our tool always corresponded
to an actual behaviour of the package.
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Table 1. Duration and number of rules after different stages in computing DPIs of three packages.
Information, except for the last column, correspond to average values of five runs.
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Package Threshold # Time (min:sec) #Rules
ArrayList 200000 010:37 000:03 000:00 000:00 572 299 29 15 (once 14)
HashSet 200000 168:26 000:23 000:01 000:00 1140 503 34 16
JDBC 1200 032:01 000:57 000:05 000:00 2465 2370 29 26 (twice 25)

Table 1 shows the results of our experiments for each of these packages. The mea-
surements for each package are for the average of five runs on a dual-core CPU Win-
dows 7 desktop machine with 8 GB of RAM. In all our experiments, we have set JVM
options to use 5GB of physical memory. For each package, Table 1 presents the time
taken and the number of rules after each stage of the computation, namely after the
exploration, extrapolation, merge, and exception isolation phases.

JDBC. In Section 2, we already presented some of the rules of the DPI of JDBC. In
our experiments, the universal client connects to a local Apache Derby database. We
use a key-value table that is manipulated through INSERT, DELETE, and SELECT
SQL commands with random values, via JDBC. We are thus assuming that the DPI
of the JDBC package is independent of the schema of databases to which it connects.
This is justified by our interest in determining the relationship of interacting objects of
a package, and not its interaction with external components. Increasing the threshold
value to larger than 1200 would cause out-of-memory exceptions. Our tool computed
26 rules in three out of five runs; in the other two runs, it computes 25 rules. The
missing rule in both cases was the rule for the close method when called over an open
ResultSet that is connected to a closed Statement and a closed Connection.

ArrayList. We consider two classes of ArrayList: Array and its internal class Itr,
which implements Java Iterator. Besides the methods of these classes that create
objects, we consider the Add method of Array, and the next and remove methods
of Itr. We provide a reference predicate, iter o f , to the system, denoting which Itr

object belongs to which Array object. We provide four scalar predicates to the sys-
tem: empty ≡ size > 0, which determines whether an Array object is empty or not,
nextCalled ≡ lastRet � −1, which determines whether the remove method of an Itr

object can be called (i.e., if next has been called), mover ≡ size > cursor, which de-
termines whether an Itr has traversed all members of its corresponding Array or not,
and sync ≡ modCount = expectedModCount, which determines whether an Array ob-
ject and an Itr object agree on their version numbers (i.e., if the Array object has been
modified by another Itr object). Lastly, we use integers as the domain of Array.

Our tool computed 15 rules that cover all possible behaviour of ArrayList. It once
missed computing the rule for next when called on an iterator whose all predicates are
true and remain true after the method call. Figure 7 shows the object mapping of one of
the three rules that our tool computes for the removemethod in one of our experiments.
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ArrayList[A]

∗

nextCalled = F
mover = T
sync = F

Itr[B]

∗

nextCalled = T
mover = T
sync = F

Itr[G]

∗

nextCalled = T
mover = F
sync = F

Itr[L]

∗

nextCalled = T
mover = T
sync = F

Itr[M]

∗

nextCalled = T
mover = F
sync = F

Itr[E]

∗

nextCalled = F
mover = T
sync = T

Itr[D]

∗

mover = T
nextCalled = T

sync = Tsync = T

nextCalled = F
mover = T

∗

mover = T
sync = F

nextCalled = F
mover = F
sync = F

∗

nextCalled = F

many ∗ many many many

empty = F

one many manymanymany many

Itr[C] Itr[H]

Itr[J] Itr[K]

ArrayList[I]

empty = F

∗

nextCalled = T
mover = F
sync = T

Itr[F]

Fig. 7. The object mapping of a rule for remove method of ArrayList. “T ” and “F” represent
true and f alse, respectively. For clarity, the reference edges are not labelled with iter of .

The role mapping, not shown here, changes only the nextCalled predicate of the callee
iterator object whose all scalar predicates are true. This rule is interesting because it
demonstrates that the object mapping of a rule can be non-deterministic. The rule could
have been more general, however. First, in the source nested object graph, the object
with nextCalled = false, mover = false, and sync = false is missing. Second, the object
mapping from B to J could have had multiplicity “many”. And lastly, there could have
been an object mapping from D to L with multiplicity “many” denoting that some of
the mover, sync objects whose nextCalled is false become non-movers.

HashSet. The DPIs of HashSet and ArrayList are computed using similar predicates,
but HashSet uses a HashMap class internally, instead of a resizable array. The DPIs of
two package are also somewhat different. The main difference is that the add method
of HashSet does not change the heap if its input parameter is duplicate; thus, there is
an extra rule that captures this behaviour. Another difference is that the mover predicate
of an Iterator object of a HashSet only correctly denotes whether it has traversed
all elements of its corresponding HashSet if its sync predicate is true. This is because
unlike an ArrayList object, whose iterator objects maintain an index of the underlying
array of the ArrayList object, the iterators of a HashSet objects needs to traverse the
underlying hash table of its internal HashMap object. Lastly, computing the DPI of
HashSet takes significantly longer than ArrayList’s, both because of their different
underlying data structures and because significantly more reflections are needed when
evaluating the abstraction predicates of HashSet.

7 Conclusion

We have introduced the notion of dynamic package interfaces (DPI). DPIs provide a
succinct way to describe valid usage patterns for a package. The DPI of a package is
a set of rules, each of which specifies the effect of a method call over a general con-
figuration of a set of objects. We have developed a dynamic tool that computes an
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approximation of the DPI of a Java package automatically, given a set of abstraction
predicates. The rules of such a DPI generalize the usual examples used in the documen-
tation of the Java package and can be traced to problems discussed in online forums.

A DPI captures both the inter-object aspects of the dynamic behaviour of the classes
of a package, as well as the intra-object aspects of individual classes of the package,
relative to a set of scalar and reference predicates, even when unboundedly many objects
interact.2 In contrast, previous dynamic techniques primarily focus on either deriving
intra-object specifications for one object or deriving finite state machines that capture
the interaction pattern of a finite number of objects [3, 7, 8, 11–13].
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