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Abstract. This paper presents an analysis of the high resolution histo-
pathology images of the prostate with a focus on the evolution of mor-
phological gland features in prostatic adenocarcinoma. Here we propose
a novel technique of labeling individual glands as malignant or benign.
In the first step, the gland and nuclei objects of the images are automati-
cally segmented. Individual gland units are segmented out by consolidat-
ing their lumina with the surrounding layers of epithelium and nuclei.
The nuclei objects are segmented by using a marker controlled water-
shed algorithm. Two new features, Number of Nuclei Layer (NNL) and
Ratio of Epithelial layer area to Lumen area (REL) have been extracted
from the segmented units. The main advantage of this approach is that it
can detect individual malignant gland units, irrespective of neighboring
histology and/or the spatial extent of the cancer. The proposed algo-
rithm has been tested on 40 histopathology scenes taken from 10 high
resolution whole mount images and achieved a sensitivity of 0.83 and
specificity of 0.81 in a leave-75%-out cross-validation.
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1 Introduction

Prostate cancer is one of the most frequently diagnosed cancers and ranks sec-
ond among the cancer related deaths of men worldwide [1]. Analysis of the
histopathology specimens of prostate is an important step for prostate cancer
diagnosis and treatment planning.

The tissue features of these histopathology images are the key indicators of
prostate cancer. Among the different types of prostate cancer, the most common
one is the prostatic adenocarcinoma, cancer pertaining to the gland units of the
prostate. Pathologists determine the extent of this cancer by carefully evaluating
the changes in the gland morphology. The gland is the main histopathological
structural unit in prostate. Fig. 1 shows the structure of a normal gland unit.
It mainly comprises a lumina of irregular shape, a layer of epithelial cells, and
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Fig. 1. Illustration of the histopathology components associated with a gland unit: 1.
Lumen, 2. Epithelial layer, 3. Nuclei, and 4. Stroma.

nuclei surrounding the lumina. The unit is supported by a surrounding fibro-
muscular stroma. When the slides are stained using a Hematoxylin and Eosin
(H&E) solution, the nuclei turn dark blue and the epithelial layer and stroma
turn into different shades of purple to pink.

The recent literature on computerized diagnosis of prostate cancer quantizes
the morphological and architectural features associated with the gland units for
cancer detection and grading. The most commonly used features on analyzing
histopathology specimens are related to the size and shape of gland lumina,
nuclei shape and density [2], [3], [4], [5]. Though gland size and shape do contain
information about the abnormality of prostate tissue, this feature is not exclusive
to cancerous tissue only. In case of other prostate anomalies such as, atrophy
and benign prostatic hyperplasia the gland size and shape resembles that of
cancerous ones [6]. Apart from gland-based features, some approaches exploit
overall image features such as, energy and entropy of multiwavelet coefficient of
the image [7], fractal dimension [8] and so on. But these features are not specific
to each gland and do not capture the gland specific features that are clinically
used for cancer classification.

Therefore, more decisive features are needed for effective separation of indi-
vidual glands. Here, we propose two novel features based on which glands can
be classified: i) Number of Nuclei Layer (NNL), and ii) Ratio of Epithelial layer
area to Lumen area (REL). Fig. 2 illustrates the change of appearance between
benign and malignant glands. In benign glands there are multiple layers of nuclei
surrounding the gland unit with relatively thinner epithelial layer compared to
lumen area. On the other hand, in malignant units there are usually a single
layer of nuclei surrounding the gland unit with a thick epithelial layer. Our pro-
posed features NNL and REL quantize these two properties of malignant glands.
In a recent literature, Nguyen et al. [3] achieved an accuracy of 0.79 in clas-
sification of benign and malignant glands by exploiting region-specific features
such as percentage of nuclei pixels, gland shape, crowdedness etc. In compari-
son to that, our proposed features are strictly gland specific and involve i) pixel
labeling, ii) segmentation of each nuclei in gland, and iii) finding the number of
layers of nuclei for each gland from angle-dependent histograms. The advantage
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Fig. 2. Visual comparison between benign and malignant prostate glands

of this technique is that it can detect a malignant gland irrespective of the region
properties. In cases where malignant glands are present in close proximity of
benign glands, this approach might provide a more sensitive cancer annotation
compared to the approaches that use region-dependent image features [3]. The
proposed technique has been evaluated on 40 histopathology scenes extracted
from 10 whole mount images with a resolution of 0.5 μm per pixel and achieved
0.83 and 0.81 of sensitivity and specificity, respectively, in a leave-75%-out cross-
validation experiment.

