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Abstract. We propose a cross-sectional piecewise constant model for
the segmentation of highly curved fiber tracts in diffusion MRI scans.
An “anchor curve”, obtained via tractography, provides the overall shape
of the tract and allows us to examine the tract’s microstructure at the
level of cross-sectional planes normal to the curve. Each cross-section is
modeled as a piecewise constant image, allowing us to address changes in
measured diffusion due to the curving of the tract while still capturing
overall tract structure. Results on both synthetic and real data show
improved segmentation quality compared to state-of-the-art methods,
particularly in areas of crossing fibers.

1 Introduction

In diffusion MRI (dMRI), segmentation is often used to delineate axonal fiber
tracts connecting functional brain regions [12]. Initial attempts to segment fiber
tracts focused around performing streamline tractography, then defining the seg-
ment as the set of voxels that contain the streamlines (e.g., [16]). However, the
goal of tractography is to capture a tract’s direction and orientation, not its
width. As a result, tractography cannot capture fine details along the surface of
a fiber tract, routinely leading to under-segmentation [3]. Instead of relying on
a collection of 3D streamlines with an unclear encapsulating surface, segmen-
tation algorithms that label the underlying 3D image domain are preferred for
defining a tract’s volumetric region. Among these volumetric dMRI segmenta-
tion algorithms, many assume a piecewise-constant model of the image [9, 11].
However, given the fact that dMRI data contains tract orientation information,
the success of these piecewise constant approaches is limited to tracts that have
little curvature (e.g., corpus callosum [9]).

Segmenting highly curved tracts in dMRI scans requires extending segmen-
tation techniques to handle a tract’s variable appearance. This can be done by
either increasing the complexity of the image model (e.g., piecewise smooth [17])
or by pre-processing the dMRI scan so that a simpler segmentation model can
be applied effectively. The latter approach has been more popular over the past
decade with examples including segmentation based on pre-computed edge infor-
mation [10] and clustering voxels using local statistics pre-computed from Parzen
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windows [2]. More recently, tractography results have been used to provide global
tract shape information as input to the segmentation process [3, 13, 15], allow-
ing for the pre-processing of an image based on the orientation of the tract.
This global shape information may well complement the local appearance infor-
mation obtained using Parzen windowing or edge maps, yet, individually, these
approaches are limited by either susceptibility to noise or lack of fidelity between
the data and the image model [13].

We propose that a hybrid approach, where local appearance information is
combined with global shape information, can show increased segmentation accu-
racy for diffusion MR images. We base this hybrid algorithm on the assumption
that a tract’s cross-section (i.e., the plane perpendicular to the tract’s local di-
rection) shows relatively constant diffusion compared to its surroundings. The
piecewise constancy assumption is then justifiably applied only at a local scale
while, at the global scale, cross-sectional planes are defined based on an “an-
chor curve” obtained from tractography. Results on both synthetic and real
data show improved segmentation quality compared to state-of-the-art meth-
ods [2, 9–11, 15], particularly in areas of crossing fiber tracts.

2 Methods

Figure 1 displays the general workflow of our segmentation algorithm. Like in
the work of Niethammer et al. [15], we begin by generating an anchor curve
from a tractography algorithm. We also end by segmenting a simplified version
of the diffusion MR image. Where we differ is in how we generate that simplified
image. In [15], Niethammer et al. reorient tensors by the curvature of the anchor

Input Image and Seeds Anchor Curve and 
Cross-Sectional Planes

Tract Cross-Sections

Cross-Sectional Distance Maps 3D Distance Map Final Segmentation

Fig. 1. Our proposed segmentation workflow. Tractography is employed to generate
an anchor curve (blue) which is then used to generate cross-sections of the fiber bun-
dle (magenta). For each cross-section, we measure diffusion dissimilarities between the
points on the plane and the intersection point between the plane and the anchor curve.
These dissimilarities are then interpolated back into a 3D image and a scalar segmen-
tation algorithm provides us with the final segmentation.
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curve, then assume a global piecewise-constant image model. We instead assume
a piecewise-constant model only on cross-sectional planes normal to the anchor
curve. The following subsections describe how we employ that model to simplify
and segment diffusion MR images.

Anchor Curve Generation: Given a dMR image I : Ω → M that maps a
point x in our image space Ω ⊂ R

3 to a diffusion representation (e.g., tensor,
ODF) on a manifold M, we can generate an anchor curve r : [0, 1] → Ω from
various tractography algorithms. In this work, we employ the minimal path
tractography algorithm of Zalesky [18] to generate r. Edge weights for the graph
used by Zalesky’s algorithm were computed analytically using [6].

Obtaining Tract Cross-Sections: For each point s along the given anchor
curve r, we compute the Frenet frame defined by the curve’s local tangent T,
normal N, and binormal B vectors

T = ∂r
∂s N =

∂T
∂s

‖ ∂T
∂s ‖ B = T×N. (1)

The resulting normal and binormal vectors span (and parameterize) the cross-
sectional plane normal to r. For points si on the anchor curve r where ∂T/∂s = 0,
we use the closest stable Frenet frame of r rotated so that is tangent vector aligns
with the tangent vector at si.

