
On the Correctness

of a Branch Displacement Algorithm�

Jaap Boender1 and Claudio Sacerdoti Coen2

1 Foundations of Computing Group
Department of Computer Science
School of Science and Technology
Middlesex University, London, UK

J.Boender@mdx.ac.uk
2 Dipartimento di Scienze dell’Informazione,

Università degli Studi di Bologna, Italy
sacerdot@cs.unibo.it

Abstract. The branch displacement problem is a well-known problem
in assembler design. It revolves around the feature, present in several
processor families, of having different instructions, of different sizes, for
jumps of different displacements. The problem, which is provably NP-
hard, is then to select the instructions such that one ends up with the
smallest possible program.

During our research with the CerCo project on formally verifying a C
compiler, we have implemented and proven correct an algorithm for this
problem. In this paper, we discuss the problem, possible solutions, our
specific solutions and the proofs.

Keywords: formal verification, interactive theorem proving, assembler,
branch displacement optimisation.

1 Introduction

The problem of branch displacement optimisation, also known as jump encoding,
is a well-known problem in assembler design [3]. Its origin lies in the fact that
in many architecture sets, the encoding (and therefore size) of some instructions
depends on the distance to their operand (the instruction ’span’). The branch
displacement optimisation problem consists of encoding these span-dependent
instructions in such a way that the resulting program is as small as possible.

This problem is the subject of the present paper. After introducing the prob-
lem in more detail, we will discuss the solutions used by other compilers, present
the algorithm we use in the CerCo assembler, and discuss its verification, that
is the proofs of termination and correctness using the Matita proof assistant [1].

� Research supported by the CerCo project, within the Future and Emerging Techno-
logies (FET) programme of the Seventh Framework Programme for Research of the
European Commission, under FET-Open grant number 243881.

E. Ábrahám and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 605–619, 2014.
c© Springer-Verlag Berlin Heidelberg 2014

606 J. Boender and C.S. Coen

Formulating the final statement of correctness and finding the loop invariants
have been non-trivial tasks and are, indeed, the main contribution of this paper.
It has required considerable care and fine-tuning to formulate not only the min-
imal statement required for the ulterior proof of correctness of the assembler,
but also the minimal set of invariants needed for the proof of correctness of the
algorithm.

The research presented in this paper has been executed within the CerCo
project which aims at formally verifying a C compiler with cost annotations.
The target architecture for this project is the MCS-51, whose instruction set
contains span-dependent instructions. Furthermore, its maximum addressable
memory size is very small (64 Kb), which makes it important to generate pro-
grams that are as small as possible. With this optimisation, however, comes
increased complexity and hence increased possibility for error. We must make
sure that the branch instructions are encoded correctly, otherwise the assembled
program will behave unpredictably.

All Matita files related to this development can be found on the CerCo web-
site, http://cerco.cs.unibo.it. The specific part that contains the branch
displacement algorithm is in the ASM subdirectory, in the files PolicyFront.ma,
PolicyStep.ma and Policy.ma.

2 The Branch Displacement Optimisation Problem

In most modern instruction sets that have them, the only span-dependent in-
structions are branch instructions. Taking the ubiquitous x86-64 instruction set
as an example, we find that it contains eleven different forms of the unconditional
branch instruction, all with different ranges, instruction sizes and semantics (only
six are valid in 64-bit mode, for example). Some examples are shown in Figure 1
(see also [4]).

Instruction Size (bytes) Displacement range

Short jump 2 -128 to 127 bytes
Relative near jump 5 −232 to 232 − 1 bytes
Absolute near jump 6 one segment (64-bit address)
Far jump 8 entire memory (indirect jump)

Fig. 1. List of x86 branch instructions

The chosen target architecture of the CerCo project is the Intel MCS-51,
which features three types of branch instructions (or jump instructions; the two
terms are used interchangeably), as shown in Figure 2.