This paper is organized as follows: the methodology of the complete gland
classification algorithm is presented in Section 2. In Section 3 the experimen-
tal results of the proposed algorithm are presented. Finally, Section 4 presents
concluding remarks and suggestions for future work.

2 Methodology

2.1 Segmentation of the Gland

The gland segmentation algorithm has been partially adopted from another work
of Nguyen et al. [9]. In the first step, each pixel in the image is categorized into
one of these four categories: i) Gland lumen, ii) epithelial layer, iii) nuclei, and
iv) stroma. Small training patches of each class have been selected to train the
classifier for pixel labeling. The classification is based on the color information
of these histological objects in the two chromaticity layer ‘a*’ and ‘b*’ of the
L*a*b color space.

For pixel labeling, we have used linear discrimination analysis instead of the
Voronoi tesselation based approach from [9]. The main drawback of Voronoi
tesselation approach is that when the number of training samples is large, the
classification time for each testing data point is very high compared to that of
linear discriminant analysis [10]. Therefore, when the number of testing sam-
ples are very large the reported nearest neighborhood approach will be very
expensive to compute. After having the labeled image, the complete gland units
are constructed by iteratively consolidating lumen objects with the surrounding
epithelial layer and nuclei pixels [9] (see Fig. 3c).
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Fig. 3. Gland segmentation. a) A sample histopathology scene, b) Labeled image, c)
Segmented gland units after consolidation of lumina with surrounding epithelial layer
and nuclei objects, d) Segmented nuclei objects overlaying on the segmented gland
units, and e) enlarged view of the segmented nuclei objects.

2.2 Segmentation of the Nuclei Units

Segmentation of nuclei is performed by employing a marker controlled water-
shed algorithm [11] followed by a Support Vector Machine (SVM) based object
classification. The segmentation function used in the watershed algorithm is the
gradient image of the inverted grayscale image of the input scene. This gradient
image is modified by placing regional minima in the marked pixels of foreground
and background objects of the image. The foreground markers are determined
by finding the regional minima in the image after the morphological opening
and closing by reconstruction operations. To determine the background marker,
the same operation is performed with the inverted image. Along with the nu-
clei objects, the segmented objects often include some other histological objects,
i.e., crystalloids inside glands, darkly stained stroma/epithelial object due to
nonuniform staining and so on.

The non-nuclei objects are then filtered out by employing a SVM classifier.
The features used in this classification are the mean intensity, entropy, and the
standard deviation of the segmented objects. The classifier is trained using a
linear kernel and manually selected training samples of nuclei and non-nuclei
objects. Fig. 3d) and e) depicts the segmented nuclei objects that are part of
the gland unit. Since our main focus is to extract the features related to gland
morphology, the segmented nuclei units that float in the stromal region are not
considered for further analysis.



Separation of Benign and Malignant Glands in Prostatic Adenocarcinoma 465

2

1

3

REL=0.7134

REL=1.4878 REL=1.9139

−180 −50 0 50 180

0.5

1

1.5

Angle (in degrees)

Y a
ng

−180 −50 0 50 180

0.5

1

1.5

2

2.5

Angle (in degrees)
−180 −50 0

0.5

1

1.5

2

2.5

Angle (in degrees)
18050

Yang(α1)=1 
Yang(α2)=4 

α1 α2 

Gland 2Gland 1 Gland 3

a) b)

c) d) e)

20
0 

m
ic

ro
ns

40
0 

m
ic

ro
ns

Y a
ng

Y a
ng

Fig. 4. a) Graphical illustration of Yang calculation. b) Sample histopathology scene
with a single benign (marked with blue ellipse) and two malignant gland units (marked
with red ellipses). c), d), and e) illustrate the different appearances of the histograms
(Yang) of benign and malignant glands.

