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Abstract. Timed systems constitute a class of dynamical systems that live in an
extremely useful level of abstraction. The paper stresses their importance in mod-
eling without necessarily endorsing the orthodox approach for reasoning about
them which is practiced in the theoretical and applied branches of formal verifi-
cation.

1 Introduction

This paper is about timed systems, a formal model that combines discrete transitions
and metric time. Joseph has been involved in studying such systems during several
periods of his career including work on timed Petri nets, timed process algebra and,
more effectively, in the context of algorithmic formal verification where he (together
with students and collaborators) played an important role in the evolution of timed au-
tomata modeling and verification [18,30,15,12,5,27]. More recently, as a promoter of
a compositional approach to embedded systems design [8,7], I guess he could observe
how real-time and performance tend to pop-up and demonstrate yet another difference
between a nice theory and practical reality. Performance is a non-compositional phe-
nomenon per se because it involves sharing of limited resources and the performance
of a single process in isolation typically degrades when it has to share resources with
others.

Since I spent significant parts of my academic life working on timed systems at
Joseph’s VERIMAG, I find it appropriate to use this opportunity to reflect aloud on
this topic, free from the usual ceremony of theorems, tools and case-studies found in
standard publications. A large part of this paper will be situated on the abstract and meta
level, but I will start by formulating a concrete motivating1 problem more related to the
expected audience.

Consider an application program such as a video decoder to be executed on a new
mobile multi-core platform. The application is structured as a task graph, a collection of
tasks,2 partially-ordered according to precedence, and annotated by execution times and
data transfer rates. We assume that these durations, as well as the arrival rates of new

1 The term “motivating” is used in a very liberal and wide sense, covering psychological, soci-
ological and metabolic aspects of scientific activity.

2 Modules, components, actors, filters, functional blocks, stream transducers...
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jobs to execute, admit some bounded uncertainty which can be due to different factors
ranging from variability in the type of image frames and the workload of the platform,
down to the possibility that the software and/or hardware are still in the design stage.
Executing the program on the architecture, in addition to the usual compilation chain,
involves other orchestration decisions for which we use the collective term deployment:
how to map tasks to processors, how to schedule them, how to allocate buffers and
communication channels and how to transfer data among processors. All these ques-
tions involve non-trivial combinatorial problems and bad choices can have far reaching
effects on performance to the point of making the difference between the feasible and
the infeasible. Forcing application programmers to occupy themselves with these issues
is like returning to the stone age of computing, undoing the impressive progress made
over the years by isolating programmers from more and more low-level implementation
details. Hence it is urgent to provide computer-aided support for multi-core deployment.
Timed systems provide, in principle, the conceptual and mathematical foundations for
evaluating, comparing and optimizing such deployment decisions.

The message of this paper can be summarized as follows. Models of timed systems
are extremely important as they represent a level of abstraction which is used, explicitly
or implicitly, in almost any domain of engineering and everyday life. In particular, timed
models have a significant potential contribution to performance analysis and optimiza-
tion for all sorts of systems. Unfortunately, sociological and cultural factors, both in
academia and industry, as well as genuine complexity problems, prevent this potential
from being fully realized.

The rest of the paper is organized as follows. Section 2 presents the timed level of
abstraction and demonstrates how it can be used in modeling. Timed automata are in-
troduced in Section 3 along with their non-scalable orthodox analysis in the tradition of
formal verification and various attempts to make it scale up. Section 4 recounts some
recent encounters with practice and provides retrospective reflections on timed and un-
timed verification without a decisive punch line. Anecdotes and strong opinions, not
always well-founded, are interleaved in the text and should not be taken too seriously
and certainly not offensively.

2 The Timed Level of Abstraction

It is a common knowledge that phenomena can be modeled at different levels of abstrac-
tion or granularity. Lower levels are more detailed, zoomed at more elementary entities
and are supposed to be closer to deep reality.3 I will start by discussing abstractions
based on aggregation which are more common in Physics and its Applied Mathemat-
ics (and also in macro Economics) and then move to other types of abstractions, more
relevant to our concerns.