Given the local Frenet frame {T,N,B} and a point s on the anchor curve
r, we generate points x ∈ Ω on the cross-sectional plane by sampling along the
normal and binormal vectors:

x = r(s) + u ∗N+ v ∗B. (2)

The diffusion representation (e.g., tensor, ODF) at x – and correspondingly
(u, v) in the cross-sectional image space Φs – is linearly interpolated from the
original image I. This procedure produces our cross-sectional images Is : Φs →
M and the corresponding 3D coordinates of each cross-sectional image pixel
Πs : Φs → Ω.

Cross-Sectional Piecewise Constancy: Our approach is based on the as-
sumption that the diffusion data within a cross-section of a fiber bundle can
be well-modeled using a piecewise-constant function. Given that a fiber tract
is a collection of coherently aligned axons, we expect the diffusion within the
cross-section of the tract to be similar to that at the plane’s intersection with
the anchor curve. Meanwhile, we expect diffusion on that cross-sectional plane
but outside the fiber tract to be different from that at the plane’s anchor curve
intersection point. As a result, computing dissimilarities between the diffusion
data on the anchor curve I(r(s)) and the diffusion data throughout the cross-
section Is will provide us with a scalar feature Ds that will correlate well with
fiber bundle membership.
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Various dissimilarity metrics can be employed, including those for second or-
der tensors (e.g., [1]), 4th-order tensors [5], and spherical harmonic ODF repre-
sentations [8]. Given a chosen metric d(·), we employ the following mapping

Ds(u, v) = log

(
d(Is(u, v), I(r(s)))

FA(I(r(s))) + ε

)
(3)

which applies a log mapping to the dMRI dissimilarities and normalizes them
by the fractional anisotropy (FA) of the point intersecting the anchor tract.
We found, following empirical examination, that the log-mapping leads to more
Gaussian-distributed dissimilarities inside and outside the tract of interest while
dividing by the anchor curve’s FA helps normalize the range of dissimilarities
from one cross-section to another. Note that since the anchor curve was obtained
via tractography, its FA will be greater than zero.

Mapping Dissimilarities to the Image Space: Once we have the tensor
distance feature Ds computed from (3) for a collection of points Πs defined
by (2), we proceed with reconstructing a 3D distance image. This task is a basic
scattered data interpolation problem and we employ an approach based on radial
basis functions and k-nearest neighbours. The interpolated 3D dissimilarity map
D is given as

D(x) =

k∑
i=1

exp(−‖Πs(i)(u(i), v(i))− x‖)∑k
j=1 exp(−‖Πs(j)(u(j), v(j))− x‖)

Ds(i)(u(i), v(i)) (4)

where (u(i), v(i)) in cross section s(i) is the ith nearest neighbour to x in Ω.

Dissimilarity Map Segmentation: Using the local diffusion dissimilarities
from (3), we have reduced our dMR image, with its variable region appearance
and manifold-valued data, to a scalar image that is well modeled by a piecewise
constant function. As a result, it now makes sense to employ a piecewise con-
stant segmentation algorithm. We use a probabilistic variant of the Chan-Vese
segmentation algorithm that minimizes

E(S, μin, σin, μout, σout) =α

∫
∂S

dx+ β

∫
x∈S

− log(p(x|μin, σin))dx+

β

∫
x/∈S

− log(p(x|μout, σout))dx (5)

where S ⊂ Ω is the segmentation, μin, σin(μout, σout) represent the mean and
standard deviation of distances D inside (outside) S, and weights α, β regulate
the trade-off between the contour regularization and image fidelity terms. We
optimize the segmentation energy in (5) using the total variational approach of
Bresson et al. [7]. Note that this is the same optimization scheme used by the
competing approach of Niethammer et al. [15] though they use it to segment
images of diffusion tensor primary eigenvectors. As with the approach of Ni-
ethammer et al., all voxels a distance greater than dmax from the anchor curve
are set to belong to the background while the foreground segment containing
the anchor curve is taken as the final segmentation.
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(a) Crossing fiber phan-
tom (from [14] visualized
using [4]).

(b) DSC for phantom at different noise levels. In-
set are FA maps for (left to right) images with
σ = 0, 0.02, and 0.04.

Proposed Niethammer et al. [15] Feddern et al. [10] Descoteaux et al. [9] Lenglet et al. [11]

(c) Sample segmentation results for all methods at noise level σ = 0.01. Over-
segmentation is shown in yellow while under-segmentation is shown in red. The
ground truth segmentation is shown in gray.

Fig. 2. Segmentation results for the ring tract in (a). Note that we obtain significantly
higher Dice coefficients than competing methods as we are able to better model curved
tracts and fiber crossings. Further, our approach generates consistent results across
various noise levels.

