
Discrete Rigid Transformation Graph Search

for 2D Image Registration

Phuc Ngo1,2, Akihiro Sugimoto1, Yukiko Kenmochi2,
Nicolas Passat3, and Hugues Talbot2

1 National Institute of Informatics, Japan
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Abstract. Rigid image registration is an essential image processing
task, with a large body of applications. This problem is usually formu-
lated in the continuous domain, often in the context of an optimization
framework. This approach leads to sometimes unwanted artifacts, e.g.
due to interpolation. In the case of purely discrete applications, e.g., for
template-based segmentation or classification, it is however preferable to
avoid digitizing the result again after transformation. In this article, we
deal with this point of view in the 2D case. Based on a fully discrete
framework, we explicitly explore the parameter space of rigid transfor-
mations. This exploration leads to a local search scheme that can be
involved in combinatorial optimization strategies.

Keywords: Rigid registration, digital image, combinatorial optimisa-
tion on graph, parameter space subdivision.

1 Introduction

Image registration is a crucial task in various fields of computer vision and
image analysis (e.g., medical imaging [1], remote sensing [2], object tracking [3]).
Essentially, such registration problems consist of estimating a deformation field
or a geometric transformation matrix so that a source image can be transformed
into a target image [4].

This widely studied problem is often formulated in an optimisation framework,
for instance via minimizing a distance measure between the two images. The
search space for this procedure is the parameter space of the transformation,
which is most often continuous, e.g. [0, 2π[×R

2 for 2D rigid transformations.
This approach leads to artifacts due to the interaction between transformation

and digitization, for instance interpolation. However, in specific applications, e.g.
template-based segmentation or classification [5,6], it is required to guarantee to
preserve some properties under transformations, such as topological properties.
In this context, a continuous transformation approach imposes a re-digitization
of the obtained image that may bias the results. In such cases, it may be prefer-
able to directly compute the discrete transformation.

In this article, we investigate solutions to this discrete problem in the case of
2D rigid registration. Recently, a fully discrete approach to rigid transformations
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on Z
2 was proposed in [7]. In this work, the whole parameter space of rigid

transformations is modeled by a combinatorial structure, namely a discrete rigid
transformation (DRT) graph. This structure models a neighbouring relationship
between transformations. As well, using this structure, the actual deformation
of transformed images can be handled pixel by pixel. Using DRT graphs, we can
explicitly explore the parameter space of all the rigid transformations defined on
any finite subset of Z2 of size N ×N . Exhaustive search on DRT graphs can be
handled with a polynomial spatial complexity of O(N9), which limits practical
use. In this article, our aim is to reduce the complexity of some operations in
this structure. More precisely, we focus on calculating the exact neighbourhood
structure in linear time with respect to the image size. This allows us to perform
the local search on DRT graph from any starting point in this parameter space
using a gradient descent, which leads to a local optimum, paving the way for
integration of this approach into any combinatorial optimization process.

This article is organized as follows. Sec. 2 explains how the DRT graph models
the whole parameter space of 2D rigid transformations of a digital image. Sec. 3
formulates the optimisation problem of image rigid registration using neigh-
bouring relations defined on DRT graph. Sec. 4 describes a discrete exploration
procedure within this graph to find locally optimal solutions to the registration
problem. Sec. 5 describes experimental results, while Sec. 6 concludes the article.

2 Parameter Space of Rigid Transformations

2.1 Rigid Transformations on Z
2

In the continuous domain, a rigid transformation is a bijection T : R2 → R
2,

defined for any x = (x, y) ∈ R
2, as

T (x) =

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
a
b

)
, (1)

with a, b ∈ R and θ ∈ [0, 2π[. It will be sometimes noted Tabθ. When applied on
digital images defined on Z

2, rigid transformations require digitization as post-
processing step. Practically, this can be handled by defining T = D ◦ T , where
D : R2 → Z

2 is a standard rounding function. This function T : Z2 → Z
2 is then

explicitly defined, for any p = (p, q) ∈ Z
2, as

T (p) = D ◦ T (p) =

(
[p cos θ − q sin θ + a]
[p sin θ + q cos θ + b]

)
. (2)

2.2 Subdivision of the Parameter Space

The use of the rounding function D to define T implies that rigid transforma-
tions on Z

2 are not continuous with respect to the parameters a, b and θ. More
precisely, discontinuities are located at half-integer pixel coordinates, modeling
pixel boundaries. This leads to the definition of discrete rigid transformations
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(a) Tipping surfaces. (b) Tipping curves.