The prime example of aggregation-type abstraction is found in Statistical Physics
where the underlying detailed micro model consists of a huge number of particles whose
respective momenta are aggregated and abstracted into coarse-grained macro entities
such as temperature. The derivation of the macro model from the micro-level rules

3 This is at least what reductionists (physicists, molecular biologists and even humble program-
mers) want us to believe.
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often exists only in principle. My favorite example4 is the module of elasticity which
indicates the resistance of a beam to different loads and serves for reasoning about
building stability. This characterization is inferred from macro level experiments on
beams made of various materials and is not derived from a detailed model of zillions of
interacting molecules.

When models are more detailed, you have to deal with more state variables and
this raises two main problems. In the interface between the real world and the model
you face the problem of observation/measurement: you need to keep track of many
particles in order to identify the system dynamics and also to measure initial conditions
if you want to use the model to predict the future. Even if this scientific model building
and measurement problems are somehow miraculously solved and you have a model,
you still have a problem in the virtual world of ideas and numbers because it takes
much more effort to do computations with the model. This difficulty applies both to
the (increasingly more rare) cases where you can apply analytic/symbolic methods, as
well as to the modern way to reason about complex systems, namely, simulation. This
computational difficulty applies even more to algorithmic verification, also known as
model-checking, which is essentially a kind of extended muscular form of simulation,
augmented sometimes with a more expressive temporal language for evaluating and
classifying behaviors [22].

Another type of abstraction, perhaps more familiar to people from our close domains,
is model reduction which eliminates some variables and simplifies the dynamics but re-
mains within the same order of magnitude in terms of the number of variables. Such
reductions are common in the treatment of models of continuous dynamical systems
defined by ordinary differential equations (ODE) in Control and related engineering
disciplines but also in discrete models where some variables are hidden. The formal
relationship between the original and reduced models is based on the projection of the
behaviors of both systems on common observable variables. For ODE models, the re-
duced system should produce behaviors (trajectories) which are close to the detailed one
in some metric. In the Computer Science tradition, projecting away variables renders
the system non-deterministic in a set-theoretic sense, first introduced in [26].5 Hence
the abstract system may have several behaviors emanating from the same initial state
and the relation between the two levels is typically a conservative approximation: the
set of behaviors of the abstract model is a superset of those of the concrete system.

In the compilation of high-level programs into machine code the relation between
different levels is based on a combination of variable hiding and a change in the time
scale. A program instruction which is considered atomic at high-level corresponds to
a more detailed sequence of primitive instructions involving addressing and registers
which are hidden from the high-level models. Proceeding downward, each of the ma-
chine code instructions is refined into a collection micro-code hardware transactions
and so on. Going upwards, pieces of program code are grouped into procedures that
can be used, in their turn, as atomic instructions. It is worth noting that software and

4 Dedicated to my father, Ephraim Maler, a construction engineer.
5 The adaptation to continuous and hybrid systems is elaborated in [23] where such systems

are referred to as under-determined to avoid the term non-deterministic which is already over-
loaded with connotations.
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digital hardware are remarkably exceptional in the sense of having a formal equivalence
between so many levels. This is due to the aphysical (and sequential) nature of compu-
tational models, the underlying hardware infra-structure and the fact that we deal here
with man-made artifacts rather than mother nature.

Finally there is a class of abstractions which transform a systems defined over real-
valued numerical variables into a discrete-event system where ranges of continuous
variables are quantized into abstract states. Two of the concrete examples given below
in order to introduce the idea of timed systems are based on such a quantization while
the third is taken from the software domain.

Example 1: Transistors and Gates. At a lower-level a logical gate, say inverter, is an
electrical circuit composed of transistors whose voltage at the output port responds to
the voltage in its input. Its behavior is a signal, a trajectory of a continuous dynamical
system which has two stable states around voltages v0 and v1. At the abstract Boolean
level we say that when the input goes down, the gate becomes excited and takes an
observable transition from 0 to 1 as shown in Fig. 1-(a).

Example 2: Coming to Grenoble. Suppose you come to Grenoble from your home-
town by airplane via Lyon airport. A low-level description can be given in terms of the
trajectory of your center of mass on the spatial Earth coordinates. At a higher level you
can describe it verbally as a sequence of events: fly to Lyon then wait for the bus that
will take you to Grenoble, see Fig. 1-(b).

Example 3: Software. At a lower level we have piece of code, an algorithm that trans-
forms some input to some output using instructions that run on some hardware platform.
At a higher level of description we say that we process an image frame, e.g. decode or
filter it (Fig. 1-(c)).

