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Abstract. While many approaches exist for the automated segmenta-
tion of retinal vessels in fundus photographs, limited work has focused
on the problem of separating the arterial from the venous trees. The few
existing approaches that do exist for separating arteries from veins are
local and/or greedy in nature, making them susceptible to errors or lim-
iting their applicability to only the very largest vessels. In this work, we
propose a new, more global, optimization framework for separating two
overlapping trees within medical images and apply this approach for the
separation of arteriovenous trees in low-contrast color fundus images. In
particular, our approach has two stages. The first stage is to generate a
vessel potential connectivity map (VPCM) consisting of vessel segments
and the potential connectivity between them. The second stage is to
separate the VPCM into multiple anatomical trees using a graph-based
meta-heuristic algorithm. Based on a graph model, the algorithm first
uses local knowledge and global constraints of the vasculature to gener-
ate near-optimal candidate solutions, and then obtains the final solution
based on global costs. We test the algorithm on 48 low-contrast fundus
images and the promising results suggest its applicability and robustness.

1 Introduction

The retinal vasculature is an important structure for indicating ophthalmic dis-
ease [1]. However, while many approaches exist for the segmentation of retinal
vessels [2], a much smaller number of approaches actually focus on separating the
retinal vessels into arterial and venous trees. Martinez-Perez et al. [3] propose
an approach which segments and thins vessels first, and then recognizes bifur-
cations and crossovers using local neighbor information to build trees. Lin et al.
[4] propose a grouping algorithm to iteratively connect un-grouped segments to
grouped segments by maximizing the continuity of the vessel using an extended
Kalman filter. Joshi et al. [5] propose a structural mapping method which first
detects landmarks and then uses path-based graph approaches to solve the prob-
lem. Rothaus et al. [6] propose a new grouping approach to separate arterial and
venous trees using a graph modeled as a SAT problem. The graph structure can
be changed dynamically to resolve some conflicts, but manual inputs are required
to initialize the labeling and if some conflicts cannot be resolved.
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These existing approaches usually depend on local and/or greedy decisions
and are correspondingly susceptible to local errors, especially with ambiguous
local image information and/or inaccuracies in the automated vessel segmenta-
tions. Some common errors are: (a) the misclassification of a crossing point as a
bifurcation when one vessel is missing or disconnected; (b) the disconnection of
the tree due to a missing part of a vessel; and (c) the identification of false bi-
furcations and crossings due to spurious vessels. In addition, complex landmarks
are hard to recognize with local knowledge (e.g., two overlapping vessels which
would be misclassified as one vessel, and two overlapping landmarks).

In this paper, we propose a novel and more global framework to build the vas-
culature which tolerates errors introduced during imaging and pre-processing.
In general, our framework first extracts partitioned vessel segments and repairs
lost connectivities by over-connecting them to generate a vessel potential con-
nectivity map (VPCM). The problem of separating the segments into underlying
trees is modeled as a graph-based optimization problem that allows for global
costs, which is a key novelty of our approach. Because of its NP-hard nature, a
meta-heuristic algorithm is designed to find a near-optimal solution.

2 Method

2.1 The Vessel Potential Connectivity Map

The VPCM consists of a set of partitioned vessel segments and their potential
anatomical neighbors. For a VPCM, each segment vi has two ends ep2i and
ep2i+1, which are connected to the ends of neighboring vessels. Each set of end
points in a close proximity is defined as a neighborhood, denoted as Nk. Thus
epi and epj are neighbors if epi, epj ∈ Nk, and segments vi and vj are neighbors
if either of their ends are neighbors. |Nk| is the number of vessel ends within Nk,
and neighborhoods are only established when |Nk| > 1.

To obtain a VPCM, we first obtain the vessel skeleton by thresholding a ves-
sel classification probability map [2], and skeletonizing it. Then vessel segments
are obtained by cutting the vessel skeleton at critical pixels which have multiple
neighbors, and when the vessel direction changes dramatically. A two-step algo-
rithm is developed to find potential neighbors for each segment. The first step is
to artificially extend the vessel ends without neighbors until they find a neigh-
bor, or reach the maximum extension. The maximum extension is controlled by
a circular sector whose radius is r and central angle is θ. Here r is proportional
to the vessel length and inversely proportional to vessel tortuosity [7], and θ is
set as 30◦ (with use of other values of θ not affecting the results). If the extension
from epi meets another vessel end epj, then epi and epj are connected; if the
extension meets another vessel pixel of vm, then vm is cut into two segments and
epi is connected to the two end points generated by the cutting; if the extension
meets another extension from epk, epi and epk are also connected.