3 Experimental Setup and Results

To evaluate the effectiveness of our segmentation approach, we perform two
quantitative experiments, one on the synthetic phantom presented in [14] and
another on 18 cingulum bundles from dMRI scans from the IXI database1. In
both cases, resulting segmentations were compared to expert-drawn manual seg-
mentations using the Dice similarity coefficient (DSC). The segmentation algo-
rithms from [9–11, 15] are used as comparison methods. In all cases, k = 5,
ε = exp(−4) and the log-Euclidean distance metric was used to compute the
dissimilarity maps [1]. To ensure fairness of comparison between segmentation
algorithms, we optimize the weights of all energy terms in all segmentation al-
gorithms (e.g., α, β) using genetic algorithms. Results are shown for the weights
that produce the maximum DSC.

Phantom Experiment: Figure 2(a) displays the middle slice of the synthetic
phantom from [14]. We seek to segment the ring tract in the phantom in order to
test our algorithm’s ability to handle both tract curvature and crossing regions.
We further test the impact of image noise by adding Rician noise of different

1 http://brain-development.org
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(a) Sample anchor
curve (yellow) and
ground truth seg-
mentation (gray) of
a cingulum bundle.

(b) Dice coefficients for all algorithms
over 18 cingulum bundles. Results for
Awate et al. are over only 2 datasets
(taken from [2]). Although Neitham-
mer et al.’s DSC is comparable, it suf-
fered from localized under-segmentation
in difficult areas (see text and Fig. 3(c)).

Proposed

Niethammer et al. [15]

(c) Sample cingu-
lums (gray) with
under-segmentation
shown in red.

Fig. 3. Results on the segmentation of cingulum bundles from real dMRI scans. A
sample is shown in (a). Note that we obtain significantly higher Dice coefficients than
competing methods (largest p = 0.0298). For the methods that were able to segment
the cingulum, we were better able to reduce under-segmentation as highlighted by the
blue arrows in (c).

magnitudes to the phantom. Twenty-five noisy images are generated for each
noise level and all competing segmentation methods are applied.

Figure 2(b) shows the resulting DSC for each algorithm and noise level. Note
that our approach significantly outperforms those algorithms presented in [9–11,
15]. The reasons for this improvement can be seen in Figure 2(c). The approach of
Niethammer et al. [15], which assumes a piecewise constant image after rotating
tensors to the anchor curve’s Frenet frame, has difficulty segmenting the crossing
regions where the global piecewise constant assumption does not hold. However,
our assumption of cross-sectional piecewise constancy still holds in these regions,
resulting in a more accurate segmentation. Further, Niethammer et al. rely only
on the primary eigenvector for segmentation, leading to over-segmentation leak-
ing into isotropic regions in which the primary eigenvector may align with those
within the segment of interest. Meanwhile, the geodesic active contours approach
of Feddern et al. [10] is limited by poor edge information due to image noise. Fi-
nally, the piecewise constant segmentation approaches of Descoteaux et al. [9] and
Lenglet et al. [11] (the latter of which includes a geodesic active contour edge term
to the segmentation energy) fail to model the tensor image appropriately, lead-
ing to poor segmentations. Our approach avoids these problems by applying the
piecewise constant image model on a per cross-section basis.

Real Data Experiment: We employ 18 expertly-drawn manual segmentations
of cingulum bundles from 9 dMRI scans as ground truth segmentations to test
the accuracy of our algorithm on real data. Figure 3(a) shows a representative
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example of the region of interest and its corresponding anchor curve. Note that
the curvature of the cingulum makes a piecewise constant function a poor choice
for modelling diffusion across the whole bundle.

Figure 3(b) shows the resulting DSC for all 18 cingulum segmentations. Note
that our proposed approach performs better than the competing methods, even
beating the average 0.615 DSC reported on comparable data for only two cin-
gulum bundles in [2]. The piecewise constant approaches in [9, 11] failed to
segment the cingulum. Instead, the segmentation leaked and delineated the cor-
pus callosum seen in red in Figure 3(a). Meanwhile, the geodesic active contours
approach of Feddern et al. [10] showed difficulty dealing with noisy edge informa-
tion, leading to over-segmentation. The closest competing method to ours is that
of Niethammer et al. [15], one sample of which is shown in Figure 3(c). Although
the DSC values are somewhat comparable (Fig. 3(b)), the increased accuracy
of our method was significant (p = 0.0298). Further, our approach showed con-
sistent (i.e., over all 18 tracts) reduction in the amount of under-segmentation
compared to [15]. This reduction, likely due to our use of a more localized im-
age appearance model, was most pronounced around the genu and splenium (as
highlighted by the blue arrows). Quantitatively, we observed a significant reduc-
tion of 10.48% in the number of under-segmented voxels (Niethammer et al. [15]:
μ = 1306.8 voxels, σ = 362.8 voxels; Proposed: μ = 1169.8 voxels, σ = 381.9
voxels. p = 0.018).

4 Conclusion

We proposed herein a cross-sectional piecewise constant model for diffusion MRI
segmentation, allowing us to combine local diffusion information with global
shape information. Using an “anchor curve” obtained via tractography, we are
able to generate cross-sections of the tract and apply the piecewise constant
model at that local level. We have shown that the resulting segmentation al-
gorithm is better capable of handling curved tracts and crossing regions than
many competing methods [2, 9–11, 15]. Future work will focus on determining
whether these results remain consistent if we change the diffusion model (e.g.,
from tensor to ODF).
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