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Abstract. Image-based classification of tissue histology, in terms of different
components (e.g., subtypes of aberrant phenotypic signatures), provides a set
of indices for tumor composition. Subsequently, integration of these indices in
whole slide images (WSI), from a large cohort, can provide predictive models of
the clinical outcome. However, the performance of the existing histology-based
classification techniques is hindered as a result of large technical and biological
variations that are always present in a large cohort. In this paper, we propose an
algorithm for classification of tissue histology based on predictive sparse decom-
position (PSD) and spatial pyramid matching (SPM), which utilize sparse tissue
morphometric signatures at various locations and scales. The method has been
evaluated on two distinct datasets of different tumor types collected from The
Cancer Genome Atlas (TCGA). The novelties of our approach are: (i) extensibil-
ity to different tumor types; (ii) robustness in the presence of wide technical and
biological variations; and (iii) scalability with varying training sample size.

1 Introduction

Tissue sections are often stained with hematoxylin and eosin (H&E), which label DNA
(e.g., nuclei) and protein contents, respectively, in various shades of color. They can
provide a wealth of information about the tissue architecture. At macro level, tissue
composition (e.g., stroma versus tumor) can be quantified. At micro level, cellular fea-
tures such as cell types, cell state, and cellular organization can be queried. Aberrations
in the tissue architecture often reflect disease progression. However, outcome-based
analysis requires a large cohort, and the performance of the existing techniques is hin-
dered as a result of large technical and biological variations that are always present in
such a cohort.

In this paper, we propose a tissue classification method based on predictive sparse
decomposition (PSD) [1] and spatial pyramid matching (SPM) [2], which utilize sparse
tissue morphometric signatures at various locations and scales. Because of the robust-
ness of unsupervised feature learning and the effectiveness of the SPM framework,
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Fig. 1. Computational steps of the proposed our approach (PSDSPM)

our method achieves excellent performance even with small number of training sam-
ples across independent datasets of tumors. As a results, the composition of tissue
histopathology in WSI can be characterized. Equally important, mix grading can also
be quantified in terms of tumor composition. Computed compositional indices, from
WSI, can then be utilized for outcome based analysis, i.e., survival, response to therapy.

Organization of this paper is as follows: Section 2 reviews related works. Sections 3
and 4 describes the details of our proposed method and experimental validation. Lastly,
section 5 concludes the paper.

2 Related Work

For the analysis of the H&E stained sections, several excellent reviews can be found
in [3,4]. Fundamentally, the trend has been based either on nuclear segmentation
and corresponding morphometric representation [5,6], or patch-based representation
of the histology sections [7,8]. The major challenge for tissue classification is the large
amounts of technical and biological variations in the data, which typically results in
techniques that are tumor type specific. To overcome this problem, recent studies have
focused on either fine tuning human engineered features [7], or applying automatic fea-
ture learning [9,8], for robust representation.

In the context of image categorization research, the SPM kernel [2] has emerged as
a major component for the state-of-art systems [10] for its effectiveness in practice.

Pathologists often use “context” to assess the disease state. At the same time, SPM
partially captures context because of its hierarchical nature. Motivated by the works
of [2,1], we encode sparse tissue morphometric signatures, at different locations and
scales, within the SPM framework. The end results are highly robust and effective sys-
tems across multiple tumor types with limited number of training samples.

3 Approach

Proposed approach (PSDSPM) is shown in Figure 1, where the traditional SIFT is re-
placed with with sparse tissue morphometric feature, generated through unsupervised
feature learning, within the SPM framework. It consists of the following steps:

1. Construct sparse auto encoder (W) for the extraction of sparse tissue morphometric
feature by the following optimization:

min
B,X,W

N∑

n=1

||yn − xnB||22 + λ|xn|1 + ||xn − ynW||22 (1)
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where Y = [y1, ...,yN ] is a set of vectorized image patches; B is a set of basis
functions; X = [x1, ...,xN ] is a set of sparse tissue morphometric features; and W
is the auto encoder. The training process is as follows:
(a) Randomly initialize B and W.
(b) Fix B and W and minimize Equation 1 with respect to X, where X for each

input vector is estimated via the gradient descent method.
(c) Fix X and estimate B and W, where B and W are approximated through

stochastic gradient descent algorithm.
Examples of computed basis functions from the GBM and KIRC datasets are shown
in Figure 2. It can be seen that the dictionary captures color and texture information
in the data which are difficult to obtain using human engineered features.