Conditional branch instructions are only available in short form, which means
that a conditional branch outside the short address range has to be encoded using
three branch instructions (for instructions whose logical negation is available, it
can be done with two branch instructions, but for some instructions this is not
the case). The call instruction is only available in absolute and long forms.

http://cerco.cs.unibo.it

On the Correctness of a Branch Displacement Algorithm 607

Instruction Size Execution time Displacement range
(bytes) (cycles)

SJMP (‘short jump’) 2 2 -128 to 127 bytes
AJMP (‘absolute jump’) 2 2 one segment (11-bit address)
LJMP (‘long jump’) 3 3 entire memory

Fig. 2. List of MCS-51 branch instructions

Note that even though the MCS-51 architecture is much less advanced and
much simpler than the x86-64 architecture, the basic types of branch instruction
remain the same: a short jump with a limited range, an intra-segment jump and
a jump that can reach the entire available memory.

Generally, in code fed to the assembler as input, the only difference between
branch instructions is semantics, not span. This means that a distinction is made
between an unconditional branch and the several kinds of conditional branch,
but not between their short, absolute or long variants.

The algorithm used by the assembler to encode these branch instructions into
the different machine instructions is known as the branch displacement algorithm.
The optimisation problem consists of finding as small an encoding as possible,
thus minimising program length and execution time.

Similar problems, e.g. the branch displacement optimisation problem for other
architectures, are known to be NP-complete [7,9], which could make finding an
optimal solution very time-consuming.

The canonical solution, as shown by Szymanski [9] or more recently by Dick-
son [2] for the x86 instruction set, is to use a fixed point algorithm that starts
with the shortest possible encoding (all branch instruction encoded as short
jumps, which is likely not a correct solution) and then iterates over the source
to re-encode those branch instructions whose target is outside their range.

Adding Absolute Jumps

In both papers mentioned above, the encoding of a jump is only dependent on
the distance between the jump and its target: below a certain value a short jump
can be used; above this value the jump must be encoded as a long jump.

Here, termination of the smallest fixed point algorithm is easy to prove. All
branch instructions start out encoded as short jumps, which means that the
distance between any branch instruction and its target is as short as possible
(all the intervening jumps are short). If, in this situation, there is a branch
instruction b whose span is not within the range for a short jump, we can be
sure that we can never reach a situation where the span of j is so small that it
can be encoded as a short jump. This argument continues to hold throughout
the subsequent iterations of the algorithm: short jumps can change into long
jumps, but not vice versa, as spans only increase. Hence, the algorithm either
terminates early when a fixed point is reached or when all short jumps have been
changed into long jumps.

608 J. Boender and C.S. Coen

jmp X

...

L0: ...

% Start of new segment if

% jmp X is encoded as short

...

jmp L0

(a) Example of a program where a long
jump becomes absolute

L0: jmp X

X: ...

...

L1: ...

% Start of new segment if

% jmp X is encoded as short

...

jmp L1
...

jmp L1
...

jmp L1
...

(b) Example of a program where the
fixed-point algorithm is not optimal

Also, we can be certain that we have reached an optimal solution: a short
jump is only changed into a long jump if it is absolutely necessary.

However, neither of these claims (termination nor optimality) hold when we
add the absolute jump. With absolute jumps, the encoding of a branch instruc-
tion no longer depends only on the distance between the branch instruction
and its target. An absolute jump is possible when instruction and target are in
the same segment (for the MCS-51, this means that the first 5 bytes of their
addresses have to be equal). It is therefore entirely possible for two branch in-
structions with the same span to be encoded in different ways (absolute if the
branch instruction and its target are in the same segment, long if this is not the
case).

This invalidates our earlier termination argument: a branch instruction, once
encoded as a long jump, can be re-encoded during a later iteration as an absolute
jump. Consider the program shown in Figure 3a. At the start of the first iteration,
both the branch to X and the branch to L0 are encoded as small jumps. Let us
assume that in this case, the placement of L0 and the branch to it are such that
L0 is just outside the segment that contains this branch. Let us also assume
that the distance between L0 and the branch to it is too large for the branch
instruction to be encoded as a short jump.

All this means that in the second iteration, the branch to L0 will be encoded as
a long jump. If we assume that the branch to X is encoded as a long jump as well,
the size of the branch instruction will increase and L0 will be ‘propelled’ into the
same segment as its branch instruction, because every subsequent instruction
will move one byte forward. Hence, in the third iteration, the branch to L0 can
be encoded as an absolute jump. At first glance, there is nothing that prevents
us from constructing a configuration where two branch instructions interact in
such a way as to iterate indefinitely between long and absolute encodings.

