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Abstract. More and more computers use hybrid architectures combin-
ing multi-core processors and hardware accelerators like GPUs (Graphics
Processing Units). We present in this paper a new method for scheduling
efficiently parallel applications with m CPUs and & GPUs, where each
task of the application can be processed either on a core (CPU) or on
a GPU. The objective is to minimize the makespan. The corresponding
scheduling problem is NP-hard, we propose an efficient approximation
algorithm which achieves an approximation ratio of é + 31k' We first de-
tail and analyze the method, based on a dual approximation scheme,
that uses a dynamic programming scheme to balance evenly the load
between the heterogeneous resources. Finally, we run some simulations
based on realistic benchmarks and compare the solution obtained by a
relaxed version of this method to the one provided by a classical greedy
algorithm and to lower bounds on the value of the optimal makespan.

1 Introduction

Most of the computing systems available today include parallel multi-core chips
sharing a large memory with additional hardware accelerators. There is an in-
creasing complexity within the internal nodes of such parallel systems, mainly
due to the heterogeneity of the computational resources. In order to take ad-
vantage of the benefits offered by these new features, effective and automatic
management of the hybrid resources will be more and more important for run-
ning applications. These new architectures have given rise to new scheduling
problems. The main challenge is to create adequate generic methods and soft-
ware tools that fulfill the requirements for optimizing the performances.

There exist in the literature a huge number of papers dealing with implemen-
tations of specific applications using GPUs or hybrid CPU-GPU architectures.
They consist mostly in studying the gains and performances of the parallelisa-
tion of some specific numerical kernels [1] or specific applications like multiple
alignments of biological sequences,molecular dynamics, etc. Moreover, most of
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existing scheduling algorithms and tools are not well-suited for general purpose
applications since the architecture of the GPUs differs from CPUs and thus,
the GPUs should be considered as a new type of resources to develop efficient
approaches. New features have been implemented in some parallel programming
environments and runtime systems: they provide hybrid (CPU/GPU) program-
ming operators, automatic scheduling and adequate data movements. For in-
stance, OmpSs [2], StarPU [3] or xKaapi [4] include scheduling policies that are
restricted to fast greedy algorithms or work stealing.

Our objective within this work is to propose a new algorithm for a general
purpose scheduling for the execution of independent tasks on hybrid CPU-GPU
architectures designed for High Performance Computing (HPC). The considered
input is a set of independent sequential tasks whose execution times are known.
This hypothesis is realistic, since some computing platforms such as StarPU
have a module which estimates at compile time the different execution times of
the considered tasks. The method that we propose in this work determines the
allocation and schedule of the tasks to the computing units, CPUs and GPUs.
We analyze in detail this methodology for the case of m cores (CPUs) and k
GPUs. This leads to an efficient approximation algorithm which achieves a ratio
g + 4}, + € using dual approximation [5] with a dynamic programming scheme.
The cost of the algorithm is in O (n2k3m2). As this method is costly, we derive
a relaxed algorithm and compare it experimentally with one of the most popular
algorithm (HEFT [6]).

2 Problem Definition and Related Works

We consider a multi-core parallel platform with m identical CPUs and k iden-
tical GPUs. The m CPUs are considered independent from the GPUs that are
commanded by some extra driving CPUs, not mentioned here because they do
not execute any task. An application is composed of n independent sequential
tasks denoted by Ti,...,T,. Each of these tasks has two processing times de-
pending on which type of processor it is allocated to. The processing time of
task T is denoted by p; if T} is processed on a CPU and p; if it is processed on
a GPU. We assume that both processing times of a task are known in advance
(or at least can be estimated at compile time). The makespan is defined as the
maximum completion time of the last finishing task. For the problem considered,
in the optic of High Performance Computing, the objective is to minimize the
makespan of the schedule. The problem will be denoted by (Pm, Pk) || Cpaz-

Observe that if both processing times are equal (p; = p;) for j = 1,...,n,
(Pm, P1) || Cpas is equivalent to the classical P || Cpqp problem, which is
NP-hard. Thus, the problem of scheduling with GPUs is also NP-hard and we
are looking for efficient approximation algorithms.

