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Abstract. We initiate the study of extractability obfuscation, a notion
first suggested by Barak et al. (JACM 2012): An extractability obfuscator
eO for a class of algorithms M guarantees that if an efficient attacker A
can distinguish between obfuscations eO(M1), eO(M2) of two algorithms
M1,M2 ∈ M, then A can efficiently recover (given M1 and M2) an input
on which M1 and M2 provide different outputs.

– We rely on the recent candidate virtual black-box obfuscation con-
structions to provide candidate constructions of extractability obfus-
cators for NC1; next, following the blueprint of Garg et al. (FOCS
2013), we show how to bootstrap the obfuscator for NC1 to an ob-
fuscator for all non-uniform polynomial-time Turing machines. In
contrast to the construction of Garg et al., which relies on indistin-
guishability obfuscation forNC1, our construction enables succinctly
obfuscating non-uniform Turing machines (as opposed to circuits),
without turning running-time into description size.

– We introduce a new notion of functional witness encryption, which
enables encrypting a message m with respect to an instance x, lan-
guage L, and function f , such that anyone (and only those) who
holds a witness w for x ∈ L can compute f(m,w) on the message
and particular known witness. We show that functional witness en-
cryption is, in fact, equivalent to extractability obfuscation.

– We demonstrate other applications of extractability extrac-
tion, including the first construction of fully (adaptive-message)
indistinguishability-secure functional encryption for an unbounded
number of key queries and unbounded message spaces.

– We finally relate indistinguishability obfuscation and extractability
obfuscation and show special cases when indistinguishability obfus-
cation can be turned into extractability obfuscation.
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1 Introduction

Obfuscation. The goal of program obfuscation is to “scramble” a computer pro-
gram, hiding its implementation details (making it hard to “reverse-engineer”),
while preserving its functionality (i.e, input/output behavior). A first formal def-
inition of such program obfuscation was provided by Hada [22]: roughly speaking,
Hada’s definition—let us refer to it as strongly virtual black-box—is formalized
using the simulation paradigm. It requires that anything an attacker can learn
from the obfuscated code, could be simulated using just black-box access to the
functionality.1 Unfortunately, as noted by Hada, only learnable functionalities
can satisfy such a strong notion of obfuscation: if the attacker simply outputs
the code it is given, the simulator must be able to recover the code by simply
querying the functionality and thus the functionality must be learnable.

An in-depth study of program obfuscation was initiated in the seminal work
of Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [2]. Their
central result shows that even if we consider a more relaxed simulation-based
definition of program obfuscation—called virtual black-box obfuscation—where
the attacker is restricted to simply outputting a single bit, impossibility can
still be established (assuming the existence of one-way functions). Their result
is even stronger, demonstrating the existence of families of functions such that
given black-box access to fs (for a randomly chosen s), not even a single bit of s
can be guessed with probability significantly better than 1/2, but given the code
of any program that computes fs, the entire secret s can be recovered. Thus,
even quite weak simulation-based notions of obfuscation are impossible.

Barak et al. [2] also suggested an avenue for circumventing these impossibility
results:2 introducing the notions of indistinguishability and “differing-inputs”
obfuscation. Roughly speaking, an indistinguishability obfuscator iO for a class of
circuits C guarantees that given any two equivalent circuits C1 and C2 (i.e., whose
outputs agree on all inputs) from the class, obfuscations iO(C1) and iO(C2) of
the circuits are indistinguishable. In a recent breakthrough result, Garg, Gentry,
Halevi, Raykova, Sahai, and Waters [14] provide the first candidate construction
of indistinguishability obfuscators for all polynomial-size circuits. Additionally,
Garg et al [14] and even more recently, the elegant works of Sahai and Waters
[29] and Hohenberger, Sahai and Waters [23], demonstrate several beautiful (and
surprising) applications of indistinguishability obfuscation.

In this work, we initiate the study of the latter notion of obfuscation—
“differing-inputs”, or as we call it, extractability obfuscation—whose security
guarantees are at least as strong as indistinguishability obfuscation, but weaker
than virtual black-box obfuscation. We demonstrate candidate constructions of
such extractability obfuscators, and new applications.

1 Hada actually considered slight distributional weakening of this definition.
2 Hada also suggested an approach for circumventing his impossibility result, sticking
with a simulation-based definition, but instead restricting to particular classes of
attacker. It is, however, not clear (to us) what reasonable classes of attackers are.
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Extractability Obfuscation. Roughly speaking, an extractability obfuscator eO
for a class of circuits C guarantees that if an attacker A can distinguish between
obfuscations iO(C1), iO(C2) of two circuits C1, C2 ∈ C, then A can efficiently re-
cover (given C1 and C2) a point x on which C1 and C2 differ: i.e., C1(x) �= C2(x).

3

Note that if C1 and C2 are equivalent circuits, then no such input exists, thus re-
quiring obfuscations of the circuits to be indistinguishable (and so extractability
obfuscation implies indistinguishability obfuscation).

We may rely on the candidate obfuscator for NC1 of Brakerski and Roth-
blum [9] or Barak et al. [1] to obtain extractability obfuscation for the same
class. We next demonstrate a bootstrapping theorem, showing how to obtain
extractability obfuscation for all polynomial-size circuits. Our transformation
follows [14], but incurs a somewhat different analysis.

Theorem 1 (Informal). Assume the existence of an extractability obfuscator
for NC1 and the existence of a (leveled) fully homomorphic encryption scheme
with decryption in NC1 (implied, e.g., by Learning With Errors). Then there
exists an extractability obfuscation for P/poly.

Relying on extractability obfuscation, however, has additional advantages: in
particular, it allows us to achieve obfuscation of (non-uniform) Turing machines.
The size of the obfuscated code preserves a polynomial relation to the size of
the original Turing machine. In contrast, existing obfuscator constructions [14,9]
can achieve this only by first converting the Turing machine to a circuit, turning
running time into size.

To achieve this, we additionally rely on the existence of P-certificates in the
CRS model—namely, succinct non-interactive arguments for P.4

Theorem 2 (Informal). Assume the existence of extractability obfuscation for
NC1, fully homomorphic encryption with decryption in NC1 and P -certificates
(in the CRS model). Then there exists extractability obfuscation for polynomial-
size Turing machines.

On a high level, our construction follows the one from [14] but (1) modifies it to
deal with executions of Turing machines (by relying on an oblivious Turing ma-
chine), and more importantly (2) compresses “proofs” by usingP-certificates. We
emphasize that this approach does not work in the setting of indistinguishability
obfuscation. Intuitively, the reason for this is that P-certificates of false state-
ments exist, but are just hard to find; efficiently extracting such P-certificates
from a successful adversary is thus crucial (and enabled by the extractability
property).

We next explore applications of extractability obfuscation.