This situation mirrors the explanation by Szymanski [9] of why the branch dis-
placement optimisation problem is NP-complete. In this explanation, a condition

On the Correctness of a Branch Displacement Algorithm 609

for NP-completeness is the fact that programs be allowed to contain pathological
jumps. These are branch instructions that can normally not be encoded as a
short(er) jump, but gain this property when some other branch instructions are
encoded as a long(er) jump. This is exactly what happens in Figure 3a. By en-
coding the first branch instruction as a long jump, another branch instruction
switches from long to absolute (which is shorter).

In addition, our previous optimality argument no longer holds. Consider the
program shown in Figure 3b. Suppose that the distance between L0 and L1 is
such that if jmp X is encoded as a short jump, there is a segment border just after
L1. Let us also assume that all three branches to L1 are in the same segment,
but far enough away from L1 that they cannot be encoded as short jumps.

Then, if jmp X were to be encoded as a short jump, which is clearly possible,
all of the branches to L1 would have to be encoded as long jumps. However,
if jmp X were to be encoded as a long jump, and therefore increase in size, L1
would be ‘propelled’ across the segment border, so that the three branches to L1
could be encoded as absolute jumps. Depending on the relative sizes of long and
absolute jumps, this solution might actually be smaller than the one reached by
the smallest fixed point algorithm.

3 Our Algorithm

3.1 Design Decisions

Given the NP-completeness of the problem, finding optimal solutions (using, for
example, a constraint solver) can potentially be very costly.

The SDCC compiler [8], which has a backend targeting the MCS-51 instruc-
tion set, simply encodes every branch instruction as a long jump without taking
the distance into account. While certainly correct (the long jump can reach any
destination in memory) and a very fast solution to compute, it results in a less
than optimal solution in terms of output size and execution time.

On the other hand, the gcc compiler suite, while compiling C on the x86
architecture, uses a greatest fix point algorithm. In other words, it starts with
all branch instructions encoded as the largest jumps available, and then tries to
reduce the size of branch instructions as much as possible.

Such an algorithm has the advantage that any intermediate result it returns is
correct: the solution where every branch instruction is encoded as a large jump is
always possible, and the algorithm only reduces those branch instructions whose
destination address is in range for a shorter jump. The algorithm can thus be
stopped after a determined number of steps without sacrificing correctness.

The result, however, is not necessarily optimal. Even if the algorithm is run
until it terminates naturally, the fixed point reached is the greatest fixed point,
not the least fixed point. Furthermore, gcc (at least for the x86 architecture)
only uses short and long jumps. This makes the algorithm more efficient, as
shown in the previous section, but also results in a less optimal solution.

In the CerCo assembler, we opted at first for a least fixed point algorithm,
taking absolute jumps into account.

610 J. Boender and C.S. Coen

Here, we ran into a problem with proving termination, as explained in the
previous section: if we only take short and long jumps into account, the jump
encoding can only switch from short to long, but never in the other direction.
When we add absolute jumps, however, it is theoretically possible for a branch
instruction to switch from absolute to long and back, as previously explained.
Proving termination then becomes difficult, because there is nothing that pre-
cludes a branch instruction from oscillating back and forth between absolute and
long jumps indefinitely.

To keep the algorithm in the same complexity class and more easily prove ter-
mination, we decided to explicitly enforce the ‘branch instructions must always
grow longer’ requirement: if a branch instruction is encoded as a long jump in
one iteration, it will also be encoded as a long jump in all the following itera-
tions. Therefore the encoding of any branch instruction can change at most two
times: once from short to absolute (or long), and once from absolute to long.

There is one complicating factor. Suppose that a branch instruction is en-
coded in step n as an absolute jump, but in step n + 1 it is determined that
(because of changes elsewhere) it can now be encoded as a short jump. Due
to the requirement that the branch instructions must always grow longer, the
branch encoding will be encoded as an absolute jump in step n+ 1 as well.

This is not necessarily correct. A branch instruction that can be encoded as
a short jump cannot always also be encoded as an absolute jump, as a short
jump can bridge segments, whereas an absolute jump cannot. Therefore, in this
situation we have decided to encode the branch instruction as a long jump, which
is always correct.

The resulting algorithm, therefore, will not return the least fixed point, as it
might have too many long jumps. However, it is still better than the algorithms
from SDCC and gcc, since even in the worst case, it will still return a smaller
or equal solution.

