
 

V. Prabhu, M. Taisch, and D. Kiritsis (Eds.): APMS 2013, Part I, IFIP AICT 414, pp. 151–158, 2013. 
© IFIP International Federation for Information Processing 2013  

Multi-stage Parallel Machines and Lot-Streaming 
Scheduling Problems – A Case Study  

for Solar Cell Industry 

Hi-Shih Wang1, Li-Chih Wang1, Tzu-Li Chen2,  
Yin-Yann Chen3, and Chen-Yang Cheng1,* 

1 Department of Industrial Engineering and Enterprise information, Tunghai University  
Taichung 40704, Taiwan, ROC 
chengcy@thu.edu.tw 

2 Department of Information Management, Fu Jen Catholic University 
New Taipei City 24205, Taiwan, ROC 

3 Department of Industrial Management, National Formosa University 
Yunlin County 632, Taiwan, ROC 

Abstract. This research focuses on a parallel machines scheduling problem 
considering lot streaming which is similar to the traditional hybrid flow shop 
scheduling (HFS). In a typical HFS with parallel machines problem, the alloca-
tion of machine resources for each order should be determined in advance. In 
addition, the size of each sublot is splited by parallel machines configuration. 
However, allocation of machine resources, sublot size and lot sequence are 
highly mutual influence. If allocation of machine resources has been deter-
mined, adjustment on production sequence is unable to reduce production ma-
kespan. Without splitting a given job into sublots, the production scheduling 
cannot have overlapping of successive operations in multi-stage parallel ma-
chines environment thereby contributing to the best production scheduling. 
Therefore, this research motivated from a solar cell industry is going to explore 
these issues. The multi-stage and parallel-machines scheduling problem in the 
solar cell industry simultaneously considers the optimal sublot size, sublot se-
quence, parallel machines sublot scheduling and machine configurations 
through dynamically allocating all sublot to parallel machines. We formulate 
this problem as a mixed integer linear programming (MILP) model considering 
the practical characteristics including parallel machines, dedicated machines, 
sequence-independent setup time, and sequence-dependent setup time. A hybr-
id-coded particle swarm optimization (HCPSO) is developed to find a near-
optimal solution. At the end of this study, the result of this research will  
compare with the optimization method of mixed integer linear programming 
and case study. 
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1 Introduction 

Lately, many countries have focused their research and development efforts on sus-
tainable energies such as wind, tidal, and solar energies. Among these, solar energy 
has attracted the greatest attention. Solar cell manufacturing follows the hybrid flow 
shop (HFS) mode, which is a flow shop mode incorporated with multiple processes 
and parallel machines. [1,2] proposed a flow shop mixed mode that consists of flow 
shop scheduling (FSS) and parallel machine scheduling (PMS)[3]. 

Initially, HFS could only match a single machine for one order. Later on, Chen 
and Lee (1999)[4] proposed a production environment wherein one order could plan 
mutiple machines (multiprocessor task) (Fig. 1.), and wherein a series of studies fol-
lows the same assumption that configure only when the machine resources for each 
order is known. In this same enviroment, [5] planned the allocation of machines for 
each order and worked out an optimal production sequence configured by various 
scheduling algorithms. 

 

 
Fig. 1. Schematic diagram showing a single order being assigned to multiple machines  
(machine configuration is known)  

The production environment nowadays is constantly changing, thereby generating 
more complicated environments. Therefore, the production environment has no way 
of finding an optimal scheduling combination through sequence adjustment in an 
existing machine configuration. Recently, the heated solar cell industry has been clas-
sified as an architecture of parallel machine resource in an HFS environment in aca-
demic research, but they are not identical. As a result, the configuration pattern of 
parallel machine for this order is not clear among line managers. Thus, the production 
sequence has to be planned using traditional dispatching rules such as the earliest due 
date, which cannot provide an optimal schedule plan. Hence, [6] created a schedule 
plan with an unknown machine configuration and order production to extend the HFS 
environment. Each order can plan a maximum number of machines in the process, 
and the number of machines is subject to dynamic adjustment. This plan proposes a 
scheduling solution for this problem and gives proper assessment to solve such kinds 
of production problems. 
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Fig. 2. Schematic diagram showing a single order being assigned to multiple machines  
(machine configuration is unknown)  

Methods such as lot splitting have been developed and introduced into the manu-
facturing industry to shorten time of completion. Literature suggests that lot splitting 
can provide better performance ([7],[8]). With respect to the production architecture 
of parallel machine resource in an HFS environment, studies have paid little attention 
to variable lot splitting. Therefore, the current study proposes an actual instance-
crystal silicon solar cell industry based on the architecture of HFS production to con-
sider process properties such as parallel machine, special machine, setup time, etc., 
and to solve scheduling issues through the particle swarm optimization (PSO) with 
the batch, batch size, and sequence of order as unknown variables. 