3 Pedantically, our notion is a slightly relaxed version of that of [2]; see Section 3.
4 Such certificates can be either based on knowledge-of-exponent type assumptions
[4], or even on falsifiable assumptions [12].
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Functional Witness Encryption. Consider the following scenario: You wish to
encrypt the labels in a (huge) graph (e.g., names of people in a social network)
so that no one can recover them, unless there is a clique in the graph of size,
say, 100. Then, anyone (and only those) who knows such a clique should be able
to recover the labels of the nodes in the identified clique (and only these nodes).
Can this be done?

The question is very related to the notion of witness encryption, recently
introduced by Garg, Gentry, Sahai, and Waters [15]. Witness encryption makes
it possible to encrypt the graph in such a way that anyone who finds any clique
in the graph can recover the whole graph; if the graph does not contain any such
cliques, the graph remains secret. The stronger notion of extractable witness
encryption, introduced by Goldwasser, Kalai, Popa, Vaikuntanathan, and Zel-
dovich [20], further guarantees that the graph can only be decrypted by someone
who actually knowns a clique. However, in contrast to existing notions, here we
wish to reveal only the labels associated with the particular known clique.

More generally, we put forward the notion of functional witness encryption
(FWE). An FWE scheme enables one to encrypt a message m with respect to
an NP -language L, instance x and function f , such that anyone who has (and
only those who have) a witness w for x ∈ L can recover f(m,w). In the above
example, m contains the labels of the whole graph, w is a clique, and f(m,w)
are the labels of all nodes in w. More precisely, our security definition requires
that if you can tell apart encryptions of two messages m0,m1, then you must
know a witness w for x ∈ L such that f(m0, w) �= f(m1, w).

We observe that general-purpose FWE and extractability obfuscation actu-
ally are equivalent (up to a simple transformation).

Theorem 3 (Informal). There exists a FWE for NP and every polynomial-
size function f if and only if there exists an extractability obfuscator for every
polynomial-size circuit.

The idea is very simple: Given an extractability obfuscator eO, an FWE en-
cryption of the message m for the language L, instance x and function f is the
obfuscation of the program that on input w outputs f(m,w) if w is a valid wit-
ness for x ∈ L. On the other hand, given a general-purpose FWE, to obfuscate a
program Π , let f be the universal circuit that on input (Π, y) runs Π on input
y, let L be the trivial language where every witness is valid, and output a FWE
of the message Π—since every input y is a witness, this makes it possible to
evaluate Π(y) on every y.

Other Applications. Functional encryption [6,28] enables the release of “tar-
geted” secret keys skf that enable a user to recover f(m), and only f(m), given
an encryption of m. It is known that strong simulation-based notions of security
cannot be achieved if users can request an unbounded number of keys. In con-
trast, Garg et al. elegantly showed how to use indistinguishability obfuscation
to satisfy an indistinguishability-based notion of functional encryption (roughly,
that encryptions of any two messages m0,m1 such that f(m0) = f(m1) for all
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the requested secret keys skf are indistinguishable). The main construction of
Garg et al, however, only achieves selective-message security, where the attacker
must select the two message m0,m1 to distinguish before the experiment be-
gins (and it can request decryption keys skf ). Garg et al. observe that if they
make subexponential-time security assumptions, use complexity leveraging, and
consider a small (restricted) message space, then they can also achieve adaptive-
message security.

We show how to use extractability obfuscation to directly achieve full
adaptive-message security for any unbounded size message space (without re-
lying on complexity leveraging).

The idea behind our scheme is as follows. Let the public key of the encryption
scheme be the verification key for a signature scheme, and let the master secret
key (needed to release secret keys skf ) be the signing key for the signature
scheme. To encrypt a message m, obfuscate the program that on input f and a
valid signature on f (with respect to the hardcoded public key) simply computes
f(m). The secret key skf for a function f is then simply the signature on f . (The
high-level idea behind the construction is somewhat similar to the one used
in [20], which used witness encryption in combination with signature schemes to
obtain simulation-based FE for a single function f ; in contrast, we here focus
on FE for an unbounded number of functions).

Proving that this construction works is somewhat subtle. In fact, to make the
proof go through, we here require the signature scheme in use to be of a special
delegatable kind—namely, we require the use of functional signatures [7,3] (which
can be constructed based on non-interactive zero-knowledge (NIZK) arguments
of knowledge), which make it possible to delegate a signing key sk′ that allows
one to sign only messages satisfying some predicate. The delegation property is
only used in the security reduction and, roughly speaking, makes it possible to
simulate key queries without harming security for the messages selected by the
attacker.

Theorem 4 (Informal). Assume the existence of NIZK arguments of knowl-
edge for NP and the existence of extractability obfuscators for polynomial-size
circuits. Then there exists an (adaptive-message) indistinguishability-secure func-
tional encryption scheme for arbitrary length messages.

Another interesting feature of our approach is that it directly enables con-
structions of Hierarchical Functional Encryption (HiFE) (in analogy with Hier-
archical Identity-Based encryption [24]), where the secret keys for functions f
can be released in a hierarchical way (the top node can generate keys for sub-
sidiary nodes, those nodes can generate keys for its subsidiaries etc.). To do this,
simply modify the encryption algorithm to release the f(m) message in case
you provide an appropriate chain of signatures that terminates with a signature
on f .

From Indistinguishability Obfuscation to Extractability Obfuscation. A natural
question is whether we can obtain extractability obfuscation from indistinguisha-
bility obfuscation. We address this question in two different settings: first directly
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in the context of obfuscation, and second in the language of FWE. (Recall that
these two notions are equivalent when dealing with arbitrary circuits and arbi-
trary functions; however, when considering restricted function classes, there are
interesting differences).

– We introduce a weaker form of extractability obfuscation, in which extrac-
tion is only required when the two circuits differ on only polynomially many
inputs. We demonstrate that any indistinguishability obfuscation in fact im-
plies weak extractability obfuscation.

Theorem 5 (Informal). Any indistinguishability obfuscator for P/poly is
also a weak extractability obfuscator for P/poly.

– Mirroring the definition of indistinguishability obfuscation, we may define a
weaker notion of FWE—which we refer to as indistinguishability FWE (or
iFWE)—which only requires that if f(m0, w) = f(m1, w) for all witnesses w
for x ∈ L, then encryptions of m0 and m1 are indistinguishable (in contrast,
the stronger notion requires that if you can distinguish between encryptions
of m0 and m1 you must know a witness on which they differ). It follows
that iFWE for languages in NP and functions in P/poly is equivalent to
indistinguishability obfuscation for P/poly, up to a simple transformation.
We show that if restricting to languages with polynomially many witnesses,
it is possible to turn any iFWE to an FWE.