Experimenting with our algorithm on the test suite of C programs included
with gcc 2.3.3 has shown that on average, about 25 percent of jumps are encoded
as short or absolute jumps by the algorithm. As not all instructions are jumps,
this does not make for a large reduction in size, but it can make for a reduction
in execution time: if jumps are executed multiple times, for example in loops,
the fact that short jumps take less cycles to execute than long jumps can have
great effect.

As for complexity, there are at most 2n iterations, where n is the number of
branch instructions. Practical tests within the CerCo project on small to medium
pieces of code have shown that in almost all cases, a fixed point is reached in 3
passes. Only in one case did the algorithm need 4. This is not surprising: after
all, the difference between short/absolute and long jumps is only one byte (three
for conditional jumps). For a change from short/absolute to long to have an
effect on other jumps is therefore relatively uncommon, which explains why a
fixed point is reached so quickly.

On the Correctness of a Branch Displacement Algorithm 611

3.2 The Algorithm in Detail

The branch displacement algorithm forms part of the translation from pseudo-
code to assembler. More specifically, it is used by the function that translates
pseudo-addresses (natural numbers indicating the position of the instruction in
the program) to actual addresses in memory. Note that in pseudocode, all in-
structions are of size 1.

Our original intentionwas to have two different functions, one function policy :
N → {short jump, absolute jump, long jump} to associate jumps to their in-
tended encoding, and a function σ : N → Word to associate pseudo-addresses
to machine addresses. σ would use policy to determine the size of jump instruc-
tions. This turned out to be suboptimal from the algorithmic point of view and
impossible to prove correct.

From the algorithmic point of view, in order to create the policy function,
we must necessarily have a translation from pseudo-addresses to machine ad-
dresses (i.e. a σ function): in order to judge the distance between a jump and
its destination, we must know their memory locations. Conversely, in order to
create the σ function, we need to have the policy function, otherwise we do not
know the sizes of the jump instructions in the program.

Much the same problem appears when we try to prove the algorithm correct:
the correctness of policy depends on the correctness of σ, and the correctness
of σ depends on the correctness of policy.

We solved this problem by integrating the policy and σ algorithms. We
now have a function σ : N → Word × bool which associates a pseudo-address
to a machine address. The boolean denotes a forced long jump; as noted in the
previous section, if during the fixed point computation an absolute jump changes
to be potentially re-encoded as a short jump, the result is actually a long jump.
It might therefore be the case that jumps are encoded as long jumps without
this actually being necessary, and this information needs to be passed to the
code generating function.

The assembler function encodes the jumps by checking the distance between
source and destination according to σ, so it could select an absolute jump in a
situation where there should be a long jump. The boolean is there to prevent
this from happening by indicating the locations where a long jump should be
encoded, even if a shorter jump is possible. This has no effect on correctness,
since a long jump is applicable in any situation.

The algorithm, shown in Figure 4, works by folding the function f over the
entire program, thus gradually constructing sigma. This constitutes one step in
the fixed point calculation; successive steps repeat the fold until a fixed point is
reached. We have abstracted away the case where an instruction is not a jump,
since the size of these instructions is constant.

Parameters of the function f are:

– a function labels that associates a label to its pseudo-address;
– old sigma, the σ function returned by the previous iteration of the fixed

point calculation;
– instr, the instruction currently under consideration;

612 J. Boender and C.S. Coen

function f(labels,old sigma,instr,ppc,acc)
〈added, pc, sigma〉 ← acc
if instr is a backward jump to j then

length ← jump size(pc, sigma1(labels(j))) � compute jump distance
else if instr is a forward jump to j then

length ← jump size(pc, old sigma1(labels(j)) + added)
end if
old length ← old sigma1(ppc)
new length ← max(old length, length) � length must never decrease
old size ← old sigma2(ppc)
new size ← instruction size(instr, new length) � compute size in bytes
new added ← added+ (new size− old size) � keep track of total added bytes
new sigma ← old sigma
new sigma1(ppc+ 1) ← pc+ new size
new sigma2(ppc) ← new length � update σ

return 〈new added, pc+ new size, new sigma〉
end function

Fig. 4. The heart of the algorithm

– ppc, the pseudo-address of instr;

– acc, the fold accumulator, which contains added (the number of bytes added
to the program size with respect to the previous iteration), pc (the highest
memory address reached so far), and of course sigma, the σ function under
construction.