2. Construct dictionary (D), where D = [d1, ...,dK ]� are the K sparse tissue mor-
phometric types to be learned by the following optimization:

min
D,Z

M∑

m=1

||xm − zmD||2 (2)

subject to card(zm) = 1, |zm| = 1, zm � 0, ∀m

where X = [x1, ...,xM ]� is a set of sparse tissue morphometric features gener-
ated through the auto-encoder (W); Z = [z1, ..., zM ]� indicates the assignment of
the sparse tissue morphometric type, card(zm) is a cardinality constraint enforc-
ing only one nonzero element of zm, zm � 0 is a non-negative constraint on the
elements of zm, and |zm| is the L1-norm of zm. During training, Equation 2 is
optimized with respect to both Z and D; In the coding phase, for a new set of X,
the learned D is applied, and Equation 2 is optimized with respect to Z only.

3. Construct spatial histogram for SPM [2]. This is done by repeatedly subdividing an
image and computing the histograms of different sparse tissue morphometric types
over the resulting subregions. As a result, the spatial histogram, H , is formed by
concatenating the appropriately weighted histograms of all sparse tissue morpho-
metric types at all resolutions,

H0 = H0
0 ;Hl = (H1

l , ..., H
4l

l ), 1 ≤ l ≤ L (3)

H = (
1

2L
H0,

1

2L
H1, ...,

1

2L−l+1
Hl, ...,

1

2
HL)

where (·) is the vector concatenation operator, l ∈ {0, ..., L} is the resolution of the
image pyramid, Hl is the concatenation of histograms for all image grids at certain
resolution, l.

4. Transfer a χ2 support vector machine (SVM) into a linear SVM based on a homo-
geneous kernel map [11]. In practice, the intersection kernel and χ2 kernel have
been found to be the most suitable for histogram representations [12]. In this step,
a homogenous kernel map is applied to approximate the χ2 kernel, which enables
the efficiency by adopting learning methods for linear kernels, i.e., linear SVM.

5. Construct multi-class linear SVM for classification. In our implementation, the
classifier is trained using the LIBLINEAR [13] package.
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Fig. 2. Representative set of basis functions, B, for a) the KIRC dataset, and b) the GBM dataset

4 Experiments and Discussion

We have evaluated four classification methods on two distinct datasets, curated from (i)
Glioblastoma Multiforme (GBM) and (ii) Kidney Renal Clear Cell Carcinoma (KIRC)
from TCGA, which are publicly available from the NIH (National Institute of Health)
repository. The four methods are:

1. PSDSPM: the nonlinear kernel SPM that uses spatial-pyramid histograms of sparse
tissue morphometric types;

2. PSD [1]: the sparse tissue morphometric features with max-pooling strategy, and
RBF kernels;

3. ScSPM [12]: the linear SPM that uses linear kernel on spatial-pyramid pooling of
SIFT sparse codes;

4. KSPM [2]: the nonlinear kernel SPM that uses spatial-pyramid histograms of SIFT
features and χ2 kernels;

In the implementation of ScSPM and KSPM, the dense SIFT features were extracted
on 16× 16 patches sampled from each image on a grid with step-size 8 pixels.