Theorem 6 (Informal). Assume there exists indistinguishability FWE for
every NP language with polynomially many witnesses, and the function f .
Then for every language L in NP with polynomially many witnesses, there
exists an FWE for L and f .

Our proof relies on a local list-decoding algorithm for a large-alphabet
Hadamard code due to Goldreich, Rubinfeld and Sudan [19].

Theorems 5 and 6 are incomparable in that Theorem 5 begins with a stronger
assumption and yields a stronger conclusion. More precisely, if one begins with
iFWE supporting all languages in NP and functions in P/poly, then the
equivalence between indistinguishability (respectively, standard) FWE and in-
distinguishability (resp., extractability) obfuscation, in conjunction with the
transformation of Theorem 5, yields a stronger outcome in the setting of FWE
than Theorem 6: Namely, a form of FWE where (extraction) security holds
as long as the function M(m,w) is not “too sensitive” to m: i.e., if for any
two messages m0,m1 there are only polynomially many witnesses w for which
M(m0, w) �= M(m1, w). This captures, for example, functionsM that only rarely
output nonzero values. Going back to the example of encrypting data m associ-
ated with nodes of a social network, we could then allow someone holding clique
w to learn whether the nodes in this clique satisfy some chosen rare property
(e.g., contains someone with a rare disease, all have the same birthday, etc).
Indeed, while there may be many cliques (corresponding to several, even expo-
nentially many, witnesses w), it will be the case that M(m,w) is almost always
0, for all but polynomially many w.
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On the other hand, Theorem 6 also provides implications of iFWE for re-
stricted function classes. In particular, Theorem 6 gives a method for transform-
ing indistinguishability FWE for the trivial function f(m,w) = m to FWE for
the same function f . It is easy to see that indistinguishability FWE for this
particular f is equivalent to the notion of witness encryption [15], and FWE for
the same f is equivalent to the notion of extractable witness encryption of [20].
Theorem 6 thus shows how to turn witness encryption to extractable witness
encryption for the case of languages with polynomially many witness.

Finally, we leave open whether there are corresponding transformations from
indistinguishability obfuscation in the case of many disagreeing inputs, and
iFWE in the case of many witnesses. In the latter setting, this is interesting
even for the special case of witness encryption (i.e., the function f(m,w) = m).

Overview of the Paper. In Section 2, we present definitions and notation for
some of the tools used in the paper. In Section 3, we introduce the notion of
extractability obfuscation and present a bootstrapping transformation from any
extractability obfuscator for NC1 to one for all poly-time Turing machines. In
Section 4, we define functional witness encryption (FWE), and show an equiva-
lence between FWE and extractability obfuscation. In Section 5, we describe an
application of extractability obfuscation, in achieving indistinguishability func-
tional encryption with unbounded-size message space. In Section 6, we explore
the relationship between indistinguishability and extractability obfuscation, pro-
viding transformations from the former to the latter in special cases.

2 Preliminaries

2.1 Fully Homomorphic Encryption

A fully homomorphic encryption scheme E = (GenFHE,EncFHE,DecFHE,EvalFHE)
is a public-key encryption scheme associated with an additional polynomial-time
algorithm EvalFHE, which enables computation on encrypted data. Formally, we
require E to have the following correctness property:

Definition 1 (FHE correctness). There exists a negligible ν(k) s.t.

Pr
pk,sk←Gen(1k)

⎡
⎣
∀ ciphertexts c1, ..., cn s.t. ci ← Encpk(bi),
∀ poly-size circuits f : {0, 1}n → {0, 1}
Decsk(Evalpk(f, c1, ..., cn)) = f(b1, ..., bn),

⎤
⎦ ≥ 1− ν(k).

The size of c′ = EvalFHE(pk,EncFHE(pk,m), C) must depend polynomially on the
security parameter and the length of C(m), but be otherwise independent of the
size of the circuit C. For security, we require that E is semantically secure. We
also require that Eval is deterministic, and that the decryption circuit Decsk(·) is
in NC1. Most known schemes satisfy these properties. Since the breakthrough
of Gentry [17], several fully homomorphic encryption schemes have been con-
structed with improved efficiency and based on more standard assumptions such
as LWE (Learning With Errors) (e.g., [10,8,18,11]), together with a circular se-
curity assumption. We refer the reader to these works for more details.
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Remark 1 (Homomorphic evaluation of Turing machines). As part of our ex-
tractability obfuscation construction for general Turing machines (TM), we re-
quire the homomorphic evaluation of an oblivious TM with known runtime.
Recall that a TM is said to be oblivious if its tape movements are independent
of its input. The desired evaluation is done as follows.

Suppose x̂ = (x̂1, x̂2, · · · , x̂k) is an FHE encryption of plaintext message x
(where x̂� encrypts the �th position of x), â = (â1, â2, . . .) an FHE encryption of
the tape values, ŝ an FHE ciphertext of the current state, and M an oblivious
TM terminating on all inputs within t steps. More specifically, a description of
M consists of an initial state s and description of a transition circuit, CM . In
each step i = 1, . . . , t of evaluation, M accesses some fixed position posinput(i) of
the input, fixed position postape(i) of the tape (extending straightforwardly to
the multi-tape setting), and the current value of the state, and evaluates CM on
these values.

Homomorphic evaluation of M on the encrypted input x̂ then takes place in
t steps: In each step i, the transition circuit CM of M is homomorphically eval-
uated on the ciphertexts x̂posinput , âpostape , and ŝ, yielding updated values for these
ciphertexts. The updated state ciphertext ŝ resulting after t steps is the desired
output ciphertext. Note that obliviousness of the Turing machine is crucial for
this efficient method of homomorphic evaluation, as any input-dependent choices
for the head location would only be available to an evaluator in encrypted form.

Overall, homomorphic evaluation of M takes time O(t(k) · poly(k)), and can
be described in space O(|M | · poly(k)).

2.2 (Indistinguishability) Functional Encryption

A functional encryption scheme [6,28] enables the release of “targeted” secret
keys that enable a user to recover f(m)—and only f(m)—given an encryption
of m. In this work, we will consider the indistinguishability notion of security for
functional encryption. Roughly, such a scheme is said to be secure if an adversary
who requests and learns secret keys skf for a collection of functions f cannot
distinguish encryptions of any two messages m0,m1 for which f(m0) = f(m1)
for every requested f . We refer the reader to e.g. [6,28] for a formal definition.

2.3 P-Certificates

P-Certificates are a succinct argument system for P. We consider P certificates
in the CRS model.

For every c ∈ N, let Lc = {(M,x, y) : M(x) = y within |x|c steps}. Let
TM (x) denote the running time of M on input x.