The first two are parameters that remain the same through one iteration, the
final three are standard parameters for a fold function (including ppc, which is
simply the number of instructions of the program already processed).

The σ functions used by f are not of the same type as the final σ func-
tion: they are of type σ : N → N× {short jump, absolute jump, long jump}; a
function that associates a pseudo-address with a memory address and a jump
length. We do this to ease the comparison of jump lengths between iterations.
In the algorithm, we use the notation sigma1(x) to denote the memory address
corresponding to x, and sigma2(x) for the jump length corresponding to x.

Note that the σ function used for label lookup varies depending on whether
the label is behind our current position or ahead of it. For backward branches,
where the label is behind our current position, we can use sigma for lookup,
since its memory address is already known. However, for forward branches, the
memory address of the address of the label is not yet known, so we must use
old sigma.

We cannot use old sigma without change: it might be the case that we have
already increased the size of some branch instructions before, making the pro-
gram longer and moving every instruction forward. We must compensate for this
by adding the size increase of the program to the label’s memory address ac-
cording to old sigma, so that branch instruction spans do not get compromised.

On the Correctness of a Branch Displacement Algorithm 613

sigma policy specification ≡ λprogram.λsigma.

sigma 0 = 0 ∧
let instr list ≡ code program in

∀ppc.ppc < |instr list| →
let pc ≡ sigma ppc in

let instruction ≡ fetch pseudo instruction instr list ppc in

let next pc ≡ sigma (ppc+ 1) in

next pc = pc+ instruction size sigma ppc instruction ∧
(pc+ instruction size sigma ppc instruction < 216 ∨
(∀ppc′.ppc′ < |instr list| → ppc < ppc′ →
let instruction′ ≡ fetch pseudo instruction instr list ppc′ in

instruction size sigma ppc′ instruction′ = 0) ∧
pc+ instruction size sigma ppc instruction = 216)

Fig. 5. Main correctness statement

4 The Proof

In this section, we present the correctness proof for the algorithm in more de-
tail. The main correctness statement is shown, slightly simplified, in Figure 5.
Informally, this means that when fetching a pseudo-instruction at ppc, the trans-
lation by σ of ppc + 1 is the same as σ(ppc) plus the size of the instruction at
ppc. That is, an instruction is placed consecutively after the previous one, and
there are no overlaps. The rest of the statement deals with memory size: either
the next instruction fits within memory (next pc < 216) or it ends exactly at
the limit memory, in which case it must be the last translated instruction in the
program (enforced by specfiying that the size of all subsequent instructions is 0:
there may be comments or cost annotations that are not translated).

Finally, we enforce that the program starts at address 0, i.e. σ(0) = 0. It may
seem strange that we do not explicitly include a safety property stating that
every jump instruction is of the right type with respect to its target (akin to
the lemma from Figure 7), but this is not necessary. The distance is recalculated
according to the instruction addresses from σ, which implicitly expresses safety.

Since our computation is a least fixed point computation, we must prove ter-
mination in order to prove correctness: if the algorithm is halted after a number
of steps without reaching a fixed point, the solution is not guaranteed to be
correct. More specifically, branch instructions might be encoded which do not
coincide with the span between their location and their destination.

Proof of termination rests on the fact that the encoding of branch instructions
can only grow larger, which means that we must reach a fixed point after at most
2n iterations, with n the number of branch instructions in the program. This
worst case is reached if at every iteration, we change the encoding of exactly one
branch instruction; since the encoding of any branch instruction can change first
from short to absolute, and then to long, there can be at most 2n changes.

614 J. Boender and C.S. Coen

4.1 Fold Invariants

In this section, we present the invariants that hold during the fold of f over the
program. These will be used later on to prove the properties of the iteration.
During the fixed point computation, the σ function is implemented as a trie for
ease of access; computing σ(x) is achieved by looking up the value of x in the
trie. Actually, during the fold, the value we pass along is a pair N× ppc pc map.
The first component is the number of bytes added to the program so far with
respect to the previous iteration, and the second component, ppc pc map, is the
actual σ trie (which we’ll call strie to avoid confusion).

out of program none ≡ λprefix.λstrie.