From the more abstract discrete point of view, in all these cases you have some kind
of a (concrete, physical) process that you do not care too much about its intermediate
states.The important thing is that at the end of the process you will be in Grenoble, the
gate will switch properly from 0 to 1 according to Boole-Shannon rules and the image
will be decoded. This is the essence of functional reasoning. But you cannot get rid
completely of the underlying Physics.6 In order to determine the clock rate that your
computer can use, you need to know how long it takes to switch from 0 to 1.7 To watch
some stupid video on your smart phone you do care about the execution time of your
decoding algorithm. To come on time to a conference you need to know the duration
of the flight. The purely discrete automaton model does not distinguish between flying
from Paris and flying from San Francisco: the flight is modeled simply as an abstract
sequence of transitions: take-off → fly → land.

The timed level of abstraction offers a compromise between these two extremes,
the fully continuous and the purely discrete. To understand what is going on, let us
look closer at the nature of the discrete models and their relationships with the
underlying continuous process. Such models observe the continuous variables through

6 The term “physics” is used here in a very loose sense as denoting all those quantitative things
that preceded the abstract computer.

7 In the development of digital circuits there is a phase called timing closure where these con-
siderations, neglected in preceding design stages, are considered.
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Fig. 1. Three examples of systems viewed in two adjacent levels of abstraction. (a) Logical gate.
Left: a reaction of an inverter to a change in its input voltage; Right: The discrete model where
from a stable state 0, the gate becomes excited (state 0′) when its input goes down and then
stabilizes into a new state 1. In some modeling styles the intermediate unstable state is ignored
and the changes in input and output are part of the same transition. (b) Coming to Grenoble.
Left: a simplified evolution of the distance from Grenoble during flight, waiting at the airport
and taking the bus. Right: the trip viewed as a discrete sequence of steps. (c) A program and its
abstract description.
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an abstraction/quanization: rather than recording the exact liquid level in your glass, it
classifies the states into a finite number of categories, say, empty, full and in-between.
Likewise, the dynamics of the water level can be classified as filling, emptying or static,
which can be viewed as quantizing the derivative. Discrete events indicate changes in
states which correspond to threshold crossings of continuous variables as well as changes
in the dynamics such as opening and closing valves. Timed systems augment the expres-
sive power of the discrete model with a metric temporal distance between events or the
duration of staying in states. As mathematical objects, timed behaviors are represented
in two fundamental forms that correspond to the two types of timed monoids described
in [4]:

– The first representation is based on time-event sequences where a behavior is viewed
as an alternation of durations and instantaneous events. This is essentially equiva-
lent to the timed traces used in [3] in which the events are embedded in the real-time
axis and represented as sequences of time-stamped events. Such representations are
produced in numerous domains including all sorts of event monitoring systems as
well as numerical simulators for differential equations.

– The second representation is based on discrete-valued signals which are functions
from real time to finite domains. Boolean signals are heavily used in the design of
digital circuits. Similar mathematical objects are used in all planning and schedul-
ing domains where they are called Gantt charts or time-tables.

Fig. 2 depicts timed descriptions of the trip to Grenoble in these two forms. Using such
a representation we can distinguish short flights from long, fast gates from slow and
efficient algorithms from less efficient ones.

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Take−off Land Take bus Grenoble

Airplane

Lyon

Bus

Fig. 2. The trip viewed as at a timed level of abstraction: as a sequence of events embedded in
the real time axis (up) or as signals over discrete domains (down). At this level of abstraction one
can tell the difference between a short flight (left) and a longer one (right).