The aim of this research is to determine the job production sequence, number of 
sublots, and which machines these sublots should be assigned to. This study employs 
the production scheduling of crystalline silicon solar cells as a case study that focuses 
on the four characteristics to establish a suitable product planning and reduce the ma-
kespan time. The characteristics include parallel processing, dedicated machines, 
sequence-independent setup time, and sequence-dependent setup time. Due the com-
putational complexity of the model, A hybrid-coded particle swarm optimization  
algorithm (HCPSO) was used to design to obtain the near-optimal scheduling confi-
guration. Our preliminary computational study shows that the developed HCPSO not 
only provides good quality solutions within a reasonable amount of time but also 
outperforms the classic branch and bound method and the current heuristic practiced 
by the case company. The rest of the paper is organized as follows; Section 2 defines 
the multi-stage and parallel-machine scheduling problem in the solar cell industry; 
Section 3 develops a hybrid coded PSO algorithm to obtain the near-optimal solution; 
Section 4 addresses the excellent performance of the HCPSO algorithm through the 
computational study and Section 5 finally presents the concluding remarks. 

2 Hybrid Flow Shop Scheduling for Solar Cell Manufacturing 

The manufacturing of crystal silicon solar cells comprises six processes, and each 
process has its practical characteristics that influence the production schedule. The 
production characteristics are detailed below: 
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1. Dedicated machines: Crystalline silicon solar cells are basically of two types: sin-
gle-crystal silicon solar cells and polysilicon solar cells. Manufacturing machines 
of both types of solar cells are the same. However, the difference lies in the textur-
ing stage. The dedicated polysilicon machines use an acid texturing method for the 
polysilicon solar cells, whereas the single silicon dedicated machines use an alka-
line texturing method for the single silicon solar cells. Therefore, the need for dif-
ferent numbers of dedicated machines for each of these processes is obvious due to 
the variance in capacity. This difference impacts the subsequent scheduling method 
in the job production process. 

2. Parallel machine processing: Identical parallel machines are used in the manufac-
turing process of crystalline silicon solar cells. When the job demand is high, a job 
must be allocated to more than one machine, increasing the capacity and reducing 
the makespan required to complete the job. 

3. Sequence independent setup time: In the printing stage, the electrodes are printed 
on both sides of the silicon that is used to collect and conduct the current flow. De-
pending on customers’ requirements, different densities of printing designs are 
available. Because a few order can have the similarity design, the print setup are 
almost necessary for all kinds of orders, which is referred to as sequence indepen-
dent setup time.  

4. Sequence dependent setup time: Due to the number of electrodes on the surface, 
the crystalline silicon solar cell can be categorized as: 2 busbars and 3 busbars. In 
the testing stage, the measurement probe must be adjusted according to the number 
of electrodes in both busbar types. Therefore, the probe adjustment time will be af-
fected by the job sequence, which influences the setup time. This is referred to as 
sequence dependent setup time. Setting the optimal production sequence to reduce 
the number of setups and shorten the overall completion time is the key focus of 
this restriction. 

3 Hybrid-Coded Particle Swarm Optimization Algorithm 

In this section, a novel hybrid-coded particle swarm optimization algorithm (HCPSO) 
is designed to find the near-optimal solution through the evolutionary process because 
of the computational complexity of the proposed MILP model. The details of the 
elements are described as follows. 

1. Particle Representation 

The decision of HFS problems must simultaneously determine the batch numbers and 
size of each manufacturing order and the batch sequence for all manufacturing orders 
in each stage. There are two parts in the HCPSO which is different from the tradition-
al PSO. The first part called the master (the numbers and size of batch) particle, indi-
cates the batch numbers of the each order and the each batch size. For each particle 
within first part, there exists a second part called the slave (batch sequence) particle, 
indicates the batch sequence decision using batch-based encoding. 
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2. Generate an Initial Population 

In our HCPSO implementation, the initial population of master and slave particle is 
randomly generated. 