Fig. 1. (a) Tipping surfaces in the parameter space (a, b, θ). (b) Tipping curves, in the
2D planes (a, θ) and (b, θ).

(DRTs), each of which corresponds to the class of all transformations Tabθ such
that (a, b, θ) �→ T = D ◦ Tabθ is piecewise constant.

The parameter space R
2 × [0, 2π[ of (a, b, θ) is correspondingly subdivided

into 3D cells. Each DRT corresponds to a cell whose boundaries are 2D surfaces
that model discontinuities. The transformations leading to such discontinuities
are those that map an integer point onto a half-integer coordinate point. They
can be expressed, for any p = (p, q) ∈ Z

2 mapped onto either a “vertical” point
pΦ = (k + 1

2 , λ) or a “horizontal” one pΨ = (λ, l+ 1
2 ) (with k, l ∈ Z and λ ∈ R):

∣∣∣∣Φpqk : R2 −→ R

(b, θ) �−→ a = φpqk(θ) = k + 1
2 + q sin θ − p cos θ,

(3)

∣∣∣∣Ψpql : R
2 −→ R

(a, θ) �−→ b = ψpql(θ) = l + 1
2 − p sin θ − q cos θ.

(4)

The surfaces Φpqk (resp. Ψpql) in the parameter space (a, b, θ) are called tipping
surfaces. Their cross-sections φpqk (resp. ψpql) on the 2D plane (a, θ) (resp. (b, θ))
are called tipping curves. For an image of size N ×N , Φpqk and Ψpql (resp. φpqk

and ψpql) verify p, q ∈ [[0, N − 1]] and k, l ∈ [[0, N ]]. Tipping surfaces/curves are
illustrated in Fig. 1.

2.3 Combinatorial Structure of the Subdivided Parameter Space

Each DRT is modeled by a 3D cell, while each discontinuity is modeled by a
2D tipping surface piece. By mapping each cell onto a vertex, and each tipping
surface piece onto an edge, we can dually model the subdivided parameter space
as a graph, called a DRT graph, as illustrated in Fig. 2.

Definition 1 ([7]). A DRT graph G = (V,E) is defined such that:

– each vertex v ∈ V models a DRT; and
– each labelled edge e = (v, w, f) ∈ E, where f is either Φpqk or Ψpql, connects

two vertices v, w ∈ V sharing a tipping surface f as the boundary.
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(a) Parameter space. (b) DRT graph.

Fig. 2. (a) Subdivision of the parameter space into 3D cells and 2D surfaces. (b) The
associated DRT graph.

In [8], it is proved that the 3D cell associated to a DRT in the parameter
space of (a, b, θ) is convex with respect to both the a- and b-axis, and that
its boundary consists of an upper and a lower sets of tipping surfaces. These
properties are used in Sec. 4.2 and Appendix A to calculate a representative of
rigid transformations associated with a DRT.

In the DRT graph of a given image I of size N ×N , each vertex is associated
with a unique transformed image, obtained by any rigid transformation whose
parameters are contained in the 3D cell corresponding to the vertex. Moreover,
the existence of an edge between two vertices in the DRT graph indicates a neigh-
bouring relation between the DRTs, such that the two associated transformed
images differ by (at most) one pixel over the N2 pixels of I; the edge label f
contains the information of such a different pixel. This property allows us to use
the DRT graph to produce the transformed images via successive elementary
(i.e., one-pixel) modifications. Such elementary modification is not easy in the
continuous framework due to the uncountably infinite nature of transformations
defined on R

2.

3 Registration as a Combinatorial Optimisation Problem

Let us consider two images A and B of same size N ×N . The problem of image
registration consists of finding a transformation T ∗

v within the set T = {Tv | v ∈
V } of all the DRTs, that minimizes a given distance d between the image A and
the transformed image Tv(B) of the image B by Tv, i.e.