Definition 2 (P-certificates). [13] A tuple of probabilistic interactive Turing
machines (CRSGencert, Pcert, Vcert) is a P-certificate system in the CRS model if
there exist polynomials gP , gV , � such that the following hold:
– Efficient Verification: On input crs ← CRSGen(1k), c ≥ 1, and a statement

q = (M,x, y) ∈ Lc, and π ∈ {0, 1}∗, Vcert runs in time at most gV (k + |q|).
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– Completeness by a Relatively Efficient Prover: For every c, d ∈ N,
there exists a negligible function μ such that for every k ∈ N and every
q = (M,x, y) ∈ Lc such that |q| ≤ kd,
Pr[crs ← CRSGen(1k);π ← Pcert(crs, c, q) : Vcert(crs, c, q, π) = 1] ≥ 1− μ(k).
Furthermore, Pcert on input (crs, c, q) outputs a certificate of length �(k) in
time bounded by gP (k + |M |+ TM (x)).

– Soundness: For every c ∈ N, and every (not necessarily uniform) PPT P ∗,
there exists a negligible function μ such that for every k ∈ N,
Pr[crs ← CRSGen(1k); (q, π) ← P ∗(crs, c) : Vcert(crs, c, q, π) = 1 ∧ q /∈ Lc] ≤ μ(k).

P-certificates are directly implied by any publicly-verifiable succinct non-
interactive argument system (SNARG) for P. It was shown by Chung et al. [13]
that P-certificates can be based on falsifiable assumptions [27].

Theorem 7. Assuming that Micali’s CS proof [26] is sound, or assuming the
existence of publicly-verifiable fully succinct SNARG system for P [4] (which
in turn can be based on any publicly-verifiable SNARG [21,25,16,5]), then there
exists a P-certificate system in the CRS model.

3 Extractability Obfuscation

We now present and study the notion of extractability obfuscation, which is a
slight relaxation of “differing-inputs obfuscation” introduced in [2]. Intuitively,
such an obfuscator has the property that if a PPT adversary can distinguish
between obfuscations of two programs M0,M1, then he must “know” an input
on which they differ.

Definition 3 (Extractability Obfuscator). (Variant of [2]5) A uniform PPT
machine eO is an extractability obfuscator for a class of Turing machines
{Mk}k∈N if the following conditions are satisfied:
– Correctness: There exists a negligible function negl(k) such that for ev-

ery security parameter k ∈ N, for all M ∈ Mk, for all inputs x, we have
Pr[M ′ ← eO(1k,M) : M ′(x) = M(x)] = 1− negl(k).

– Security: For every PPT adversary A and polynomial p(k), there exists a
PPT extractor E and polynomial q(k) such that the following holds. For every
k ∈ N, every pair of Turing machines M0,M1 ∈ Mk, and every auxiliary
input z,

Pr

[
b ← {0, 1};

M ′ ← eO(1k,Mb)
: A(1k,M ′,M0,M1, z) = b

]
≥ 1

2
+

1

p(k)
(1)

=⇒ Pr
[
w ← E(1k,M0,M1, z) : M0(w) �= M1(w)

] ≥ 1

q(k)
. (2)

5 Formally, our notion of extractability obfuscation departs from differing-inputs ob-
fuscation of [2] in two ways: First, [2] require the extractor E to extract a differing
input for M0,M1 given any pair of programs M ′

0,M
′
1 evaluating equivalent functions.

Second, [2] consider also adversaries who distinguish with negligible advantage ε(k),
and require that extraction still succeeds in this setting, but within time polynomial
in 1/ε. In contrast, we restrict our attention only to adversaries who succeed with
noticeable advantage.
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We remark that we can also consider a distributional-variant of the extrac-
tion condition, where instead of requiring the condition to hold with respect to
every M0,M1 ∈ Mk and z ∈ {0, 1}∗, we consider a distribution D that sam-
ples (M0,M1, z) ← D and requires that for every distribution D, there exists an
extractor such that the extraction condition to hold with respect to D. In appli-
cations, it often suffices to require the extraction condition to hold with respect
to some specific distribution D. We here focus on the above definition for con-
crete exposition, but our results hold naturally also for the distributional-variant
definition.

We contrast this notion with indistinguishability obfuscation:

Definition 4 (Indistinguishability Obfuscator). [2] A uniform PPT ma-
chine iO is an indistinguishability obfuscator for a class of circuits {Ck} if iO
satisfies the Correctness and Security properties as in Definition 3 (for circuit
class {Ck} and circuits C0, C1 in the place of Turing machines), except with
Line (2) replaced with the following:

=⇒ ∃w : C0(w) �= C1(w). (2′)

Note that any extractability obfuscator is also directly an indistinguishability
obfuscator, since existence of an efficient extraction algorithm E finding desired
distinguishing input w as in (2) in particular implies that such an input exists,
as in (2′).

Remark 2. Note that in the definition of extractability obfuscation, the extractor
is given access to the programs M0,M1. One could consider an even stronger
notion of obfuscation, in which the extractor is given only black-box access to the
two programs. As we show in the full version, however, achieving general-purpose
obfuscation satisfying this stronger extractability notion is impossible.

We now present specific definitions of extractability obfuscators for special
classes of Turing machines.

Definition 5 (Extractability Obfuscator for NC1). A uniform PPT ma-
chine eONC1 is called an extractability obfuscator for NC1 if for constants
c ∈ N, the following holds: Let Mk be the class of Turing machines correspond-
ing to the class of circuits of depth at most c log k and size at most k. Then
eO(c, ·, ·) is an extractability obfuscator for the class {Mk}.
Definition 6 (Extractability Obfuscator for TM). A uniform PPT ma-
chine eOTM is called an extractability obfuscator for the class TM of polynomial-
size Turing machines if it satisfies the following. For each k, let Mk be the class
of Turing machines Π containing a description of a Turing machine M of size
bounded by k, such that Π takes two inputs, (t, x), with |t| = k, and the output
of Π(t, x) is defined to be the the output of running the Turing machine M(x)
for t steps. Then eOTM is an extractability obfuscator for {Mk}.

Applying the properties of extractability obfuscation to this class of Tur-
ing machines {Mk} implies that for programs Π0, Π1 ∈ Mk defined above
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(corresponding to underlying size-k Turing machines M0,M1), efficiently dis-
tinguishing between obfuscations of Π0 and Π1 implies that one can efficiently
extract an input pair (t′, x′) for which Π0(t

′, x′) �= Π1(t
′, x′). In particular,

either M0(x
′) �= M1(x

′) or Runtime(M0, x
′) �= Runtime(M1, x). Thus, if re-

stricting attention to a subclass of Mk for which each pair of programs satisfies
Runtime(M0, x) = Runtime(M1, x) for each input x, then “standard” extrac-
tion is guaranteed (i.e., such that the extracted input contains x′ satisfying
M0(x

′) �= M1(x
′)), while achieving input-specific runtime of the obfuscated pro-

gram. (Indeed, for an input x of unknown runtime, one simply executes the obfus-
cated program Π̃ sequentially with increasing time bounds t = k, 2k, 22k, 23k, · · ·
until a non-⊥ output is received). If restricting to a subclass Mk that has a poly-
nomial runtime bound t(k), then “standard” extraction can be guaranteed by
simply defining Runtime(M,x) = t(k) for every M ∈ Mk and every input x.