(Pm, Pk) || Craq is a special case of R || Caz. Lenstra et al. [7] propose
a PTAS for the problem R || Ciyax with running time bounded by the product
of (n + 1)™/¢ and a polynomial of the input size. Let us notice that if param-
eter m is not fixed, then the algorithm is not fully polynomial. The authors
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also prove that unless P = NP, there is no polynomial-time approximation
algorithm for R || Ciax with an approximation factor less than 3/2 and present
a 2-approximation algorithm. Recently, Shchepin and Vakhania [8] introduce a
new rounding technique which yields an improved approximation factor of 2— ;L
This is so far the best approximation result for R || Ciyax. If we look at the more
specific problem of scheduling unrelated machines of few different types, Bonifaci
and Wiese [9] present a PTAS to solve this problem. However, the time complex-
ity of the polynomial algorithm is not provided so that the algorithm does not
seem to be potentially useful from a practical perspective. Finally, it is worth
noticing that if all the tasks of the addressed problem have the same acceleration
on the GPUs, the problem reduces to a @ || Cinax problem, with two machines
speeds. The first PTAS for Q || Cinax was given by Hochbaum and Shmoys [10].
The overall running time of the algorithm is O((log m+log(3/¢€))(m/e)(n/e)1/e).

Our objective within this work is to build a bridge between purely theoretical
algorithms with good performance guarantees and practical low cost heuristics.
Thus, we propose a tradeoff solution with a provable performance guarantee and
a reasonable time complexity.

3 Theoretical Analysis

3.1 Rationale of the Solving Method

The principle of the algorithm is to use the dual approximation technique [5].
A g-dual approximation algorithm for a generic problem takes a real number A
(guess) as an input and either delivers a schedule of makespan at most g\, or
answers correctly that there exists no schedule of length at most A.

We target g = g + 31k. Let A be the current real number input for the dual
approximation. In the following, we assert that there exists a schedule of length
lower than A. Then, we have to show how it is possible to build a schedule of
length at most 43)‘ + 31k‘

The idea of the algorithm is to partition the set of tasks on the CPUs into two
sets, each consisting in two shelves, a first set with a shelf of length A and the
other of length g‘, and a second set with two shelves of length 23)‘. The partition
ensures that the makespan on the CPUs is lower than 43)‘. The same partition
can be applied to the set of tasks on the GPUs. Since the tasks are independent,
the scheduling strategy is straightforward when the assignment of the tasks has
been determined and yields directly a solution of length at most 43)‘. The main
problem is to assign the tasks in each shelf on the CPUs or on the GPUs in order
to obtain a feasible solution.

3.2 Structure of an Optimal Schedule

We introduce an allocation function 7 (j) of a task T; which corresponds to the
processor where the task is processed. The set C (resp. G) is the set of all the
CPUs (resp. GPUs). Therefore, if a task T} is assigned to a CPU, we can write
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7(j) € C. We define W as being the computational area of the CPUs on the
Gantt chart representation of a schedule, i.e. the sum of all the processing times

of the tasks allocated to the CPUs: W = > p;,.
j/m(i)ec
To take advantage of the dual approximation paradigm, we have to make
explicit the consequences of the assumption that there exists a schedule of length

at most A\. We state below some straightforward properties of such a schedule.

Property 1. In an optimal solution, the execution time of each task is at most A,
and the computational area on the CPUs is at most mA, and the computational
area on the GPUs is at most k.

Property 2. In an optimal solution, if there exist two consecutive tasks on a
CPU, if one of these tasks has an execution time greater than 23)‘, then the other

one has an execution time lower than g‘ The same can be said of two consecutive
tasks on a GPU.

Property 3. Two tasks with processing times on CPU greater than g‘ and lower
than 23)‘ can be executed successively on the same CPU within a time at most
43)‘. This is also valid on a GPU.

The basic idea of the solution that we propose comes from the analysis of the
shape of an optimal schedule. From Property 2, the tasks whose execution times
on CPU (respectively on GPU) are strictly greater than 23)‘ do not use more
than m CPUs (respectively k GPUs), and hence can be executed concurrently
in the first set in a shelf denoted by S; (respectively S5). We denote by p the
number of CPUs and k the number of GPUs executing these tasks.

The tasks whose execution times are lower than 23)‘ and strictly greater than
g‘ on CPU (respectively on GPU) cannot be executed on the ;1 CPUs occupied
by S; from Property 1 (respectively the x GPUs occupied by Ss). Moreover,
from Property 3, 2(m — p) of these tasks on CPU (respectively 2(k — k) tasks on
GPU) can be executed in time at most 43)‘ on the remaining (m — ) CPUs in
the second set and fill two shelves S3 and S4 of equal length 23’\ (resp. on (k — k)
GPUs and fill two similar shelves S7 and Sg).