∀i.i < 216 → (i > |prefix| ↔ lookup opt i (snd strie) = None)

The first invariant states that any pseudo-address not yet examined is not
present in the lookup trie.

not jump default ≡ λprefix.λstrie.∀i.i < |prefix| →
¬is jump (nth i prefix) → lookup i (snd strie) = short jump

This invariant states that when we try to look up the jump length of a pseudo-
address where there is no branch instruction, we will get the default value, a
short jump.

jump increase ≡ λpc.λop.λp.∀i.i < |prefix| →
let oj ≡ lookup i (snd op) in

let j ≡ lookup i (snd p) in jmpleq oj j

This invariant states that between iterations (with op being the previous iter-
ation, and p the current one), jump lengths either remain equal or increase.
It is needed for proving termination. We now proceed with the safety lem-
mas. The lemma in Figure 6 is a temporary formulation of the main property
sigma policy specification. Its main difference from the final version is that
it uses instruction size jmplen to compute the instruction size. This func-
tion uses j to compute the span of branch instructions (i.e. it uses the σ under
construction), instead of looking at the distance between source and destination.

sigma compact unsafe ≡ λprefix.λstrie.∀n.n < |prefix| →
match lookup opt n (snd strie) with

None ⇒ False

Some 〈pc, j〉 ⇒
match lookup opt (n+ 1) (snd strie) with

None ⇒ False

Some 〈pc1, j1〉 ⇒ pc1 = pc+

instruction size jmplen j (nth n prefix)

Fig. 6. Temporary safety property

On the Correctness of a Branch Displacement Algorithm 615

sigma safe ≡ λprefix.λlabels.λold strie.λstrie.∀i.i < |prefix| →
∀dest label.is jump to (nth i prefix) dest label →
let paddr ≡ lookup labels dest label in

let 〈j, src, dest〉 ≡ if paddr ≤ i then

let 〈 , j〉 ≡ lookup i (snd strie) in

let 〈pc plus jl, 〉 ≡ lookup (i+ 1) (snd strie) in

let 〈addr, 〉 ≡ lookup paddr (snd strie) in

〈j, pc plus jl, addr〉
else

let 〈 , j〉 ≡ lookup i (snd strie) in

let 〈pc plus jl, 〉 ≡ lookup (i+ 1) (snd old strie) in

let 〈addr, 〉 ≡ lookup paddr (snd old strie) in

〈j, pc plus jl, addr〉in
match j with

short jump ⇒ short jump valid src dest

absolute jump ⇒ absolute jump valid src dest

long jump ⇒ True

Fig. 7. Safety property

This is because σ is still under construction; we will prove below that after the
final iteration, sigma compact unsafe is equivalent to the main property in Fig-
ure 7 which holds at the end of the computation. We compute the distance using
the memory address of the instruction plus its size. This follows the behaviour
of the MCS-51 microprocessor, which increases the program counter directly
after fetching, and only then executes the branch instruction (by changing the
program counter again).

There are also some simple, properties to make sure that our policy remains
consistent, and to keep track of whether the fixed point has been reached. We
do not include them here in detail. Two of these properties give the values of σ
for the start and end of the program; σ(0) = 0 and σ(n), where n is the number
of instructions up until now, is equal to the maximum memory address so far.
There are also two properties that deal with what happens when the previous
iteration does not change with respect to the current one. added is a variable
that keeps track of the number of bytes we have added to the program size by
changing the encoding of branch instructions. If added is 0, the program has not
changed and vice versa.

We need to use two different formulations, because the fact that added is 0
does not guarantee that no branch instructions have changed. For instance, it
is possible that we have replaced a short jump with an absolute jump, which
does not change the size of the branch instruction. Therefore policy pc equal

states that old sigma1(x) = sigma1(x), whereas policy jump equal states that

616 J. Boender and C.S. Coen

old sigma2(x) = sigma2(x). This formulation is sufficient to prove termination
and compactness.

Proving these invariants is simple, usually by induction on the prefix length.

4.2 Iteration Invariants

These are invariants that hold after the completion of an iteration. The main
difference between these invariants and the fold invariants is that after the com-
pletion of the fold, we check whether the program size does not supersede 64
Kb, the maximum memory size the MCS-51 can address. The type of an itera-
tion therefore becomes an option type: None in case the program becomes larger
than 64 Kb, or Some σ otherwise. We also no longer pass along the number of
bytes added to the program size, but a boolean that indicates whether we have
changed something during the iteration or not.