T ∗
v = arg min

Tv∈T

d(A, Tv(B)). (5)

Several distances d can be used (e.g., cross-correlation, mutual information, least
square difference [4], or signed distance [9]). The choice of distance is not ad-
dressed in our study; we consider d as a function and focus on the algorithm for
computing Eq. (5) by exploring the DRT graph.
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(a) Parameter space. (b) DRT graph.

Fig. 3. Neighbours of a DRT. The considered DRT is depicted in red and its neighbours
in green. (a) The DRT shares a surface piece with its neighbours in the parameter space.
(b) They are adjacent, i.e., they share an edge (in blue), in the DRT graph.

For given images A and B of finite size, the DRT graph G = (V,E) associated
to B is a finite structure that models all the existing DRTs for this image.
Therefore, there exists v ∈ V such that d(A, Tv(B)) is minimal, where Tv(B)
is the transformed image of B associated to the DRT Tv at vertex v. In other
words, by considering a brute-force search, a solution (i.e., a global optimum)
can be found for Eq. (5). It is proved in [7] that the DRT graph G has a high-
polynomial space complexity of O(N9) for an image of size N×N , and an exact
algorithm is proposed to compute G in linear time with respect to its size.

Proposition 2 Exhaustive search on DRT graph costs O(N9) in time and space
complexities.

Practically, this limits exploration of the whole structure to very small images.
Nevertheless, it is possible to perform a local search of G in order to determine
a local optimum. In the next section, we show that such exploration can, in
particular, be carried out without requiring the whole graph G but only much
smaller useful parts, thus leading to a lower algorithmic complexity.

4 Local Search on Discrete Rigid Transformation Graph

In this section, we search for locally optimal solutions, considering the image
registration problem stated above. Basically, our approach consists of carrying
out a gradient descent from an initial vertex in the DRT graph. Despite its
apparent simplicity, this process requires to deal with a non-trivial issue, namely
the – efficient – construction of a sufficient part of the DRT in the search area.
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(a) DRT associated to Tabθ. (b) Its projections.

Fig. 4. Example of rigid transformation Tabθ (blue dot) and its associated DRT (red
volume) in the 3D parameter space (a, b, θ) (a), and its projection in the 2D planes
(a, θ) and (b, θ) (b)

4.1 Neighbourhood Construction in a DRT Graph

From Sec. 2, we know that the parameter space of rigid transformations is subdi-
vided into DRTs, and this subdivision is modeled by the combinatorial structure
of a DRT graph G = (V,E). We consider the notion of neighbourhood N(v) of
a DRT v ∈ V by using its standard definition in graph theory. Two DRTs are
neighbours if their respective vertices share an edge, i.e., are adjacent. Equiva-
lently, they share a surface piece in the dual parameter space (see Fig. 3).

As described in Sec. 2.2, when projecting the two families of tipping surfaces
on the planes (a, θ) and (b, θ), respectively, we obtain two families of tipping
curves φ and ψ. Thus, the cell boundaries of a DRT, i.e. the tipping surfaces in
the 3D parameter space (a, b, θ) can be fully described from its two cross-sections
in the planes (a, θ) and (b, θ), i.e. the corresponding tipping curves. Using the
a- and b-convexity property, we propose Algorithm 1 for explicitly determining
the bounding tipping curves, and thus the tipping surfaces (see Fig. 4). From
Definition 1, finding the neighbours of a given DRT is equivalent to finding the
tipping curves segment of its boundary. For efficiency, Algorithm 1 requires a
representative rigid transformation, denoted by (a, b, θ), corresponding to the
dual region of an input vertex v, and returns its neighbours N(v). Note that v is
modeled by the set of upper (resp. lower) tipping curves, denoted by Φ+ and Ψ+

(resp. Φ− and Ψ−), indicating the correspondence between pixels of the image B
and those of its transformed image Tv(B). Algorithm 1 consists of finding among
these tipping curves in Φ+, Φ−, Ψ+ and Ψ−, those that form the boundary of v.