The second step is to merge close neighborhoods and to re-connect falsely
separated segments. A polygonal boundary is automatically constructed for each
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Fig. 1. The construction of VPCM. (a) Portion of fundus image. (b) Vessel seg-
mentation (using pixel classification approach [2]). (c) The VPCM before the merge
of neighborhoods. The neighborhoods are indicated with yellow boundaries. The en-
larged portion within the red circle shows three neighborhoods. (d) The final VPCM.
The enlarged portion within the red circle shows one neighborhood.

Nk and two neighborhoods merge if their boundaries meet. An example resulting
VPCM is shown in Fig. 1.

2.2 The Optimization Problem

Effectively, the resulting VPCM from the prior step provides us with a set of
neighborhoods (and the vessel segments belonging to each neighborhood). In-
tuitively, neighborhoods correspond to potential anatomical structures such as
branching points and crossing points and we desire to make this determination
based on both local and global information. Because arteries do not cross with ar-
teries and veins do not cross with veins, we can assume that vessels of the same
type within a neighborhood should belong to the same tree. Thus, determin-
ing the anatomical connectivity between segments is equivalent to the problem
of determining their types. Bearing this idea, the problem of constructing the
anatomical trees on the VPCM is viewed as to separate a graph into multiple
trees with binary labelings. Let li reflect the label of segment vi (li ∈ [0, 1],
li = l(vi) = l(ep2i) = l(ep2i+1)). Also denote a vector of neighborhood labelings,
lNk

, such that li ∈ lNk
if ep2i or ep2i+1 ∈ Nk. Our optimization problem is to find

the minimum-cost vector of labelings L for all segments with the constraint that
the generated anatomical trees have no cycles. The overall cost, E(L) (eq. 1),
contains a weighted combination of a global cost term to evaluate topological
properties, F (G), and a summation of local neighborhood cost terms, with each
neighborhood cost computed as the reciprocal of the probability of lNk

:

E(L) = βF (G) +
K−1∑

k=0

EN (lNk
) , (1)

where EN (lNk
) =

1

P (lNk
|Nk, ANk

)
. (2)

Intuitively, P (lNk
|Nk, ANk

) reflects, for a neighborhood Nk, the probability
of its landmark type (e.g. a branching point or a crossover) represented by its
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labeling lNk
given its property matrix ANk

(eq. 2). While we keep the general
form of the terms here for describing the overall algorithm, Section 2.5 provides
more details about how P (lNk

|Nk, ANk
) was computed in this work and Sec-

tion 2.6 provides more details about F (G). Because of the NP-hard nature of
this optimization problem, we design a special graph model to incorporate the
global constraint of the anatomical trees and use the local term of eq. 1 to gen-
erate candidate solutions. These candidate solutions are then transferred back
to the image domain to obtain the final solution with the global cost.

2.3 The Graph Model

In the graph model, each vertex ni represents a segment vi and each edge eij
represents a relation between segments vi and vj within a neighborhood. For
|Nk| = n, n−1 edges are applied to connect the n vertices to form a simple cycle-
free graph. Here a concept of cluster Ck is introduced in the graph corresponding
to the neighborhoodNk in the image domain, which is a set of edges generated by
the vessel ends within one neighborhood. If in the image domain, epi, epj ∈ Nk,
and corresponding edge e�i/2��j/2� is one of the |Nk|− 1 edges, then e�i/2��j/2� ∈
Ck. Fig. 2(a) shows examples of how a 3-p and a 4-p N are transferred to clusters
in the graph domain. Fig. 2(b) shows a virtual VPCM with four neighborhoods
transferred to a graph. Four neighborhoods in the image domain corresponds to
the four clusters in the graph, whose edges are labeled in different colors.

In the graph, each vertex needs to be labeled in one of two colors, correspond-
ing to vessels being assigned one of two types. Each edge is associated with one
of two constraints: equality or inequality. The equality constraint dictates the
two vertices connected by the edge must be in the same color; the inequality
constraint dictates they must be in different colors. Within each cluster, a com-
bination of edge constraints is equivalent to a two-color scheme on vertices, which
reflects the equivalence of the problem of determining anatomical connectivity
and the problem of determining segment types within each neighborhood.