If the iteration returns None, which means that it has become too large for
memory, there is an invariant that states that the previous iteration cannot
have every branch instruction encoded as a long jump. This is needed later in
the proof of termination. If the iteration returns Some σ, the fold invariants are
retained without change.

Instead of using sigma compact unsafe, we can now use the proper invariant:

sigma compact ≡ λprogram.λsigma.

∀n.n < |program| →
match lookup opt n (snd sigma) with

None ⇒ False

Some 〈pc, j〉 ⇒
match lookup opt (n+ 1) (snd sigma) with

None ⇒ False

Some〈pc1, j1〉 ⇒
pc1 = pc+ instruction size n (nth n program)

This is almost the same invariant as sigma compact unsafe, but differs in that
it computes the sizes of branch instructions by looking at the distance between
position and destination using σ. In actual use, the invariant is qualified: σ is
compact if there have been no changes (i.e. the boolean passed along is true).
This is to reflect the fact that we are doing a least fixed point computation: the
result is only correct when we have reached the fixed point.

There is another, trivial, invariant in case the iteration returns Some σ: it must
hold that fst sigma < 216. We need this invariant to make sure that addresses
do not overflow.

The proof of nec plus ultra goes as follows: if we return None, then the
program size must be greater than 64 Kb. However, since the previous iteration
did not return None (because otherwise we would terminate immediately), the
program size in the previous iteration must have been smaller than 64 Kb.

Suppose that all the branch instructions in the previous iteration are encoded
as long jumps. This means that all branch instructions in this iteration are long

On the Correctness of a Branch Displacement Algorithm 617

jumps as well, and therefore that both iterations are equal in the encoding of
their branch instructions. Per the invariant, this means that added = 0, and
therefore that all addresses in both iterations are equal. But if all addresses
are equal, the program sizes must be equal too, which means that the program
size in the current iteration must be smaller than 64 Kb. This contradicts the
earlier hypothesis, hence not all branch instructions in the previous iteration are
encoded as long jumps.

The proof of sigma compact follows from sigma compact unsafe and the fact
that we have reached a fixed point, i.e. the previous iteration and the current
iteration are the same. This means that the results of instruction size jmplen

and instruction size are the same.

4.3 Final Properties

These are the invariants that hold after 2n iterations, where n is the pro-
gram size (we use the program size for convenience; we could also use the
number of branch instructions, but this is more complex). Here, we only need
out of program none, sigma compact and the fact that σ(0) = 0.

Termination can now be proved using the fact that there is a k ≤ 2n, with n
the length of the program, such that iteration k is equal to iteration k+1. There
are two possibilities: either there is a k < 2n such that this property holds, or
every iteration up to 2n is different. In the latter case, since the only changes
between the iterations can be from shorter jumps to longer jumps, in iteration 2n
every branch instruction must be encoded as a long jump. In this case, iteration
2n is equal to iteration 2n+ 1 and the fixed point is reached.

5 Conclusion

In the previous sections we have discussed the branch displacement optimisation
problem, presented an optimised solution, and discussed the proof of termination
and correctness for this algorithm, as formalised in Matita.

The algorithm we have presented is fast and correct, but not optimal; a true
optimal solution would need techniques like constraint solvers. While outside the
scope of the present research, it would be interesting to see if enough heuristics
could be found to make such a solution practical for implementing in an exist-
ing compiler; this would be especially useful for embedded systems, where it is
important to have as small a solution as possible.

In itself the algorithm is already useful, as it results in a smaller solution than
the simple ‘every branch instruction is long’ used up until now—and with only
64 Kb of memory, every byte counts. It also results in a smaller solution than
the greatest fixed point algorithm that gcc uses. It does this without sacrificing
speed or correctness.

The certification of an assembler that relies on the branch displacement al-
gorithm described in this paper was presented in [6]. The assembler computes
the σ map as described in this paper and then works in two passes. In the first

618 J. Boender and C.S. Coen

pass it builds a map from instruction labels to addresses in the assembly code.
In the second pass it iterates over the code, translating every pseudo jump at
address src to a label l associated to the assembly instruction at address dst to
a jump of the size dictated by (σ src) to (σ dst). In case of conditional jumps,
the translated jump may be implemented with a series of instructions.