Algorithm 1 uses a function F that returns the values θ of the intersections
of two given tipping curves f and g such that:

F ∗
θ′(f, g) = {θ ∗ θ′ | θ ∈ Intersection(f, g)},

where ∗ ∈ {<,>} and Intersection(f, g) computes the θ coordinates of intersec-
tions between f and g (the exact calculation of this function is given in [7]).
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Algorithm 1. Finding the nearest neighbours of a given DRT

Input: A DRT v, i.e., Φ−, Φ+, Ψ− and Ψ+ with (a, b, θ) associated to v.
Output: The neighbours N(v) of v.

1 B ← ∅ // Initialize the boundary set B of v
2 θ′ ← θ
3 repeat // Sweep on the right side along the θ-axis from θ′

4 φl ← arg max
φ∈Φ−

φ(θ′); φu ← arg min
φ∈Φ+

φ(θ′) // In the plane (a, θ)

5 s1 ← min
φ∈Φ−

F<
θ′ (φl, φ); s2 ← min

φ∈Φ+
F<
θ′ (φu, φ); s3 ← minF<

θ′ (φl, φu)

6 ψl ← arg min
ψ∈Ψ−

ψ(θ′); ψu ← arg min
ψ∈Ψ+

ψ(θ′) // In the plane (b, θ)

7 t1 ← min
ψ∈Ψ−

F<
θ′ (ψl, ψ); t2 ← min

ψ∈Ψ+
F<
θ′ (ψu, ψ); t3 ← minF<

θ′ (ψl, ψu)

8 θ′ ← min (t1, t2, t3, s1, s2, s3) // Find the next intersection

9 B ← B ∪ {φl, φu, ψl, ψu}
10 until ( min

i=1..3
(si) �= s3 ∧ min

i=1..3
(ti) �= t3) // Verify if the boundary is closed;

11 θ′ ← θ
12 repeat // Sweep on the left side along the θ-axis from θ′

13 φl ← arg max
φ∈Φ−

φ(θ′); φu ← arg min
φ∈Φ+

φ(θ′) // In the plane (a, θ)

14 s1 ← max
φ∈Φ−

F>
θ′ (φl, φ); s2 ← max

φ∈Φ+
F>
θ′ (φu, φ); s3 ← maxF>

θ′ (φl, φu)

15 ψl ← arg max
ψ∈Ψ−

ψ(θ′); ψu ← arg max
ψ∈Ψ+

ψ(θ′) // In the plane (b, θ)

16 t1 ← max
ψ∈Ψ−

F>
θ′ (ψl, ψ); t2 ← max

ψ∈Ψ+
F>
θ′ (ψu, ψ); t3 ← maxF>

θ′ (ψl, ψu)

17 θ′ ← max (t1, t2, t3, s1, s2, s3) // Find the next intersection

18 B ← B ∪ {φl, φu, ψl, ψu}
19 until (max

i=1..3
(si) �= s3 ∧ max

i=1..3
(ti) �= t3) // Verify if the boundary is closed;

20 N(v) ← {w ∈ V | (v, w, f) ∈ E ∧ f ∈ B}

The complexity of this algorithm is analysed below:

– finding the boundary tipping curves φl, φu, ψl and ψu at θ′ (steps 4, 6, 13
and 15) represents a cost of O(N2); and

– finding the next intersection of tipping curves on the left (resp. right) with
the boundary curves φl, φu, ψl and ψu of θ′ (steps 5, 7 and 8 (resp. 14, 16
and 17)) represents a cost of O(N2);

while these two steps are repeated until the region surrounding the DRT is
obtained. The number of iterations is then the size of the neighbourhood of v,
denoted by m. Thus, the total complexity of the proposed algorithm is O(mN2).

Since there are O(N2) tipping curves in Φ+, Φ−, Ψ+ and Ψ−, m = O(N2) in
the worst case. However, in practice, we observe that m is bounded by a small
constant. We obtain the value m experimentally using Algorithm 1 with different
image sizes. The results are given in Fig. 5 for images of sizes varying from 5× 5
to 80× 80. For each image size, we randomly chose several DRTs, and compute
the value of m. We notice 4 ≤ m ≤ 14 over all the experiments.
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Fig. 5. Experiments on the size m of neighbourhoods of DRTs, calculated by Algorithm
1. The value m is calculated over 960 experiments for image size varying from 5 × 5
to 80 × 80, in each of which several DRTs are considered. Green (resp. blue and red)
points denote the max (resp. min and average) value of m over the experiments.