Corresponding to the VPCM, vertex labelings and edge constraints for one
cluster are mutually inferable. Fig. 2(c) shows an example of a 4-p neighborhood,
three potential landmark types, and its corresponding cluster in the graph, with
their edge constraints and vertex labelings. In this example, case (i) indicates v0,
v1 and v2 are the same type and connected, v3 is another type and disconnected
with them, meaning v0, v1 and v2 form a bifurcation, and v3 is falsely connected
to it; case (ii) shows another possible bifurcation case; case (iii) indicates v0 and
v2 are the same type thus connected, v1 and v3 are the other type, meaning the
neighborhood represents a crossing point.

By this transformation, the optimization problem in the VPCM is transferred
on the graph so as to find the proper edge combinations for each cluster, such
that there is a feasible two-color solution for the graph, meanwhile having a
minimum sum of their associated costs. If there is no cycle in the graph, this
is a trivial problem. The solution is simply to choose the combination of edge
constraints with lowest costs for each cluster. However, if there is a cycle in the
graph with an odd number of inequality edges, there is no feasible solution to
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Fig. 2. Graph examples. (a) Neighborhoods transferred into clusters. (b) A virtual
VPCM transferred into a graph. (c) First row: a 4-p neighborhood and three exam-
ple landmark types. Second row: corresponding cluster with different cases of edge
constraints and color labelings.

color vertices on the cycle with two colors. Thus, any cycle with an odd number
of inequality edges is a conflict cycle and must be dealt with as described in the
next section.

2.4 The Heuristic Algorithm

Here we define a solution s as the choices of edge constraints on a graph, and a
feasible solution as a solution such that vertices can be colored in two colors (i.e.,
there are no conflict cycles). As is common in many meta-heuristic algorithms,
the overall idea is to maintain a candidate solution pool, with candidate solutions
generated as in Algorithm 1. One of the key components of the approach is the
ability to handle and resolve conflict cycles. Starting from an initial solution, the
algorithm checks for conflict cycles. This is done by detecting a cycle basis first
and then checking each cycle of the basis. Given an undirected graph, a cycle
basis is a minimal set of circuits such that any cycle can be written as a sum of
the circuits in the basis [8].

If there are conflict cycles, the algorithm permutates the edge constraints to
reduce the number of conflict cycles. The solution pool is updated during every
conflict cycle reduction. The algorithm stops when enough number of feasible
solutions are generated (nf = 100 in this work), or the iteration number reaches
the maximum limit (Imax = 300 in this work).

Within Algorithm 1, another key component is permutateEdgeConstraint(s,
C, m) which permutates the edge constraints of clusters to remove conflict cy-
cles. Here m is the number of solutions generated by a single parent solution (in
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Algorithm 1. Find candidate solutions given a graph G with cycle basis B, nf

(max number of feasible solutions to find), m (number of child solutions gener-
ated by a parent solution), initial solution t, and Imax (max iteration number)

Initialize solution pool S with t, initialize feasible solution pool F ← Ø
while |F | < nf & i < Imax do

Initialize solution pool S ′ ← Ø
for each solution s ∈ S do

C ← findConflictCycle(s, B)
if |C| = 0 then

put s into F if s �∈ F
else

solution pool N ← permutateEdgeConstraint(s, C, m)
for each solution n in N do

put n in F if it is feasible (|findConflictCycle|=0); otherwise put n in S ′

end for
end if

end for
S ← S ′, i← i+ 1

end while
return F

this work, m = max(6, c/2), where c is the number of clusters on a conflict cycle
route). This algorithm considers edges on the conflict cycle and finds their cor-
responding clusters. All the potential configurations of these clusters are sorted
based on their costs. Random Gaussian noise is added during the sorting to
enlarge the search region and to prevent being trapped in local minima.

2.5 Configurations and Costs of Local Neighborhoods

We calculate P (lNk
|Nk, ANk

) by combining local knowledge and the global
knowledge of the retinal vasculature using different algorithms according to |Nk|
as the probabilities of landmark types for each neighborhood. Global knowledge
is motivated from a concept of blood flow since blood flows for arteries from
the optic disc (OD) to the periphery of the image, and in the reversed direction
for veins. Defining the flow direction from the tail epit to the head epih, we can
distinguish two ends of a segment as a head and a tail. This enables the higher
probabilities to be associated with configurations that properly connect heads
with tails. Local properties include the angle θij between directions of segments
within one neighborhood, and the distances between end points.