For both PSDSPM and PSD, we fixed the sparse constraint parameter λ to be 0.3, im-
age patch size to be 20× 20, and the number of basis functions to be 1024, empirically,
to achieve the best performance. For ScSPM, we fixed the sparse constraint parame-
ter λ to be 0.15, empirically, to achieve the best performance. For both PSDSPM and
KSPM, we used standard K-means clustering for the construction of dictionary, where
the elements was randomly initialized and iteratively refined in the Euclidean space.
Additionally, for PSDSPM, ScSPM and KSPM, we fixed the level of pyramid to be
3, and used linear SVM for classification; while, for PSD, we used nonlinear SVM
with RBF kernel for classification. All experimental processes were repeated 10 times
with randomly selected training and testing images. The final results were reported as
the mean and standard deviation of the classification rates, which was defined as the
average classification accuracy among different classes.

4.1 GBM Dataset

The GBM dataset contains 3 classes: Tumor, Necrosis, and Transition to Necrosis,
which were curated from WSI scanned with a 20X objective. Examples can be found in
Figure 3. The number of images per category are 628, 428 and 324, respectively. Most
images are 1000×1000 pixels. In this experiment, we trained on 40, 80 and 160 images
per category and tested on the rest, with three different dictionary sizes: 256, 512 and
1024. Detailed comparisons are shown in Table 1.
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Fig. 3. GBM Examples. First column: Tumor; Second column: Transition to necrosis; Third col-
umn: Necrosis.

Table 1. Performance of different methods on the GBM dataset

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
160 training PSDSPM 91.02 ± 1.89 91.41 ± 0.95 91.20 ± 1.29

PSD [1] 86.07 ± 1.42 86.32 ± 1.14 86.15 ± 1.33
ScSPM [12] 79.58 ± 0.61 81.29 ± 0.86 82.36 ± 1.10
KSPM [2] 85.00 ± 0.79 86.47 ± 0.55 86.81 ± 0.45

80 training PSDSPM 88.63 ± 0.91 88.91 ± 1.18 88.64 ± 1.08
PSD [1] 81.73 ± 0.98 82.08 ± 1.23 81.55 ± 1.17

ScSPM [12] 77.65 ± 1.43 78.31 ± 1.13 81.00 ± 0.98
KSPM [2] 83.81 ± 1.22 84.32 ± 0.67 84.49 ± 0.34

40 training PSDSPM 84.06 ± 1.16 83.72 ± 1.46 83.40 ± 1.14
PSD [1] 78.28 ± 1.74 78.15 ± 1.43 77.97 ± 1.65

ScSPM [12] 73.60 ± 1.68 75.58 ± 1.29 76.24 ± 3.05
KSPM [2] 80.54 ± 1.21 80.56 ± 1.24 80.46 ± 0.56

4.2 KIRC Dataset

The KIRC dataset contains 3 classes: Tumor, Normal, and Stromal, which were curated
from WSI scanned with a 40X objective. Examples can be found in Figure 4. The
number of images per category are 568, 796 and 784, respectively. Most images are
1000 × 1000 pixels. In this experiment, we trained on 70, 140 and 280 images per
category and tested on the rest, with three different dictionary sizes: 256, 512 and 1024.
Detailed comparisons are shown in Table 2.

The experiments, conducted on two distinct datasets of vastly different tumor types,
indicate that,

1. SPM improves the performance for tissue classification. As shown in Tables 1
and 2, PSDSPM consistently outperforms PSD, which demonstrates the effective-
ness of SPM for tissue classification. We suggest that the improvement of perfor-
mance is due to the local histogramming involved in SPM, which provides some
sort of tissue morphometric context at various locations and scales. In practice, the
context information is widely adopted by well trained pathologists for diagnosis.

2. Features from unsupervised feature learning are more tolerant to batch effect than
human engineered features for tissue classification. As shown in Tables 1 and 2,
PSDSPM consistently outperforms KSPM. Since the only difference between these
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Fig. 4. KIRC Examples. First column: Tumor; Second column: Normal; Third column: Stromal.