3. Initialize the Value of Cr 

In PSO, the parameters w, r1, r2 are critical factors influencing the convergence level 
of the algorithm (Naka et al., 2003).The research in this paper displaces the random 
numbers of r 1 and r 2 with the  Cr, which makes its convergence level better 
(Chuang et al., 2008b; Sun et al., 2011b). The equation to calculate Cr is as follows: 

ሺ݊ݎܥ  ൅ 1ሻ ൌ ݇ ൈ ሺ݊ሻݎܥ ൈ ሺ1 െ ሺ݊ሻሻݎܥ (1) 
 

In Eq. (1), Cr(n) represents the Cr of the n time; k represents the driving parameter, 
controlling the oscillation of Cr. When initializing Cr(0), the Cr(0) generated by ran-
dom numbers can not equal {0, 0.25, 0.5, 0.75, 1} and k must equal to 4. 

4. Update the Inertia Weight 

Appropriate inertia weights enable a particle to have exploration capability in the 
initial period and better exploitation capability in the final period. A higher inertia 
weight implies larger incremental changes in velocity per iteration, and thus the ex-
ploration of new search areas for better solution. However, a smaller inertia weight 
signifies less variation in velocity, providing slower change in terms of fine tuning a 
local search. Therefore, it would be better that the searching process should start with 
a high inertia weight for global exploration, with the inertia weight decreasing to faci-
litate finer local explorations in later iterations. The equation to update the inertia 
weight adopted in this paper is proposed by Fan and Chiu (2007), nonlinearly de-
creasing weight method. In this equation, t is the iteration number; w(t) is the inertia 
weight of the t iteration. ݓሺݐሻ ൌ ቀଶ௧ቁ0.3 (2) 

5. Calculate the Fitness Value 

Based on the known the numbers, size and sequence of batch, this step precedes  
the forward capacity allocation to calculate the fitness values (makespan) of all the 
particles. 

6. Update Particle Best (pBset) 

The pBest is the best position of each particle in its own searching process. During the 
iterations, the particle’s fitness evaluation is compared with pBest. If the current value 
is better than pBest, then set pBest value equal to the current value. 

7. Update Global Best (gBset) 

Compare fitness evaluation with the population’s overall previous best, gBest. If the 
current value is better than gBest, then update the current particle’s value to gBest. 
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8. Update Cr, Velocity and Position of the Particle 

Assuming that the search space is D-dimensional, the i-th particle of the swarm is 
represented by a D-dimensional vector  ௜ܺ ൌ ሺ ௜ܺଵ, ௜ܺଶ, … , ௜ܺ஽ሻ  and the position 
change (velocity) of the i-th particle is ௜ܸ ൌ ሺ ௜ܸଵ, ௜ܸଶ, … , ௜ܸ஽ሻ. The best particle of the 
swarm, that is, the particle with the best objective function value, is denoted by gBest. 
The best previous position of the i-th particle in its own searching trajectory is record-
ed and represented as pBest. This paper adopts the Eq.(3) to update the Cr and the 
velocities and positions of the particles are manipulated according to the following 
equations (the superscript t denotes the iteration): 

 ௜ܸௗሺݐ ൅ 1ሻ ൌ ݓ ൈ ௜ܸௗሺݐሻ ൅ ܿଵ ൈ ሺ݊ሻݎܥ ൈ ൫ݐݏܾ݁݌௜ௗሺݐሻ െ ௜ܺௗሺݐሻ൯ ൅ܿଶ ൈ ሺ1 െ ሺ݊ሻሻݎܥ ൈ ൫ܾ݃݁ݐݏௗሺݐሻ െ ௜ܺௗሺݐሻ൯ 
(3) 

௜ܺௗሺݐ ൅ 1ሻ ൌ ௜ܺௗሺtሻ ൅ ௜ܸௗሺݐ ൅ 1ሻ (4) 
 

where i = 1, 2, y, N, and N is the size of the population; w is the inertia weight which 
was developed to better control exploration and exploitation; c1 and c2 are two posi-
tive constants, called the cognitive and social parameters respectively; and Cr(n) 
represents the Cr of the n time, as stated in 3. Eq. (3) is used to determine the i-th 
particle’s new velocity, at each iteration, while Eq. (4) provides the new position of 
the i-th particle, adding its new velocity to its current position. 

9. Determine Whether the Same Optimal Solution of the Population Which Iterates n 
Times Exists 

If yes, execute 10 and precede the boundary search. If not, skip to 11. 

10. Boundary Search 

The boundary search aims to prevent that the current solution falls into the local op-
timum and enable it to avoid being a regional solution, and in turn to find the global 
optimum. The boundary search is to generate new particles for each dimension by 
random. The amount is 10% of the population, with which displace the worst 10% of 
the original population. 

11. To Decide whether the Designated Times of Iteration Are Reached 

The termination criterion of the HCPSO algorithm proposed in this paper is that when 
the number of iteration exceeds the designated maximum iteration times, terminate 
the algorithm. If it is not reached, return to 4. 