This gives rise to a new class of dynamical systems which, unfortunately, is a bit
hard to digest. Recall that continuous behaviors are trajectories in a continuous state-
space of dynamical systems specified using differential equations and that models based
on automata are the dynamical systems that produce discrete behaviors, sequences of
states and events. Likewise timed automata and similar timed models generate timed
behaviors. These are the dynamical systems of the timed level of abstraction.
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The basic atomic component of the timed world is the process that takes some time to
conclude after having started. Such a process is modeled by the simple timed automaton
depicted in Fig. 3-(a). It consists of an idle state p in which nothing happens and from
which a start transition takes it to active state p while resetting clock x to zero. Clock
x is a restricted type of state variable which progresses in the speed of time (ẋ = 1) so
as to measure the time elapsed since an activity has started. The influence of x on the
dynamics is via its participation in the precondition (the transition guard φ) for taking
the end transition to final state p. The conditionφ can be deterministic, x = d, indicating
that process duration is assumed to be precisely known. It can be non-deterministic, x ∈
[a, b], meaning that the duration can be anywhere within the interval. The degenerate
case where the condition is always true, that is, x ∈ [0,∞), is equivalent to an untimed
model. The condition can also be made probabilistic, assuming some distribution on the
duration, resulting in an expressively rich kind of a continuous-time stochastic process
[24].

To my mind, the most important contribution of the theory of automata to humankind
is in the notion of parallel composition (or products of automata). Such notions exist
of course also for interacting continuous dynamical systems but only in automata you
can visualize a global system and see the effect of interaction. When you compose two
automata, you obtain a global automaton whose states are of the form s = (s1, s2), ele-
ments of the Cartesian product of the individual state-spaces. Transitions available from
s are either independent transitions taken from s1 or s2 or transitions of one automaton
which are conditioned on the state of the other. Fig. 3-(b) shows how parallel composi-
tion can realize sequential composition: the start transition of the automaton of process
q is conditioned the by the automaton for process p being in its final state. Sequential
composition represents precedence relations between tasks where p ≺ q indicates that
q cannot start before p has terminated. This is how you express statements like, you can
take the bus after you land, a gate switching triggers a change in the next gate or you
can start processing the image only after having decoded it.

More generally, parallel composition can express processes that run concurrently,
sometimes progressing independently and sometimes synchronizing. In timed models,
independent progress is not as independent because Time is viewed as a shared variable
that all processes interact with. The automaton of Fig. 3-(c) shows a fragment of the
composition of automata for two timed processes. In state s we observe the fundamen-
tal phenomenon in timing analysis: two or more active processes running in parallel.8

The winner in this race, a term used in continuous-time stochastic processes, is the one
which takes its end transition first. The identity of the winner depends on the delay
bounds [a1, b1] and [a2, b2] as well as the timing of the preceding transitions. Typically,
timing constraints, due to sharing of the time variable, restrict the range of behaviors
which would be otherwise possible in the untimed transition graph. Analyzing the pos-
sible behaviors of such concurrent timed processes is at the heart of almost anything we
do when we hurry up to catch a bus or wait for our partner to come. The following list
illustrates the universality of questions related to possible behaviors (paths) of networks
of timed automata.

8 For this reason I find papers that deal with timed automata with a single clock to be of a purely
theoretical interest.
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Fig. 3. Processes that take time: (a) The basic timed component; (b) Sequential composition; (c)
Parallel composition. State s admits a race between two processes.

– Will there be a glitch in the circuit?
– Will he finish his boring talk by the coffee break?
– Will the meal be ready exactly when the guests arrive?
– Will my student finish the thesis before I run out of money?
– Will the image be processed before the arrival of the next one?
– Will the server answer the query before the attention span of the client expires?
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I hope you are convinced by now that timed systems are important for modeling
and you can use them to formulate all kinds of interesting questions in an extremely
important level of abstraction. It is the level of abstraction that people use implicitly
in scheduling, timing analysis, planning - you name it. It should be noted that timed
automata (and other forms of timed transition systems such as timed Petri nets) are
not unique in addressing this level of abstraction. For example, the work on Operations
Research that involves scheduling deals with this level but it often jumps directly to a
constrained optimization problem without passing through a dynamic model. Another
example would be Queuing Theory which uses continuous-time stochastic processes
that generate (distributions over) timed behaviors, but there, at least for a point of view
of an innocent outsider, it seems that the heavy mathematical technology associated
with probabilities over the reals dominates this work at the expense of the semantic
view.9 A dynamical system view of timed systems has been developed in the study of
discrete-event system in Control [14] and also in the context of Max Plus algebra [6]
but in the latter, due to linearity, the expressive power is rather limited.

The questions that remains is how can these timed models be used to provide an-
swers to those interesting questions. To answer this particular question, let us have a
retrospective look at formal verification, our home discipline.