In the sequel, when referring to an extractability obfuscation of a Turing
machine M , we will implicitly mean the related program ΠM as above, but will
suppress notation of the additional input t.

Definition 7 (Extractability Obfuscator for Bounded-Input TM). A uni-
form PPT machine eOBI is called an extractability obfuscator for bounded-input
Turing machines if it satisfies the following. For each k and polynomial �(k), let
M�

k be the class of Turing machines Π as in Definition 6, but where the inputs
(t, x) of Π are limited by |t| = k and |x| ≤ �(k). Then there exists a polynomial
ps(k) for which eOBI is an extractability obfuscator for {M �

k}, and for every
k ∈ N, and every M ∈ M�

k, it holds that the obfuscation M ′ ← eOBI(1
k,M, �(k))

has size bounded by ps(�(k), k).

3.1 Extractability Obfuscation for NC1

In this work, we build upon the existence of any extractability obfuscator for
NC1. In particular, this assumption can be instantiated using the candidate
obfuscator for NC1 given by Brakerski and Rothblum [9] or Barak et al. [1].
These works achieve (stronger) virtual black-box security within an idealized
model, based on certain assumptions. We refer the reader to [9,1] for more details.

Assumption 8 (NC1 Extractability Obfuscator). There exists a secure ex-
tractability obfuscator eONC1 for NC1, as in Definition 5

3.2 Amplifying to General Polynomial-Sized Turing Machines

In this section, we demonstrate how to bootstrap from an extractability obfusca-
tor for NC1 to one for all (bounded-input) Turing machines with a polynomial-
sized description, by use of fully homomorphic encryption (FHE), in conjunc-
tion with a P-certificate system (a succinct argument system for statements
in P).6 Our construction provides also two corollaries. Relaxing our assump-

6 P-certificates are immediately implied by any succinct non-interactive argument
(SNARG) system for NP, but can additionally be based on falisifiable assumptions.
We refer the reader to Section 2.3 for details.
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tions, by using leveled FHE, and removing P-certificates, we achieve extractabil-
ity obfuscation for polynomial-size circuits. And strengthening our assumption,
replacing P-certificates with succinct non-interactive arguments of knowledge
(SNARKs), yields extractability obfuscation for all polynomial-size Turing ma-
chines. Our construction follows the analogous amplification transformation of
Garg et. al [14] in the (weaker) setting of indistinguishability obfuscation.

At a high level, the transformation works as follows. An obfuscation of a
Turing machine M consists of two FHE ciphertexts g1, g2, each encrypting a
description of M under a distinct public key, and an obfuscation of a certain
(low-depth) verify-and-decrypt circuit. To evaluate an obfuscation ofM on input
x, a user will homomorphically evaluate the oblivious7 universal Turing machine
U(·, x) on both ciphertexts g1 and g2, and generate a P-certificate φ that the
resulting ciphertexts e1, e2 were computed correctly. Then, he will provide a low-
depth proof π that the certificate φ properly verifies (e.g., simply providing the
entire circuit evaluation). The collection of e1, e2, φ, π is then fed into the NC1-
obfuscated program, which checks the proofs, and if valid outputs the decryption
of e1.

Note that the use of computationally sound P-certificates enables the size
of the obfuscation of M to depend only on the description size of M , and not
its runtime. This approach is not possible in the setting of indistinguishability
obfuscation, as certificates of false statements exist, but are simply hard to find.

Theorem 9. There exists a succinct extractability obfuscator eO for bounded-
input TM, as in Definition 7, assuming the existence of the following tools:
– eONC1 : an extractability obfuscator for the class of circuits NC1.
– E = (GenFHE,EncFHE,DecFHE,EvalFHE): a fully homomorphic encryption

scheme with decryption Dec in NC1.
– (CRSGencert, Pcert, Vcert): a P-certificate system in the CRS model.

We remark that by replacing the P-certificates with succinct non-interactive
arguments of knowledge (SNARKs) and additionally using collision resistant
hash functions, then the resulting extractability obfuscator is secure for all
polynomial-size Turing machines of possibly unbounded input size.

Corollary 1. Based on any extractability obfuscator for the class of circuits
NC1, fully homomorphic encryption, succinct non-interactive arguments of
knowledge (SNARKs), there exists an extractability obfuscator for TM, as in
Definition 6.

We also observe that by using a leveled FHE, and removing the P-certificates
from the construction, we can still achieve extractability obfuscation for P/poly.
Namely, instead of generating a P-certificate that the homomorphic evaluation
of Uk was performed correctly and then computing a low-depth proof that the

7 A Turing machine is said to be oblivious if the tape movements are independent of
the input. Without obliviousness, one would be unable to homomorphically evaluate
the Turing machine efficiently, as the location of the head of the Turing machine is
encrypted.
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resultingP-certificate properly verifies, simply generate a (large) low-depth proof
of correctness of the homomorphic evaluation directly. Further, in the place of
FHE, simply sample and utilize keys for a leveled FHE scheme with sufficient
levels to support homomorphic evaluation of Uk. The resulting transformation
eO′ still satisfies the required correctness and security properties, but no longer
achieves succinctness (i.e., the size of the obfuscated Turing machine depends
polynomially on its runtime).

Corollary 2. Based on any extractability obfuscator for the class of circuits
NC1, and leveled fully homomorphic encryption, there exists a (non-succinct)
extractability obfuscator for P/poly.

We refer the reader to the full version of this paper for the full construction
and analysis of the bootstrapping procedure and associated corollaries.

4 Functional Witness Encryption

We put forth the notion of functional witness encryption (FWE). An FWE
scheme enables one to encrypt a message m with respect to an NP language L,
instance x and a function f , such that anyone that has, and only those that have,
a witness w for x ∈ L can recover f(m,w). More precisely, our security definition
requires that if you can distinguish encryptions of two messages m0,m1, then
you must know a witness w for x ∈ L such that f(m0, w) �= f(m1, w).

For example, an FWE scheme would allow one to encrypt the nodes of a
large graph in such a way that anybody (and only those) who knows a clique in
the graph can decrypt the labels on the corresponding clique.

Definition 8 (Functional Witness Encryption). A functional witness en-
cryption scheme for an NP language L (with corresponding witness relation R)
and class of Turing machines {Mk}k∈N, consists of the following two polynomial-
time algorithms:

– Enc(1k, x,m,M): On input the security parameter 1k, an unbounded-length
string x, message m ∈ MSG for some message space MSG, and Turing
machine description M ∈ Mk, Enc outputs a ciphertext c.