When |Nk| ≥ 4, we limit the possible landmark types with prior information.
Specifically, when |Nk| = 5, we only consider the case that

∑
epi∈Nk

l�i/2� = 2,
which represents the case of the overlapping of a bifurcation and a crossing point.
When |Nk| = 6, we consider the cases that

∑
epi∈Nk

l�i/2� = 2 (overlapping of
two close bifurcations in one vessel and a crossing point) and

∑
epi∈Nk

l�i/2� = 3
(overlapping of two bifurcations).
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2.6 Global Costs

After generating candidate solutions, a global cost term (eq. 3) is added to find
the lowest-cost overall solution. The first term of eq. 3 is the distance of the root
of every connected tree t (with the same label) to the optic disc. The second
term penalizes unlikely angles at each bifurcation b. θ1 and θ2 are the angles
between two child vessels and the parent vessel; and l1 and l2 are their lengths.

F (G) =
∑

t∈G

d(t) + α
∑

t∈G

∑

b∈t

h(b) , (3)

where h(b) = l1e
π
2 −θ1 + l2e

π
2 −θ2 . (4)

3 Experiments and Results

Our method is tested on 48 color low-contrast registered fundus images. A mask
is manually applied to mask vessels within the optic disc. The whole VPCM is
first separated into independent sub-VPCMs, each of which is transferred to a
graph. The final solution is the vessel centerline labeled in two colors. Notice
that the two-color labelings only indicate the connectivity, which is the key step
for determining the arterial and venous trees, but the correspondence of these
colors to arteries/veins still needs to be made. We categorize a sub-VPCM into
a simple VPCM which has only one segment (not evaluated as trivial) and a
complex VPCM which has more than one, which is further categorized as acyclic
VPCM which has no cycles and a cyclic VPCM. In these 48 images, there are
an average of 10.3 sub-VPCMs, 6.6 complex and 2.6 cyclic VPCMs per image.

To evaluate the performance, a reference standard is generated by manually
labeling vessel types on each VPCM by an expert. Since the VPCM is generated
from an automatic segmentation, four types of vessels are labeled: arteries (A),
veins (V), overlapping of both (O), and the false positive (FP) or uncertain
(U). This enabled us to specifically evaluate the algorithm’s ability to correctly
separate overlapping trees given an existing vessel segmentation (the focus of
this work) rather than to also evaluate the vessel segmentation. Among the 48
images, on average, 42.98% vessel centerline pixels are labeled as A, 45.65% are
V, 0.34% are O, and 11.03% are FP or U. The labeled vessel images generated
by the algorithm however only indicate either A or V, thus FP or U are excluded
from the evaluation. Fig. 3 shows an example of a whole VPCM with sub-VPCMs
in different colors, the reference standard and the result of our approach.

The accuracy is calculated as the number of correct constructed centerline
pixels versus all centerline pixels. The average and standard deviation for the
cases including complex VPCMs are 0.84 and 0.09, and for only including cyclic
VPCMs are 0.83 and 0.11. The running time per image (700×800) was within
2 minutes. The results indicate the high accuracy and reliable performance of
our algorithm. Advantages of using our global optimization framework over a
more local approach are particularly noticeable in cases with ambiguous local
information (such as that indicated by the purple and green arrows in Fig. 3).
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(a) (b) (c) (d)

Fig. 3. Example result. (a) Fundus image. (b) Sub-VPCMs in different colors. (c) The
reference standard (red for A, green for V, blue for O, white for FP or U). (d) The result
indicated in two colors. Purple and green arrows = landmarks that may be mistakingly
identified as a bifurcation and crossover, respectively, using a local approach.

4 Conclusion

In this paper we present a general framework to construct anatomical vascula-
ture in retinal images combining local and global knowledge. Based on vessel
segmentation, our framework repairs connectivity between segments and sepa-
rates the vessel network into anatomical trees by using a graph-based algorithm.
Our approach is tested on low-contrast fundus images and promising results
indicate its reliable performance and potential applicability to similar problems.
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