3 Verification and Analysis of Timed Systems

A large part of verification is concerned with showing that components in a network
of automata interact properly with each other. The term “properly” means that some
sequences of events are considered acceptable while others violate the requirements.
Violation means either that bad things happen, for example, two processes write simul-
taneously on a shared resource or an airplane crashes. Technically, such safety prop-
erties are violated by reaching an undesired part of the state-space. The other types of
properties are called liveness properties and are violated when some good things do
not happen, for example a client is starved to death without getting what he or she
has requested.10 The models used to verify such properties are discrete and often ab-
stract away from data and focus on control/synchronization. The systems in question
are open and under-determined and this means that a model will have many executions,
some correct and some incorrect. Verification is a kind of exhaustive simulation which
explores all the paths in a huge automaton.

Extending verification to timed systems means that, in addition to the under deter-
mination associated with external discrete actions, there is also a dense temporal non-
determinism concerning timing as we do not know execution times, propagation delays,
inter-arrival times and process durations with precision but model them typically using
bounded intervals. Following the pessimistic safety-critical spirit of verification, we

9 I used to be a more zealous supporter of the semantic-dynamic approach [1] but like any other
approach including those just mentioned, it has its advantages and shortcomings. Sometimes
a semantically-correct “formal” approach stops at definitions and hardly computes anything.

10 It is worth noting that for timed requirements, that is, when an upper-bound to an acceptable
delay is specified, all properties can be viewed as safety properties [19].
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attempt to reason universally about this uncertainty space, compute all possible behav-
iors under all choices of duration values and check the correctness of each of them.
Without formal verification techniques this would amount to a non-countable number
of simulations.

From the verification point of view we have a-priori a system with an infinite (and
non-countable) state-space as the clocks are real-valued and the states of the timed au-
tomaton are of the form (s, x) with s being an automaton state and x a vector of clock
valuations. Looking closer we can observe that clock valuations range practically over
a bounded subset of Rn (clock values that go beyond the largest constant in the timing
constraints are not interesting) and the restricted use of clocks in transition guards in-
duces a finite-quotient property. More precisely, there is an equivalence relation ∼ over
the set X of clock valuations such that x ∼ x′ implies that the same sequences of tran-
sitions are possible from (s, x) and (s, x′). The relation is of finite index and hence a
timed automaton is equivalent to a finite-state automaton with states of the from (s,R)
where R is an equivalence class of ∼, also known as a region, and transitions corre-
spond either to the passage of time from one region to another or to discrete transitions.
This region graph was introduced in the seminal paper of Alur and Dill [3] which put
timed automata on the map, and was used to prove decidability of the basic verification
problem. Beyond this theoretical use, the region automaton is completely impractical
and is not used by any living verification tool. The region equivalence is unnecessarily
fine and makes distinctions between clock valuations that differ only by durations of
time steps, but still admit the same sequences of transitions.

The other approach which uses a coarser equivalence has several origins [18,28,29]
and in its contemporary form it computes a finite-state automaton, the reachability
graph also known as the simulation graph, on the fly in a manner similar to the al-
gorithmic analysis of hybrid systems described in [2]. The symbolic states are of the
form (s, Z) where Z is a set of clock valuations belonging to a restricted type of poly-
hedra called zones, definable by conjunctions of inequalities of the form c1 ≤ xi ≤ c2
or c1 ≤ xi−xj ≤ c2. Such difference constraints are fundamental to all sorts of timing
and scheduling problems and they admit an efficient representation using difference-
bound matrices (DBMs) invented by Bellman and proposed in the verification context
in [17]. The regions of the region graph are the smallest zones possible.

To avoid large n-tuples let me illustrate zone-based reachability computation on the
2-clock automaton of Fig. 4, giving priority to clarity over precision. It starts at state q1
with x = (0, 0). Then the time elapse operator is used to compute all states reachable by
letting time pass where the staying condition (invariant) x ≤ 3 restricts the clock values
with which it is possible to stay in q1. Then this set is intersected with the transition
guard x ≥ 1 to yield the clock values with which the transition to q2 is possible. The
transition resets clock x1 and hence the possible starting points at q2 are (0, y) where
y ∈ [1, 3]. Then the time elapse operator is applied at q2 and so on and so forth. The
process is guaranteed to terminate and compute all state reachable by any choice of
delay values. It has however an annoying non-intuitive feature that it shares also with
verification of hybrid systems and which makes it hard to explain to potential clients of
this technology. Unlike simulation of differential equations (and simulation in general)
there is no simple relationship between the steps of the algorithm and the flow of time.
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For example, after the first transition we are in q2 with a set of initial clock valuations
1 ≤ y ≤ 3 such that each of them has been reached at a different absolute time t = y,
and this becomes more complicated for automata having several transitions outgoing
from the same state.