– Dec(c, w): On input a ciphertext c and an unbounded-length string w, Dec
outputs an evaluation m′ or the symbol ⊥.

satisfying the following conditions:

Correctness: There exists a negligible function negl(k) such that for every
security parameter k, for any message m ∈ MSG, for any Turing ma-
chine M ∈ Mk, and for any x ∈ L such that R(x,w) holds, we have that
Pr

[
Dec(Enc(1k, x,m,M), w) = M(m,w)

]
= 1− negl(k).

Security: For every PPT adversary A and polynomials p(k), �(k), there exists
a PPT extractor E and polynomial q(k) s.t. for every security parameter k,
pair of messages m0,m1 ∈ MSGk, Turing machine M ∈ Mk, string x, and
auxiliary input z of length at most �(k),
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Pr
[
b ← {0, 1}; c ← Enc(1k, x,mb,M) : A(1k, c, z) = b

] ≥ 1
2 + 1

p(k)

⇒ Pr
[
w ← E(1k, p(k), x,m0,m1,M, z) : M(m0, w) �= M(m1, w)

] ≥ 1
q(k) .

We demonstrate that FWE is, in fact, equivalent to extractability obfuscation,
up to a simple transformation.

Theorem 10 (Equivalence of FWE and Extractability Obfuscation).
The existence of the following two primitives is equivalent:
1. Succinct functional witness encryption for NP and P/poly.
2. Succinct extractability obfuscation for P/poly.

Roughly, given an extractability obfuscator eO, an FWE encryption of the
message m, for the language L, instance x and function f will be the obfuscation
of the program that on input w outputs f(m,w) if w is a valid witness for x ∈ L.
On the other hand, given a general-purpose FWE, to obfuscate a programΠ , let
f be the universal circuit that on input (Π, y) runs Π on input y, let L be the
trivial language where every witness is valid, and output a FWE of the message
Π . We defer the proof of Theorem 10 to the full version of this paper.

5 Applications to Functional Encryption

We show how to use extractability obfuscation to directly achieve (indistin-
guishability) functional encryption for unbounded number of key queries and
with full adaptive-message security for any unbounded size message space, with-
out relying on complexity leveraging.

The intuition behind our scheme is simple. Let the public key of the FE
scheme be the verification key for a signature scheme, and let the master secret
key (needed to release secret keys skf ) be the signing key for the signature
scheme. To encrypt a message m, obfuscate the program that on input f and a
valid signature on f (given the public key) simply computes f(m). The secret key
skf for a function f is then simply the signature on f . (The high-level idea behind
the construction is somewhat similar to the one used in [20], which uses witness
encryption in combination with signature schemes to obtain simulation-based
FE for a single function f ; in contrast, we here focus on FE for an unbounded
number of functions).

Proving that this construction works is somewhat subtle. In fact, to make
the proof go through, we require the signature scheme in use to be of a spe-
cial delegtable kind—namely, we require the use of functional signatures [7,3]
(which can be constructed based on non-interactive zero-knowledge arguments
of knowledge), which make it possible to delegate a signing key sk′ that enables
one to sign only messages that satisfy some predicate.8 The delegation property
is only used in the security reduction and, roughly speaking, makes it possible

8 Note that functional signatures were not needed in [20], as they only consider a single
key query. In our case, functional signatures are needed to answer “CCA”-type key
queries.
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to simulate key queries without harming security for the messages selected by
the attacker.

We defer the full construction of the functional encryption scheme and proof
of security to the full version.

Theorem 11. Assume the existence of non-interactive zero-knowledge argu-
ments of knowledge (NIZKAoK) for NP and the existence of a extractability
obfuscators for P/poly. Then there exists a (fully) indistinguishability-secure
functional encryption scheme for arbitrary length messages.

6 Relating Extractability and Indistinguishability
Obfuscation

A natural question is whether we can obtain extractability obfuscation from
indistinguishability obfuscation. We address this question in two different set-
tings: first directly in the context of obfuscation, and second in the language of
FWE. (Recall that these two notions are equivalent when dealing with arbitrary
circuits and arbitrary functions; however, when considering restricted function
classes, there are interesting differences).

In Section 6.1, we demonstrate that any indistinguishability obfuscation in
fact implies a weak version of extractability obfuscation, in which extraction is
only guaranteed when the two circuits differ on only polynomially many inputs.
In Section 6.2, we define a weaker notion of FWE mirroring the definition of
indistinguishability obfuscation, and provide a transformation from any such
indistinguishability FWE to standard FWE for languages with polynomially
many witnesses.

The two results are incomparable, in that the former transformation (in Sec-
tion 6.1) starts with a stronger assumption and yields a stronger result. Indeed,
if one begins with indistinguishability FWE for all NP and P/poly, then by the
equivalence of FWE and obfuscation, the former transformation yields a stronger
outcome in the setting of FWE, guaranteeing indistinguishability of encryptions
of messages m0,m1 with respect to a function f and NP statement x with
potentially exponentially many witnesses, as long as only polynomially many
such witnesses w produce differing outputs f(m0, w) �= f(m1, w). On the other
hand, the FWE transformation (in Section 6.2) also treats the case of restricted
function classes. For example, it provides a method for transforming indistin-
guishability FWE for the trivial function f(m,w) = m to FWE for the same
function f . It is easy to see that indistinguishability FWE for this particular f is
equivalent to the notion of witness encryption [15], and FWE for the same f is
equivalent to the notion of extractable witness encryption of [20]. The transfor-
mation in Section 6.2 thus shows how to turn witness encryption to extractable
witness encryption for the case of languages with polynomially many witness.
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6.1 From Indistinguishability Obfuscation to Extractability
Obfuscation for Circuits with Polynomial Differing Inputs

We show that indistinguishability obfuscation directly implies a weak version
of extraction obfuscation, where extraction is successful for any pair of circuits
C0, C1 that vary on polynomially many inputs.

Definition 9 (Weak Extractability Obfuscation). A uniform transforma-
tion O is a weak extractability obfuscator for a class of Turing machines M =
{Mk} if for every PPT adversary A and polynomial p(k), there exists a PPT
algorithm E and polynomials pE(k), tE(k) for which the following holds. For
every polynomial d(k), for all sufficiently large k, and every pair of circuits
M0,M1 ∈ Mk differing on at most d(k) inputs, and every auxiliary input z,

Pr
[
b ← {0, 1}; M̃ ← O(1k, Cb) : A(1k, M̃ ,M0,M1, z) = b

]
≥ 1

2 + 1
p(k)

=⇒ Pr
[
x ← E(1k,M0,M1, z) : M0(x) �= M1(x)

] ≥ 1
pE(k) ,

and the runtime of E is tE(k, d(k)).