Table 2. Performance of different methods on the KIRC dataset

Method DictionarySize=256 DictionarySize=512 DictionarySize=1024
280 training PSDSPM 97.19 ± 0.49 97.27 ± 0.44 97.08 ± 0.45

PSD [1] 90.72 ± 1.32 90.18 ± 0.88 90.43 ± 0.80
ScSPM [12] 94.52 ± 0.44 96.37 ± 0.45 96.81 ± 0.50
KSPM [2] 93.55 ± 0.31 93.76 ± 0.27 93.90 ± 0.19

140 training PSDSPM 96.80 ± 0.75 96.52 ± 0.76 96.55 ± 0.84
PSD [1] 88.75 ± 0.37 88.93 ± 0.45 87.98 ± 0.86

ScSPM [12] 93.46 ± 0.55 95.68 ± 0.36 96.76 ± 0.63
KSPM [2] 92.50 ± 1.12 93.06 ± 0.82 93.26 ± 0.68

70 training PSDSPM 95.12 ± 0.54 95.13 ± 0.51 95.09 ± 0.40
PSD [1] 87.56 ± 0.78 87.93 ± 0.67 87.13 ± 0.97

ScSPM [12] 91.93 ± 1.00 93.67 ± 0.72 94.86 ± 0.86
KSPM [2] 90.78 ± 0.98 91.34 ± 1.13 91.59 ± 0.97

two approaches is that PSDSPM utilize features from unsupervised feature learn-
ing, while KSPM is based on human engineered features (SIFT), we suggest that,
given the large amounts of technical and biological variations in the TCGA datasets,
features from unsupervised feature learning are more tolerant to batch effect than
human engineered features for tissue classification.

As a result, the combination of unsupervised feature learning and SPM leads to an
approach with following merits,

1. Extensibility to different tumor types. Tables 1 and 2 indicate that, our method
consistently outperforms [12,2,1]. However, due to the poor generalization ability
of human engineered feature (SIFT), KSPM and ScSPM appear to be tumor-type
dependent. Since GBM and KIRC are two vastly different tumor types with signif-
icantly different signatures, we suggest that the consistency in performance assures
extensibility to different tumor types.

2. Robustness in the presence of large amounts of technical and biological variations.
For the GBM dataset, shown in Table 1, the performance of PSDSPM, with 80
training samples per category, is better than the performance of [12,2,1] with 160
training samples per category. For the KIRC dataset, shown in Table 2, the perfor-
mance of PSDSPM, with 140 training samples per category, is either better than or
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comparable to the performance of [2,1,12] with 280 training samples per category.
These results clearly indicate the robustness of our approach, which improves the
scalability with varying training sample size, and the reliability of further analysis
on large cohort of WSI.

In our approach, the choice of PSD for unsupervised feature learning, over others (e.g.,
Reconstruction Independent Subspace Analysis (RISA) [9]), is due to its effectiveness
and efficiency in a feed-forward fashion, which is demonstrated by an experimental
comparison with RISA, based on the dataset and protocols in [9], as shown in Table 3.

Table 3. Comparison of performance among PSDSPM, PSD and RISA

PSDSPM PSD RISA
96.50 95.05 91.10

5 Conclusion and Future Work

In this paper, we proposed a SPM approach based on sparse tissue morphometric fea-
tures from unsupervised feature learning, for tissue image classification. Due to the ro-
bustness of unsupervised feature learning and the effectiveness of the SPM framework,
our method outperforms traditional ones which were typically based on human engi-
neered features. The most encouraging results of this paper are that, our methods are
highly i) extensible to different tumor types; ii) robust in the presence of large amounts
of technical and biological variations; and iii) scalable with varying training sample
sizes. Future work will be focused on utilizing supervised dictionary learning [14] for
possible improvement, and further validating our methods on other tissue types.

6 Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither
the United States Government nor any agency thereof, nor the Regents of the Univer-
sity of California, nor any of their employees, makes any warranty, express or implied,
or assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial prod-
uct, process, or service by its trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof or the Regents
of the University of California.
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