init guard reset guard resettime time

q1 q2 q3

y ≥ 2x ≥ 1

x ≤ 3 y ≤ 6

0

3

6

y

x

q1

x = y = 0

q1
x = y

0 ≤ x ≤ 3
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x = y

1 ≤ x ≤ 3 1 ≤ y ≤ 3

q2

x = 0

q2

1 ≤ y ≤ 6
1 ≤ y − x ≤ 3 1 ≤ y − x ≤ 3

q2

2 ≤ y ≤ 6

q3
y = 0

0 ≤ x ≤ 5

Fig. 4. First steps in computating a reachability graph

It is worth giving here two small lessons in the methodology and history of science.
The first is about the mathematician’s obsession with being the first to prove a theorem.
The finite quotient property of timed systems was described in [11] in the context of
timed Petri nets, six years before the conference version of [3], and it already involved
zones. This went mostly unnoticed and only the later exposure of the verification com-
munity, which was already working on real-time models [20], to these ideas created the
impact. So it is not only the “result” that counts but also the language that you use, the
attitude and capabilities of the community to which you present your work, the right
timing and more. The story told in [16] about the discovery of planets is relevant.

The second lesson is about complexity: the size of the region graph can be exponen-
tial in the number of clocks while that of the reachability graph is potentially double-
exponential, but in reality the latter is almost always smaller. So proving complexity
bounds on this or that problem can sometimes be no more than a sterile exercise.

Verification algorithms have been implemented and improved in a series of theses
and tools. At VERIMAG, under the guidance of Joseph, this lead to the tools Kronos,
Open-Kronos and IF with contributions of Sergio Yovine, Alfredo Olivero, Conrado
Daws, Stavros Tripakis and Marius Bozga. The most celebrated and actively maintained
tool these days is tool UPPAAL, started by Wang Yi, Paul Pettersen, and Kim Larsen
as a collaboration between Uppsala and Aalborg and continued under the ongoing en-
thusiastic leadership of Kim with major contributions by G. Behrman and A. David.
Despite enormous investments and some impressive achievements, I think it is fair to
say that this approach rarely scales up beyond toy problems (and is also PSPACE-hard).
Being convinced in the importance of timed systems for modeling and analysis I also
spent around ten years of my life (and also those of students and collaborators) in trying
to scale up and fight the clock explosion. Below is a short description of these attempts.
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Numerical Decision Diagrams (NDD). One of the main problems in the verification
of timed automata is the lack of a unified symbolic representation both for the dis-
crete state-space and the clock-space. The representation is enumerative in the former
and hence not suited for handling systems consisting of many components. NDDs give
such a unified symbolic representation for discretized clocks encoded in binary. The
technique worked well on one example but it had the deficiency of losing the metric
structure of numbers via the binary encoding (known as bit blasting in the satisfiabil-
ity jargon). Nevertheless it helped dispel some naive beliefs in the universal power of
BDDs and clarify an important issue: dense time is not the main issue in timed automata
but rather the symbolic representation of sets of clock valuations by inequalities.

Timed Polyhedra. Another canonical representation for unions of zones was obtained
as an extension of a canonical representation for orthogonal polyhedra. This was nice
theoretically but at the end did not work because of lack of efficient representation of
sets of permutations.

Heuristic Search for Scheduling. In scheduling under certainty (durations are known)
you have a synthesis rather than verification problem and an optimal solution corre-
sponds to the shortest path (in terms of duration) in a timed automaton. If you do not
insist on optimality you need not be exhaustive. Moreover, under certain general con-
ditions that apply, for example, to job-shop scheduling, there is a finite and discrete set
of paths to consider and you need not handle zones. This does not solve the general
verification problem, but similar ideas have been tried under the title of guided search,
with the goal of finding bad behaviors quickly.