The remaining tasks have execution times lower than g‘ on CPU (resp. on
GPU) and can be executed within a time at most ;‘ in the first set on the CPUs
in another shelf denoted by S (resp. on the GPUs in a shelf Sg).

Thus, we are looking for a schedule on the CPUs in two sets of two shelves:
S1 of length A, S5 as well as S3 and Sy of length 23)‘, and a similar schedule on
the GPUs, with 4 shelves S5 to Sg.

Lemma 1. The length of S is lower than g‘

Proof. We start by modifying the starting times of the tasks in S5, in order to
have all the tasks justified to the right of the schedule, so that all the processors
complete their tasks exactly at time 43)‘ (like in figure 1). This operation induces
on each CPU an idle time interval between the completion of the tasks of S;
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and the starting of the tasks of S3. We define the load of a CPU as the sum of
the execution times of the tasks processed on it. By definition the load is equal
to 43)‘ minus the length of the idle time interval on the CPU. Now consider the
following algorithm to schedule the tasks of processing time lower than g‘:

Consider the tasks in an arbitrary order T4, ..., Ty, f being the total number
of tasks remaining to be allocated in Sy; then allocate task T; to the least loaded
processor, at the latest possible date and update its load.

One problem could occur when allocating T; is that it cannot be completed
before the starting time of the tasks of S3. But at each step, the least loaded
processor has a load at most \; otherwise it would contradict the fact that the
total work area of the tasks is bounded by mA (Property 1). Hence, the idle time
interval on the least loaded CPU has a length at least ;‘ and can contain 7;. O

3.3 Partitioning the Tasks into Shelves

In this section, we detail how to fill the shelves (see Figure 1) on the CPUs and
on the GPUs by specifying an initial assignment of the tasks to the processors.

In order to obtain a 2-sets and 4-shelves schedule on the CPUs and the same
sets on the GPUs, we look for an assignment satisfying the following constraints:

(C1) The total computational area W¢ on the CPUs is at most mA.

(C3) The tasks on the CPUs with an execution time strictly greater than 23)‘
in the allotment, to be scheduled in S7, use y < m processors. The tasks on
the CPUs with an execution time lower than 23)‘ and strictly greater than
g‘ in the allotment, to be scheduled in S3 and S4, use at most 2(m — p)
processors.

— (C3) The total computational area on the GPU is at most k.

— (C4) The tasks on the GPUs with an execution time strictly greater than 23)‘
in the allotment, to be scheduled in S5, use x < k processors. The tasks on

the GPUs with an execution time lower than 2} and strictly greater than

3
3 in the allotment, to be scheduled in S7 and Ss, use at most 2(k — k)
Processors.

[
[
[
‘ 1
‘ :HJ
[
X N3 2)/3 2)/3

(a) Shelves S1 and Sa (b) Shelves S and Sy

Fig. 1. Partitioning the set of tasks into shelves

We define for each task T} a binary variable x; such that z; = 1 if T} is
assigned to a CPU or 0 if T} is assigned to the GPU. Determining if an allotment
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satisfying (C1), (C2), (C3) and (Cy) exists reduces to solving a three-dimensional
knapsack problem that can be formulated as follows:

We :mianjxj (Cy)
j=1
1
5.t Z xj + Z rj<m (Cy)
2X/32p; >AN/3 p;>2M/3
1
5 Yoo -zp)+ > (- <k (Cy)
20/82p;>)/3 pi>27/3
n
> opi(1—z;) <kA (Cs)
j=1
z; € {0,1}

We propose a dynamic programming algorithm that solves the knapsack problem
in O (n2m2k3). For this purpose, we first have to reduce the states on the GPUs
to a smaller number. We use the time intervals of length ;;L and introduce the
integer number v; of these time intervals required for a task T if it is executed

on the GPUs: v; = { b

)\/(Sn)J' N = 3 v; denotes the total integer number of

w(j)€g
these intervals on the GPUs. We can define the error on the processing time of
each task ¢; = p; — v 32 created by this approximation.