4 Computational Study 

We test objective value for HCPSO algorithm. The objective values of all problems 
are shown in Table 1. From this table, we can observe that the value of average solu-
tion for HCPSO. This shows that the proposed HCPSO algorithm can find the  
near-optimal solution. In the large samples (from problem #6 to problem # 9), the 
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developed HCPSO algorithm still generates better solutions for the large samples in 
the reasonable time. Consequently, from above analysis, our results claim that the 
proposed HCPSO algorithm not only provides the near-optimal solutions irrespective 
of the size of the sample data; it also generates the better solutions for any samples in 
which MILP algorithm cannot found any feasible solutions. 

Table 1. The objective value for B&B 

 

5 Summary 

This paper presents a multi-stage and parallel-machine scheduling problem which is 
similar to the traditional hybrid flow shop scheduling (HFS) in the solar cell industry. 
The multi-stage and parallel-machines scheduling problem simultaneously determines 
order production sequence, multiprocessor task scheduling and optimal machine con-
figuration through dynamically allocating all jobs to multiple machines under the 
minimization of the maximum makespan. A mixed integer linear programming model 
has been proposed, in consideration of many practical characteristics including hybrid 
flow shop, parallel machine system, specified machines, sequence-independent setup 
time, and sequence-dependent setup time. Because of the computational complexity, a 
hybrid approach based on the variable neighborhood search and particle swarm opti-
mization (HCPSO) is developed to obtain the near-optimal solution. The computa-
tional study shows that the proposed algorithm could be more suitable and efficient 
for solving large size problems than the conventional B&B algorithm. Moreover, 
HCPSO also has better improvement than the current heuristic practiced by the case 
company based on realistic data. For the future research, other heuristic algorithm can 
be developed to efficiently attack large-scale instances and compare with the pro-
posed algorithm. 

References 

1. Salvador, M.S.: A solution to a special class of flow shop scheduling problems. In: Elmag-
hraby, S.E. (ed.) Symposium on the Theory of Scheduling and its Applications. LNEMS, 
vol. 86, pp. 83–91. Springer, Heidelberg (1973) 

Problem Number Problem Size 
(order,machine,stage) Min. Solution Average Solution Max. Solution

1 (3, 3, 4) 46512 46767.6 46800

2 (3, 5, 4) 36000 37555.6 38448

3 (5 3, 4) 72000 72064.8 72648

4 (5, 5, 6) 60480 60761 61020

5 (5, 8, 6) 42120 42288.6 42480

6 (10, 8, 6) 78552 81453 82980

7 (10 10, 6) 66960 74760.6 78084

8 (20, 10, 8) 131439 135654.6 143280

9 (20, 15, 10) 106740 117176.4 128016



158 H.-S. Wang et al. 

 

2. Salvador, M.S. (ed.): A solution to a special class of flow shop scheduling problems. Sym-
posium on the theory of scheduling and its applications. Case Western Reserve University 
(1972) 

3. Ruiz, R., Vázquez-Rodríguez, J.A.: The hybrid flow shop scheduling problem. European 
Journal of Operational Research 205(1), 1–18 (2010) 

4. Chen, J., Lee, C.-Y.: General Multiprocessor Task Scheduling. Naval Research Logis-
tics 64(1), 57–74 (1999) 

5. Engin, O., Ceran, G., Yilmaz, M.K.: An efficient genetic algorithmnext term for previous 
termhybrid flow shop scheduling with multiprocessor task problemsnext term. Applied Soft 
Computing 11(3), 3056–3065 (2011) 

6. Chuang, M.-C.: A genetic algorithm for multi-stage parallel machines scheduling prob-
lems – A case study for solar Cell industry. Tunghai University, Taichung (2011) 

7. Ranga, V.R., Fu, H., Duncan, K.H.F., Jack, C.H.: Lot streaming in multistage production 
systems. International Journal of Production Economics 66(2), 199–211 (2000) 

8. Zhang, W., Yin, C., Liu, J., Linn, R.J.: Multi-job lot streaming to minimize the mean com-
pletion time in m-1 hybrid flowshops. International Journal of Production Economics 96, 
189–200 (2005) 
 
 


	Multi-stage Parallel Machines and Lot-Streaming Scheduling Problems – A Case Study for Solar Cell Industry
	1 Introduction
	2 Hybrid Flow Shop Scheduling for Solar Cell Manufacturing
	3 Hybrid-Coded Particle Swarm Optimization Algorithm
	4 Computational Study
	5 Summary
	References