Bounded Model-Checking with SMT Solvers. Bounded model-checking for timed
automata, that is, the existence of a run with a bounded number of transitions, can be
expressed by a formula in the logic of difference constraints. It turned out that even
very strong solvers developed for this logic did not help in verifying timed automata
and they even had a poorer performance than standard zone-based reachability.

Interleaving Reduction. One problem that adds to the high cost of zone-based reach-
ability is that commuting paths do not really commute because the zone constraints
remember the past history. Having shown that the union of zones reached by all in-
terleavings of the same set of local transitions is convex, we developed a breadth-first
reachability algorithm that merges such zones and for some period we held the olympic
record in verifying Fisher’s protocol.

Compositional Timing Analysis. This last heroic effort [10,9] was based on a divide-
and-conquer methodology applied to Boolean circuits with bi-bounded delays with each
gate modeled as a timed automaton according the principles explained in [25]. The
automata for a sub-circuit were analyzed and then abstracted by hiding internal clocks
and transition resulting in a small-size over-approximation which was plugged to the
rest of the circuit. This technique could analyze a wave pipelining scheme for 3 waves
of input to a non-trivial circuit of 36 gates, still a far cry from the needs of circuit timing
analysis.

So was all this a waste of time? Before giving a hopefully negative answer let
me reflect a bit on the state of science. Ideally one would like to apply noble first
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class science and mathematics to solve real problems. For example, Formal Language
Theory and Compilation, Information Theory and Telecommunication, Number The-
ory and Cryptography. We accept good mathematics for its own sake as well as tech-
nological innovations produced by people who do not formulate themselves in a clean
mathematical way. However, we should be careful not to commit the double sin of do-
ing mediocre mathematics over marginal questions under the pretext of hypothetical
applications, but this seems to be unavoidable in the current state of affairs and the
structure of scientific communities (and industry). Of course, these defects are more
easily detected on others than on oneself.

4 Strange Encounters with Reality

In the sequel I report some impressions from participating in an industrial-academic
project where we promised to progress toward solving the multi-core deployment prob-
lem mentioned in the introduction. The self-confidence was based partly on our ac-
quaintance with timed automata, scheduling and SMT solvers. Most of the observations
are known to many people but each person discovers the facts of life in his own path,
pace and order.

Between Theoreticians and (real) Practitioners. The theoretician has the liberty to
choose the problems and ignore aspects which are outside the scope of his interest
and his capabilities. The real11 practitioner does not have this choice, his deadlines are
not self-imposed and his time is measured. The theoretician solves general problems:
verification applies, in principle, to all automata, all temporal logic formulae, etc. The
practitioner solves one problem at a time. Consequently the real-life scope of a theo-
retical solution is any number of problems in [0,∞). It is zero if the compromise with
reality was too aggressive, and infinity if it was a clever one. As a theoretician I can
observe that [0,∞) and 1 are not comparable.

Correctness and Performance. I hold the view that correctness is a special (Boolean)
case of a performance measure, which is a way to associate cost/utility with individual
system behaviors and with the system as a whole. We can measure elapsed time, as-
sociate costs with states and transitions and accumulate them along runs. We need not
necessarily Booleanize them via inequalities such as deadline conditions - we can re-
main quantitative. We should provide real numbers (and vectors of real numbers when
we have multiple evaluation criteria) as answers. Many people will agree on that and
performance evaluation is a major issue in the embedded world and elsewhere.

Who Needs Universal Quantification? Due to safety-criticality or cost-criticality
(hardware errors) verification always aspired to cover all possible points in the uncer-
tainty space, in other words, a pessimistic worst-case attitude. This is, at the same time,
too much and too little for most systems (soft real-time, best effort, mixed criticality). It
is too much because if the worst-case is rare we can live with it, as we do throughout our
daily life where major catastrophes are never fully excluded. This is too little because
we really want to know what will typically happen, not only what is possible in prin-
ciple. The solution in the context of timing performance is not new: replace duration

11 The distinction between real and less real is due to Paul Caspi [13].
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bounds which are without measure, that is, non-deterministic in the CS sense without
probabilities, with probability distributions. This corresponds to the difference between
Minkowski sum and convolution as shown in Fig. 5. In the set-theoretic tradition, when
two tasks, both with an uncertain duration in [a, b] each, are executed sequentially, the
total duration can be anywhere in [2a, 2b]. Probabilistically, assuming a uniform distri-
bution of the durations over [a, b], a duration of a+ b is more likely than 2a or 2b.