This result allows us to consider only N states in the dynamic programming
regarding the workload on the GPUs, and the error €; on each task is at most ;;L
so if all the tasks were assigned to one of the GPU, we would have underestimated
the processing time on this GPU by at most ns);L = g‘ Then, constraint (Cy4) of
the linear program becomes

N = Z v; < 3kn
7(j)EG

The truncated computational area of the GPUs is at most kA and thus, the
full computational area remains lower than kX + ;‘ Thus, an upper bound on
the length of shelf Sg can be determined as follows.

Lemma 2. The length of Sg is lower than ;‘ + 3);€

Proof. The proof is similar to the one of Lemma 1. If all the working processors
complete their tasks at 43’\ + 3’\k, with an idle time interval between the end of

S5 and the starting time of Sg, the load of a GPU is equal to 43’\ + 3’\16 minus the
length of the idle time interval. If a small task remains to be assigned, the least
loaded processor has a load at most A+ 3);€ since the total work area is bounded
by k ()\ + ;k), so the idle time interval on the least loaded GPU has a length of

at least ;‘ and can contain the task to be assigned. a
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Once this reduction done, we define We (4, u, ¢/, &, ', N) as the minimum
sum of all the processing times of the tasks on the CPUs when the first j tasks
are considered, with among the tasks assigned to the CPUs, p of them having
processing times p; greater than 23)‘ and p/ with g‘ < p; < 23)‘, respectively x
and k' of these tasks being assigned to the GPUs such that N time intervals are
occupied on the GPUs.

We use a dynamic programming which allows us to compute the value of
We (g, s p' s K, k', N) with the values of W with j — 1 tasks considered that
were previously computed. If the optimal value of the computational area on
the CPUs Wg& = We (n, p, p/ k1, N), for 1 < p<m, 1 < ¢/ < 2(m —p),
1<k <k 1<K <2k—-k), 0 <N < 3kn, is greater than mA, then there
exists no solution with a makespan at most A, and the algorithm answers “NO”
to the dual approximation. Otherwise, we construct a feasible solution with a
makespan at most 43)‘ + 3>;€, with the corresponding shelves on the CPUs and
the corresponding i, p',x, &' and N values. This constitutes one step of the
dual-approximation algorithm, with a fixed guess.

Binary Search. We first take initial lower and upper bounds, B, and Bqz
of our optimal makespan and solve the problem with A\ equal to the average of
the bounds. Then we adjust the bounds: if the previous algorithm returns “NO”,
then A becomes the new lower bound, but if the algorithm returns a schedule
of makespan at most 43)‘, then A becomes the new upper bound. The number of
iterations of this binary search can be bounded by log (Bmaz — Bmin) -

Cost Analysis. Solving the dynamic program for a fixed value of A requires to
consider O (n2m2k‘3) states, since 1 < j<n, 1 <pu<<m, 1<y <2(m—p),
1<k <k 1<K <2(k—k), and 0 < N < 3kn. Therefore, the time complexity
of each step of the binary search is O (n2m2k:3).

4 Experimental Analysis

In order to show the efficiency of our method, we run experiments on random
instances and compared them to the classical reference greedy algorithm HEFT
used on several actual systems (HEFT stands for Heterogeneous Earliest Finish-
ing Time [6]). For instance, the scheduling decisions in StarPU [3] are based on
estimations of the execution times of the tasks on both CPU and GPU resources
that are scheduled by HEFT.

4.1 Analysis of HEFT

HEFT proceeds in two phases, starting by a prioritization of the tasks that are
sorted by decreasing average execution time and then the processor selection is
obtained with the heterogeneous earliest finish time rule.

Lemma 3. The worst case performance ratio of HEFT is larger than m/2.
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Proof. We show on the following instance that the prioritizing phase can provide
a schedule whose makespan is far from the optimum. Let us consider an instance
with a list of the following tasks: m tasks such that p = 1 and p = € and for
t=0,---,m—1: a single task of type A such that p=1—i/mand p =1—1i/m;
m — 1 tasks of type B such that p = 1 —i/m and p = 1/m?. These tasks are
executed faster on the GPUs.