Theorem 12. Let O be an indistinguishability obfuscator for P/poly. Then O
is also a weak extractability obfuscator for P/poly.

Denote by n = n(k) the (polynomial) input length of the circuits in ques-
tion. At a high level, the extractor E associated with an adversary A performs a
form of binary search over {0, 1}n for a desired input by considering a sequence
of intermediate circuits lying “in between” C0 and C1. The goal is that after
n iterations, E will reach a pair of circuits CLeft, CRight for which: (1) A can
still distinguish between obfuscations {O(CLeft)} and {O(CRight)}, and yet (2)
CLeft and CRight are identical on all inputs except a single known x, for which
CLeft(x) = C0(x) and CRight(x) = C1(x). Thus, by the indistinguishability secu-
rity of O, it must be that E has extracted an input x for which C0(x) �= C1(x).

To demonstrate, consider the case where the circuits C0, C1 differ on a single
unknown input x∗. In the first step, the extractor algorithm E will consider an
intermediate circuit CMid equal to C0 on the first half of its inputs, and equal
to C1 on the second half of its inputs. Then since CMid(x∗) ∈ {C0(x

∗), C1(x
∗)}

and all three circuits agree on inputs x �= x∗, it must be that CMid is equiva-
lent to either C0 or C1. By the security of the indistinguishability obfuscator,
it follows that the obfuscations of such equivalent circuits are indistinguishable.
But, if an adversary A distinguishes between obfuscations of C0 and C1 with
non-negligible advantage ε, then A must successfully distinguish between ob-
fuscations of C0 & CMid or CMid & C1. Namely, it must be the case that A’s
distinguishing advantage is very small between one of these pairs of distributions
(corresponding to the case CMid ≡ Cb) and is nearly ε for the other pair of dis-
tributions (corresponding to CMid �≡ C1−b). Thus, by generating samples from
these distributions and estimating A’s distinguishing advantages for the two dis-
tribution pairs, E can determine whether CMid ≡ C0 or CMid ≡ C1 and, in turn,
has learned whether x∗ lies in the first or second half of the input space. This
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process is then repeated iteratively within a smaller window (i.e., considering a
new intermediate circuit lying “in between” CMid and Cb for which CMid �≡ Cb).
In each step, we decrease the input space by a factor of two, until x∗ is completely
determined.

The picture becomes more complicated, however, when there are several in-
puts on which C0 and C1 disagree. Here the intermediate circuit CMid need not
agree with either CLeft or CRight on all inputs. Thus, whereas above A’s distin-
guishing advantage along one of the two paths was guaranteed to drop no more
than a negligible amount, here in each step A’s advantage could split by as much
as half. At this rate, after only log k iterations, A’s advantage will drop below
usable levels, and the binary search approach will fail. Indeed, if C0, C1 differ
on superpolynomially may inputs d(k) ∈ kω(1), there may not even exist a pair
of adjacent circuits CLeft and CRight satisfying the desired properties (1) and (2)
described above. (Intuitively, for example, it could be the case that each time
one evaluation is changed from C0(x) to C1(x), the adversary’s probability of
outputting 1 increases by the negligible amount 1/d).

We show, however, that if there are polynomially many differing inputs
D ⊂ {0, 1}n for which C0(x) �= C1(x), then this issue can be overcome. The
key insight is that, in any step of the binary search where the adversary’s dis-
tinguishing advantage may split noticeably among the two possible continuing
paths, this step must also split the set of differing inputs into two subsets: that
is, the number of points d′ on which CLeft and CRight disagree is equal to the sum
of the number of points dL on which CMid and CLeft disagree and the number
of points dR on which CMid and CRight disagree. Then even though the adver-
sary’s distinguishing advantage may split as ε′ = εL + εR, for at least one of
the two paths b ∈ {L,R}, it must be that the ratio of εb/db ≥ ε′/d′ is roughly
maintained (up to a negligible amount). Since there are only polynomially many
total disagreeing inputs d(k) ∈ kO(1) to start, and assuming A begins with non-
negligible distinguishing advantage, the original ratio ε/d at the root node begins
as a non-negligible amount. And so we are guaranteed that there exists a path
down the tree for which ε′/d′ (and, in particular, the intermediate distinguishing
advantage ε′) stays above this non-negligible amount ε/d. Our extractor E will
find this path by simply following all paths which maintain distinguishing ad-
vantage above this value. By the security of the indistinguishability obfuscation
scheme, there will be at most polynomially many such paths (corresponding to
those terminating at the inputs x ∈ D), and all other paths in the tree will be
pruned.

More specifically, our extractor E runs as follows. At the beginning of ex-
ecution, it sets a fixed threshold thresh = ε/dk based on the original (signed)
distinguishing advantage ε of A and the number of inputs d on which the circuits
differ (note that if d = d(k) is unknown, E will repeat the whole extraction pro-

cedure with guesses k, k2, k2
2

, k2
3

, etc, for this value). At each step it considers
three circuits CLeft, CMid, CRight, and estimatesA’s (signed) distinguishing advan-
tage between obfuscations of CLeft & CMid and of CMid & CRight, using repeated
sampling with sufficiently low error (err = ε/dk2). For each pair that yields
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distinguishing probability above thresh (possibly neither, one, or both pairs), E
recurses by repeating this process at a circuit lying between the relevant window.
More explicitly, if the left pair yields sufficient distinguishing advantage, then
E will repeat the process for the triple of circuits CLeft, C′, CMid for the circuit
C′ “halfway between” CLeft, CMid; analogous for the right pair; if both surpass
threshold, E repeats for both; and if neither surpass threshold, then E will not
continue down this path of the binary search.

In the full version, we prove that for appropriate choice of threshold, E will
only ever visit polynomially many nodes in the binary search tree, and will
be guaranteed to find a complete path for which A’s distinguishing advantage
maintains above threshold through all n steps down the tree (thus specifying a
desired n-bit distinguishing input).

Note that Theorem 12 implies, for example, that for the class of polynomial
multipoint locker functions (i.e., functions evaluating to nonzero bit strings at
polynomially many hidden points), indistinguishability obfuscation is equivalent
to extractability obfuscation.

6.2 From Indistinguishability FWE to FWE for Languages with
Polynomial Witnesses

We now address this question in the language of FWE.
Mirroring the definition of indistinguishability obfuscation, we define a weaker

notion of FWE—which we refer to as indistinguishability FWE—which only re-
quires that if f(m0, w) = f(m1, w) for all witnesses w for x ∈ L, then encryptions
of m0 and m1 are indistinguishable. Recall that, in contrast, the stronger notion
requires that if you can distinguish between encryptions of m0 and m1 you must
know a witness on which they differ.