=

=⊕

∗

Fig. 5. From set-theoretic to probabilistic non-determinism. When two processes of duration [a, b]
execute one after the other, the total duration can be anywhere in their Minkowski sum [2a, 2b].
When the durations are assumed to be uniformly distributed, the total duration is distributed
according to the convolution which still non-zero in [2a, 2b] but its density is larger around the
center and smaller in the tails.

The Late Discovery of Monte-Carlo Simulation. But what can you really do with
such duration-probabilistic automata? Probabilizing the timing uncertainty does not al-
leviate the scalability problem - on the contrary, computing probabilities over sets is
typically much harder than computing the sets themselves and this is what makes prob-
abilistic verification so difficult and essentially theoretical. One direction to think about
which has not been explored to the best of my knowledge is to employ fat first search,
exploring only reachable sets of high probability. The other solution is simply to run
Monte-Carlo simulations, sample the uncertainty space and collect statistics. Then we
can call it statistical model checking to hide the fact that after 20 years we resort finally
to what practitioners have always been doing. Kurt Vonnegut had an amazing observa-
tion on these matters in Cat’s Cradle:

“Beware of the man who works hard to learn something, learns it, and finds
himself no wiser than before... He is full of murderous resentment of people
who are ignorant without having come by their ignorance the hard way.”

If we replace exhaustive verification by Monte Carlo simulation what was the worth
of the exhaustive formal verification episode? One answer is that there are still sys-
tems which are critical and require exhaustive coverage. A second answer is that every
domain can always benefit from a fresh look by researchers from a different culture.

The other answer is that abstract and semantically-correct modeling, if not abused,
does have advantages and can help system builders that do not possess these capabilities
(rather than impress them with your knowledge of Greek letters). System builders use
concrete formalisms such as C and Verilog to build their systems and this coding is un-
avoidable if you want the system to be constructed. Abstract models such as those used
in verification or performance analysis are, first of all, considered by them as an extra
burden. By the way, I cannot blame them: I don’t want anyone to tell me how to hack
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my LATEX code or use UML to structure my research. Secondly, many of them may have
difficulties in building abstract models that do not correspond to something concretely
executable. Consequently they use their designs as models for simulation: the software
or the hardware models itself. When both of those already exist, this is the most effi-
cient way to evaluate the performance (and check functional correctness). But in stages
of design-space exploration when the hardware architecture or configuration is not re-
alized, the software is run on a hardware simulator at some granularity, for example a
cycle accurate simulator, and this is extremely slow. To explore different deployments
it is much more efficient to use a discrete event simulator, where computations and data
transfers are modeled as timed processes that take some time and immobilize some re-
source during that time. Of course you need to fill in the numbers (profiling, estimation,
past experience) but recall that you need not be precise and deterministic.

Following these principles, the Design-Space Explorer prototype tool has been de-
veloped by J.-F. Kempf with help from M. Bozga and O. Lebeltel [21]. It has four com-
ponents: 1) Application description: task-graphs annotated with execution times and
data transfer rates; 2) Input generators: models of task arrivals (periodic, jitter, delayed
periodic, bounded variability); 3) Architecture description: processors and their speeds,
memories, busses and 4) Deployment: mapping and scheduling policies. From these de-
scriptions timed automaton models are built which represent all the possible behaviors
under all timing uncertainties. Then the system is analyzed using formal verification
(when feasible and useful) and mostly via statistical simulation. It has been applied to
compare different deployment policies for a video algorithm on a simplified model of
an experimental multi-core platform developed by ST Microelectronics. Time will tell
whether such modeling and analysis techniques will find their way to the design flow
of dedicated multi-cores architectures and their software.

To wrap up, let me repeat once more that I consider timed automata to be one of the
best inventions since the cut-and-paste. They also served as a launch pad for the study
of hybrid systems. Despite the fact that they are n-tuples they can be useful, not only for
the paper industry or the tool-paper industry, but to real applications. This requires more
blood, sweat and tears, less theorem hunting and less bibliometry-guided research.
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