The proof of correctness abstracts over the algorithm used and only relies
on sigma policy specification (page 5). It is a variation of a standard 1-
to-many forward simulation proof [5]. The relation R between states just maps
every code address ppc stored in registers or memory to (σ ppc). To identify the
code addresses, an additional data structure is always kept together with the
source state and is updated by the semantics. The semantics is preserved only for
those programs whose source code operations (f ppc1 . . . ppcn) applied to code
addresses ppc1 . . . ppcn are such that (f (σ ppc1) ... (σ ppcn) = f ppc1 ppcn)).
For example, an injective σ preserves a binary equality test f for code addresses,
but not pointer subtraction.

The main lemma (fetching simulation), which relies on sigma policy

specification and is established by structural induction over the source code,
says that fetching an assembly instruction at position ppc is equal to fetching
the translation of the instruction at position (σ ppc), and that the new incremen-
ted program counter is at the beginning of the next instruction (compactness).
The only exception is when the instruction fetched is placed at the end of code
memory and is followed only by dead code. Execution simulation is trivial be-
cause of the restriction over well behaved programs w.r.t. sigma. The condition
σ 0 = 0 is necessary because the hardware model prescribes that the first in-
struction to be executed will be at address 0. For the details see [6].

Instead of verifying the algorithm directly, another solution to the problem
would be to run an optimisation algorithm, and then verify the safety of the
result using a verified validator. Such a validator would be easier to verify than
the algorithm itself and it would also be efficient, requiring only a linear pass over
the source code to test the specification. However, it is surely also interesting
to formally prove that the assembler never rejects programs that should be
accepted, i.e. that the algorithm itself is correct. This is the topic of the current
paper.

5.1 Related Work

As far as we are aware, this is the first formal discussion of the branch displace-
ment optimisation algorithm.

The CompCert project is another verified compiler project. Their backend [5]
generates assembly code for (amongst others) subsets of the PowerPC and x86
(32-bit) architectures. At the assembly code stage, there is no distinction between
the span-dependent jump instructions, so a branch displacement optimisation
algorithm is not needed.

On the Correctness of a Branch Displacement Algorithm 619

References

1. Asperti, A., Sacerdoti Coen, C., Tassi, E., Zacchiroli, S.: User interaction with the
Matita proof assistant. Automated Reasoning 39, 109–139 (2007)

2. Dickson, N.G.: A simple, linear-time algorithm for x86 jump encoding. CoRR
abs/0812.4973 (2008)

3. Hyde, R.: Branch displacement optimisation (2006),
http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3

4. Intel: Intel 64 and IA-32 Architectures Developer’s Manual,
http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html

5. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reas-
oning 43, 363–446 (2009), http://dx.doi.org/10.1007/s10817-009-9155-4, doi:
10.1007/s10817-009-9155-4

6. Mulligan, D.P., Sacerdoti Coen, C.: On the correctness of an optimising as-
sembler for the intel MCS-51 microprocessor. In: Hawblitzel, C., Miller, D.
(eds.) CPP 2012. LNCS, vol. 7679, pp. 43–59. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-35308-6_7

7. Robertson, E.L.: Code generation and storage allocation for machines with span-
dependent instructions. ACM Trans. Program. Lang. Syst. 1(1), 71–83 (1979),
http://doi.acm.org/10.1145/357062.357067

8. Small device C compiler 3.1.0 (2011), http://sdcc.sourceforge.net/
9. Szymanski, T.G.: Assembling code for machines with span-dependent instructions.

Commun. ACM 21(4), 300–308 (1978),
http://doi.acm.org/10.1145/359460.359474

http://groups.google.com/group/alt.lang.asm/msg/d31192d442accad3
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1007/978-3-642-35308-6_7
http://doi.acm.org/10.1145/357062.357067
http://sdcc.sourceforge.net/
http://doi.acm.org/10.1145/359460.359474

	On the Correctnessof a Branch Displacement Algorithm�
	1 Introduction
	2 The Branch Displacement Optimisation Problem
	3 Our Algorithm
	3.1 Design Decisions
	3.2 The Algorithm in Detail

	4 TheProof
	4.1 Fold Invariants
	4.2 Iteration Invariants
	4.3 Final Properties

	5 Conclusion
	5.1 Related Work

	References