Definition 10 (Indistinguishability FWE). An indistinguishability func-
tional witness encryption (iFWE) scheme for an NP language L and class of
functions F = {Fk} consists of encryption and decryption algorithms Enc,Dec
with the same syntax as standard FWE, satisfying the same correctness property,
and the following (weaker) security property:
(Indistinguishability) security: For every PPT adversary A and polynomial

�(·), there exists a negligible function ν(·) such that for every security pa-
rameter k, every function f ∈ Fk, messages m0,m1 ∈ MSGk, string x, and
auxiliary information z of length at most �(k) for which f(m0, w) = f(m1, w)
for every witness w of x ∈ L,∣∣Pr [A(1k,Enc(1k, x,m0, f), z) = 1

]

− Pr
[A(1k,Enc(1k, x,m1, f), z) = 1

] ∣∣ < ν(k).

Using the same transformation as in the Extractability Obfuscation-FWE
equivalence (see Theorem 10), it can be seen that iFWE for P/poly and NP is
directly equivalent to indistinguishability obfuscation for P/poly. We now con-
sider the question of whether we can turn any iFWE into an FWE. We provide
an affirmative answer for two restricted cases.
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The first result is derived from the transformation from the previous section,
combined with the simple extractability obfuscation-to-FWE equivalence trans-
formation (see Theorem 10). Loosely, it says that from iFWE for P/poly, we
can obtain a weak form of FWE where (extraction) security holds as long as the
function f(m,w) is not “too sensitive” to m: i.e., if for any two messages m0,m1

there are only polynomially many witnesses w for which f(m0, w) �= f(m1, w).
For example, this captures functions f that rarely output nonzero values. Re-
turning to the example of encrypting data m associated with nodes of a social
network, we could allow someone holding clique w to learn whether the nodes
in this clique satisfy some chosen rare property (e.g., contains someone with a
rare disease, all have the same birthday, etc). Then, while there may be many
cliques (corresponding to several, even exponentially many, witnesses w), it will
hold that f(m,w) = 0 for all but polynomially many w.

As a special case, if the language has only polynomially many witnesses for
each statement, then this property holds for any function class.

Definition 11. We say a class of functions F = {Fk} has t-bounded sensitivity
w.r.t. message space MSG and NP language L (with relation R), if for every
f ∈ Fk, every m0,m1 ∈ MSG, and every x ∈ {0, 1}∗ there are at most t(|x|)
witnesses w s.t. R(x,w) = 1 and f(m0, w) �= f(m1, w).

Corollary 3. Suppose there exists iFWE for NP and P/poly. Then for any
polynomial t(·), there exist FWE schemes for any class of functions F = {Fk},
message space MSG, and NP language L, for which F has t-bounded sensitivity
with respect to MSG and L.

The second result considers iFWE for general function classes (instead of just
P/poly), but restricts to NP languages with polynomial witnesses. In the en-
crypted social network example, this allows basing on a weaker assumption (not
requiring the iFWE scheme to support all P/poly), but would restrict to social
networks with only polynomially many cliques. The transformation preserves the
supported function class: For example, given iFWE for the singleton function
class {f(m,w) = m} (corresponding to standard witness encryption), one ob-
tains standard FWE for the same class (i.e., extractable witness encryption). This
result requires a new approach, and makes use of techniques in error-correcting
codes.

Definition 12. Let L be an NP language with corresponding relation R. We say
that L has t-bounded witness if for every x ∈ {0, 1}∗, there are at most t(|x|)
distinct witnesses w such that R(x,w) = 1.

Theorem 13. For every function class F = {Fk} and polynomial t(·), if there
exist indistinguishability functional witness encryption schemes for F and every
t-bounded witness NP language, then for every t-bounded witness NP language
L (with corresponding relation R), there exists a functional witness encryption
schemes for F and L.
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Proof. Let L be a t-bounded witness NP language with corresponding relation
R for some polynomial t(·). Define q(·) such that for every k ∈ N, q(k) is the
smallest prime ≥ 8t(k). Assume without loss of generality (by padding) that any
witness of any x ∈ L has length u(|x|) for some polynomial u. To construct a
functional witness encryption scheme (Enc,Dec) for L and F , we consider the
following NP language L′.

L′ = {(x, r, a) : ∃w ∈ {0, 1}u(|x|) s.t. (R(x,w) = 1)∧ (r ∈ F
u(|x|)
q(|x|) )∧ (〈r, w〉 = a)},

where Fq = {0, . . . , q − 1} is the prime field of size q and 〈·, ·〉 denotes inner
product over Fu

q .

Let (Enc′,Dec′) be a indistinguishability FWE scheme for L′ and F . We
construct a FWE scheme (Enc,Dec) for L and F as follows.

– Enc(1k, x,m, f): On input security parameter 1k, statement x ∈ {0, 1}∗,
message m ∈ MSGk, and function f ∈ Fk, Enc generates c as:
• Let q = q(|x|) and u = u(|x|). Sample r ← F

u
q uniformly random.

• For every a ∈ Fq, compute ca = Enc′(1k, (x, q, r, a),m, f).
• Output c = {ca}a∈Fq .

– Dec(c, w): On input a ciphertext c = {ca}a∈Fq and a witness w ∈ {0, 1}∗,
Dec runs Dec′(ca, w) for every a ∈ Fq. If there exists some a such that
Dec′(ca, w) �= ⊥, then output the first non-⊥ Dec′(ca, w). Otherwise, output
⊥.

It is not hard to see that correctness of (Enc′,Dec′) implies correctness of
(Enc,Dec): For every k, x,m, f, w, if w is a witness for x ∈ L, then there exists
some a ∈ Fq such that w is a witness for (x, q, r, a) ∈ L′, and for the first such
a, by the correctness of (Enc′,Dec′), Dec′(ca, w) = f(m,w) with 1 − negl(k)
probability, which implies that Dec(Enc(1k, x,m, f), w) output f(m,w) with 1−
negl(k) probability as well.

We refer the reader to the full version of this paper for the proof of security
of (Enc,Dec). At a high level, we show that if an adversary A can distinguish
Enc(1k, x,m0, f) and Enc(1k, x,m1, f) with a non-negligible advantage, then
there is a non-negligible fraction of r ∈ F

u
q such that we learn non-trivial informa-

tion about the value of 〈r, w〉 for some witness w such that f(m0, w) �= f(m1, w).
Note that a linear function gw(r) := 〈r, w〉 can be viewed as a q-ary Hadamard
code of w. The non-trivial information allows us to obtain a (randomized) func-
tion h(r) that agree with gw(r) on non-negligibly more than 1/q fraction of
points. We can then apply the local list-decoding algorithm of Goldreich, Ru-
binfield, and Sudan [19] to recover w.
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