4.2 Local Search Method

From Algorithm 1, we can now propose a procedure to determine a locally op-
timal solution for Eq. (5).

Since each DRT, i.e., each vertex of the DRT graph G, corresponds to a
unique transformed image (see Sec. 2.3), it is possible to obtain the gradient of
d between A and the transformed image Tv(B), denoted by Δd. By examining
Δd for all neighbouring vertices of N(v) for a given vertex v, we can then find
a vertex – or more generally a set of vertices – presenting the minimal value
d(A, Tv(B)). Then, by choosing a smallest valued vertex (or possibly several) in
that set, and repeating this process, it is thus possible to carry out a standard
gradient descent that finally leads to a locally optimum when, for its vertex,
no neighbours present a better value. Note that the number of vertices of DRT
graph of a finite image is finite [7], thus the local search stops at a local optimum.

As described in Sec. 4.1, Algorithm 1 for computing N(v) of a given v requires
as the input the set of upper and lower tipping curves. Initially, this set can be
calculated from a given rigid transformation associated to (a, b, θ) such that it
contains the pairs of tipping curves φpqk, φpqk+1 and ψpql, ψpql+1 as follows.

Φ = {φpqk, φpqk+1 | φpqk(θ) ≤ a ≤ φpqk+1(θ)}
Ψ = {ψpql, φpql+1 | ψpql(θ) ≤ b ≤ ψpql+1(θ)}

We denote Φ− = {φpqk ∈ Φ} (resp. Φ+ = {φpqk+1 ∈ Φ}) and Ψ− = {ψpql ∈
Ψ} (resp. Ψ+ = {ψpql+1 ∈ Ψ}) as lower (resp. upper) tipping curves. Note
that, we can calculate Tw(B) from Tv(B), for w ∈ N(v). This means that the
set {Φ−, Φ+, Ψ−, Ψ+} with respect to w is updated according to Tw(B). Fur-
thermore, using the a- and b-convex property of the parameter space of rigid
transformations (see Sec. 2.3), we can easily compute a new representative trans-
formation (a, b, θ) of the DRT w knowing its boundary. (The details can be found
in Appendix A.)
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(a) Parameter space. (b) DRT graph.

Fig. 6. Example of k-neighbours of a DRT. The given DRT is depicted in red, its
1-neighbours in green and its 2-neighbours in both green and yellow.

As for any local search procedure, an important question is the choice of
the initial vertex, i.e., the seed v0 of the gradient descent. To determine v0, we
can, e.g., use the solution obtained by a conventional registration method as
discussed in [4,10]. Due to the effect of digitization on the transformed space,
there are many local optima and we usually obtain the local optima basins. In
order to improve this local search, it is possible to consider not only the direct
neighbours, but also the k-neighbours (k ≥ 1) in G (see Fig. 6). The set Nk(v)
of all the k-neighbours of a DRT v is defined, such that:

Nk(v) = Nk−1(v) ∪
⋃

u∈Nk−1(v)

N(u) and N1(v) = N(v).

To compute Nk(v), we can use Algorithm 1 recursively. Note that the maximum
number of k-neighbours of v is mk, where m is the maximum degree of the DRT
graph (i.e., the number of 1-neighbours of a DRT). As stated in Sec. 4.2, finding
1-neighbours of a DRT costs O(mN2). The complexity of the algorithm to find
k-neighbours is then O(mk+1N2), where m has a constant behaviour in practice.

5 Experiments

The main purpose of this section is to illustrate the behaviour of the local search
approach described in Sec. 4. These results and methods can be extended to
various types of images such as grey-level, label or color, since DRT graphs are
defined independently from the value space of the images (see Sec. 3). In such
cases, it is necessary to use an appropriate distance. For the sake of readability,
we focus here on binary images, and the signed distance function –which gives
fewer flat zones for the gradient term of d [9,11]– to illustrate and analyse the
issues related to the digitization on the discrete space of the transformed images.