On this instance, HEF'T fills first the m CPUs. Then, it fills alternatively the
GPU with one task of type A and the m CPUs with m tasks of size B. HEFT
ends with a makespan equal to m/2 + 3/2 — 1/m. It is easy to check that the
optimal makespan is equal to OPT = 1. a

4.2 Computational Experiments

The HEFT algorithm is an efficient algorithm in practice but it does not provide
any performance guarantee. The algorithm we presented in the previous section
on the other hand provides a very satisfying performance ratio of g + 31k, can be
implemented and works in a reasonable amount of time, but its running time may
make it a bit slow for users who want an quick response, and do not necessarily
need a performance guarantee so precise of g + 31k

The method described before can be modified in order to obtain a performance
ratio of 2 in a time O(n?k), which would make it comparable to HEFT in terms
of running time and still provide a performance guarantee. The idea is based on
leaving aside the constraints ordering the tasks into shelves. The only constraint
that remains is the one on the computational area on the GPUs being lower
than kX, A being the current guess of the dual approximation. With the optimal
computational area on the CPUs under this constraint determined by dynamic
programming, we can build a schedule with a makespan lower than twice the
optimal value.

This algorithm was implemented and compared to HEFT with an experi-
mental analysis based on various classes of instances. All the algorithms are
implemented in C+4 programming language and run on a 3.4 GHz PC with
15.7 Gb RAM.

We run a series of experiments on random instances of different sizes: 10 to
1000 tasks, with a step of 10 tasks, 2¢ CPUs, a varying from 0 to 6, and 2°
GPUs, b varying from 0 to 3. For each combination of these sizes, 30 instances
were considered, bringing us to a total of 10500 instances tested in total. The
processing times on the CPUs are randomly generated using the uniform dis-
tribution U[10,100] so that p; € {1,...,100} for each task Tj. The distribution
of the acceleration factors on the GPUs have been measured in [11] using the
classical numerical kernels of Magma [12] in a multi-core multi-GPU machine
hosted by the Grid’5000 infrastructure experimental platform [13]. We extracted
a distribution of the acceleration factors which reflects the qualitative speed-up
on real kernels: we assign to each task an acceleration factor «; of 1/15 or 1/35
with a probability of 1/2. The resulting processing times on the GPUs are thus
p; = a;pj. We calculated the mean, maximal and minimal deviations of the

Dynamic Programming (DP) based approximation algorithm and the HEFT
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algorithm from the optimal values derived from the binary search of our approx-
imation programming.

Mean deviations for various number of tasks
30
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Deviations (%)

10 ¢

5
0 100 200 300 400 500 600 700 800 900 1000 1100

Number of tasks

Fig. 2. Mean deviations of DP and HEFT for various n

Table 1. Maximal deviations (%) for DP and HEFT

n 120 160 220 260 280 360 380 660 700 760 780 920 940
DP 76.88 72.73 70.37 70.00 69.14 70.00 70.00 67.42 50.82 42.77 54.47 91.77 63.07
HEFT 123.53 98.44 92.55 94.34 91.90 110.37 91.78 113.48 98.10 98.77 103.15 116.46 96.31

As we can see in Table 1, the maximal deviations of DP are usually below
the maximal deviations of HEFT and more importantly these deviations respect
the theoretical performance guarantee in the case of DP whereas the maximal
deviations of HEFT sometimes go over the 100% barrier corresponding to a per-
formance ratio of 2. We can see in Figure 2 that on average, DP even outperforms
HEFT for large numbers of tasks.

5 Concluding Remarks

In this paper, we presented an analysis for scheduling algorithms using a generic
methodology (in the opposite of specific ad hoc algorithms). We proposed fast
algorithms with a constant approximation ratio in the case of independent tasks
on a multi-core machines with GPUs. In the case of a single (resp. multiple)
GPU(s) a ratio of 3 + € (resp. 3 + 4, + €) is achieved. The main idea of the ap-
proach is to determine an adequate partition of the set of tasks on the CPUs and
the GPUs using a dual approximation scheme. A simulation and experimental
analysis have been provided for different kernels to assess the computational ef-
ficiency of the proposed methods. We are currently implementing the algorithms
presented here in the runtime systems xKaapi and StarPU.
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As further investigations of this work, we plan to extend the analysis to more

generic problems where the tasks are linked by a precedence relation and to take
into account the process of data transfer. We believe that the same algorithmic
scheme could be adapted to provide faster scheduling algorithms with a guar-
antee of 2. For instance, we expect a ratio 2 with a complexity of (O)(nlog(n)).
These algorithms built using the proposed scheme are good candidates for the
integration into runtime systems like StarPU and xKaapi.
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