In order to obtain an initial transformation (or a seed) for the proposed al-
gorithm, we use a SIFT feature-based method [10], and show that our discrete
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Input binary images for the local search approach: (a) Reference image, and (b)
target image. (c) Transformed image of (b) by the seed Tabθ = (0.52, 0.79, 0.3107). (d)
and (e) Local optima obtained by using 1-neighbours and 3-neighbours respectively. (f)
Different pixels between (d) and (e) in which yellow (resp. red) pixels are black (resp.
white) in (d) and white (resp. black) in (e).

method can improve the result of this continuous method. Experiments are first
carried out with the direct neighbours of several given seeds on a binary image
of size 53×53 (see Fig. 7 for an example). Fig. 8 shows the results achieved with
the algorithm described in Section 4.2 using 1-neighbours and 3-neighbours. We
observe from these experiments that the local optimum distance and the conver-
gence speed (i.e., number of iterations) when using 3-neighbours is better than
when using only 1-neighbours.

6 Conclusion

We have proposed a purely discrete framework for 2D image registration under
rigid transformations. This work is based on the recently introduced notion of
DRT graph [7], which represents the discrete subdivision of the parameter space
for rigid transformations. Based on this discrete representation, we have devel-
oped a gradient descent procedure that constructs only the part of the space
that needs to be processed at each step, with a O(mN2) time complexity, where
N × N is the image size and m is the maximum degree of vertices in the DRT
graph. In practice, m has a constant behaviour with respect to N × N . This
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(a) Seed Tabθ = (0, 0, 0.1) (b) Seed Tabθ = (0.49, 0.35, 0.15)

(c) Seed Tabθ = (0.12, 0.05, 0.1314) (d) Seed Tabθ = (0.52, 0.79, 0.3107)

Fig. 8. Local search from different initial transformations (or seeds) for the inputs in
Fig. 7(a) and (b)

leads to an efficient algorithm with almost linear time complexity with respect
to the image size for computing the neighbours for the local search approach.

In the worst case, we have shown that m = O(N2). In future work, we hope to
improve this upper bound for m. In addition, since we can compute neighbours
on DRT graphs, we can combine our proposed method with other combinatorial
approaches [12] in order to improve our results. From a methodological view-
point, several extensions to higher dimensions (3D in particular) and to various
types of images such as grey-level, label or color images are also being considered.

The authors thank to Frank Schmidt for helpful discussions concerning this
work. The research leading to these results has received funding from the French
Agence Nationale de la Recherche (Grant Agreement ANR-10-BLAN-0205).
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A Appendix

Let us first formulate the problem as follows: Given a DRT v modeled by a set S
of tipping surface pieces bounding v, report a transformation Tabθ of the chosen
v. Note that S is described by S = {(φ+

i , qi, qi+1), (φ
−
i , ri, ri+1), (ψ

+
i , si, si+1),

(ψ−
i , ti, ti+1), i = 1, . . . ,m | φ+

i ∈ Φ+, φ−
i ∈ Φ−, ψ+

i ∈ Ψ+ and ψ−
i ∈ Ψ−}, where

(qi, qi+1), (ri, ri+1), (si, si+1) and (ti, ti+1) are the θ-coordinates of the endpoints
of the associated tipping curve segments φ+

i , φ
−
i , ψ

+
i and ψ−

i respectively. Using
the the a- and b-convexity of the region bounded by S, we propose Algorithm 2
to calculate Tabθ of v.

Algorithm 2. Finding a Tabθ associated to a DRT v

Input: A DRT v, with the set S.
Output: A rigid transformation Tabθ of v.

1 θmin ← min
(φ−

i
,qi,qi+1)∈S

ri ; θmax ← max
(φ−

i
,qi,qi+1)∈S

ri+1 ; θ ← (θmin + θmax)/2

2 amin ← max
(φ−

i ,qi,qi+1)∈S

φ−
i (θ) ; amax ← min

(φ+
i ,ri,ri+1)∈S

φ+
i (θ) ; a ← (amin + amax)/2

3 bmin ← max
(ψ−

i ,qi,qi+1)∈S

ψ−
i (θ) ; bmax ← min

(ψ+
i ,ri,ri+1)∈S

ψ+
i (θ) ; b ← (bmin + bmax)/2

4 Tabθ ← (a, b, θ)
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