2.3 Extraction and Classification of the Features

Number of Nuclei Layer, NNL: To determine the number of nuclei layers per-
taining to each gland, at first the segmented nuclei objects are paired with the
corresponding gland unit that minimizes the distance between the centroid of
the nuclei and the gland lumen boundary. For each of the combined gland-nuclei
object, an ellipse is fit around it. The angular location of each of the nuclei
is evaluated by calculating the angle of the connecting line of the gland cen-
troid and corresponding nuclei centroid (see Fig. 4a). Then the feature NNL is
evaluated from the histogram Yang of angular locations of nuclei. Customized
bin spacing has been utilized to account for glands of different sizes. The bin
spacing for the histogram is evaluated as 360/Pg, where Pg is the perimeter of
the corresponding ellipse surrounding the gland. Then the NNL is evaluated by
counting the total number of instances where multiple nuclei have same angular
location in the histogram and then normalizing it by dividing by Pg. Mathemat-
ically, NNL = 1

Pg
|{n|Yang(n) >= 1}|. Fig. 4c-e illustrates the different nature

of histogram, Yang in case of benign and malignant glands. As can be observed
from the figure, the benign histogram provides more instances of multiple nuclei
having same angular location.

Ratio of Epithelial Layer area to Lumen Area, REL: This feature is evaluated
by simply taking the ratio of the epithelial layer area to lumen area of the gland.
In case of malignant glands, fast multiplication of cells lead the epithelial layer
to invade more in to gland lumina. As a result, the ratio gets larger in case of
malignant gland units.
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After the feature extraction we choose optimum thresholds on the features,
τNNL and τREL for the classification of benign and malignant glands. We classify
a gland (Gi) as malignant when the parameters fulfill the following criteria,
LabelGi = {Malignant|NNL(Gi) < τNNL , REL(Gi) > τREL}. These threshold
parameters are tuned by performing Receiver Operator Characteristics (ROC)
analysis in a leave-75%-out experiment (discussed in the following section).

3 Experiments and Results

The proposed algorithm has been evaluated on 40 different histopathology scenes
containing a total of 2145 glands. These scenes have been extracted from 10
whole mount histopathology images obtained from eight radical prostatectomy
patients. These whole mount histopathology images are digitized at 20× magni-
fication (0.5 μm per pixel) with an Aperio scanner. Cancerous regions in these
images are annotated by an expert pathologist. These annotations are used as
the gold standard to evaluate the performance of the proposed algorithm.
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Fig. 5. a) ROC of our algorithm for four discrete values of REL. At the optimum
operating point the algorithm achieves, sensitivity Sn = 0.87 and specificity Sp = 0.87.

The performance of the algorithm is influenced by the choice of the parameter
value of REL and NNL. We tune the parameters by performing ROC analysis on
randomly selected 25% of the glands in the dataset. The ROC curve of the classi-
fier is generated by varying the parameter NNL as {0, 0.08, 0.16, ..., 4}. To deter-
mine the effect of varying REL on the classifier performance the following opera-
tion has been performed: for each choice of REL in the setREL = {0, 0.25, ..., 2.5}

Table 1. AUC obtained by our algorithm for different parameter values of REL

REL 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
AUC 0.84 0.88 0.89 0.87 0.81 0.81 0.81 0.81 0.80 0.77
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individual ROC curve by varyingNNL has been generated. We choose the thresh-
olds τNNL and τREL corresponding to the optimum operating point in the ROC
curve. Then we use these thresholds on the remaining 75% of the data for gland
classification. By repeating the above leave-75%-out experiment 10 times we
achieved 0.83± 0.007 of sensitivity and 0.81± 0.005 of specificity. When we per-
formed similar analysis on the entire dataset we achieved 0.87 of sensitivity and
0.87 of specificity at the optimum operating point. The corresponding values of
τREL and τNNL at this point are 1 and 2.24, respectively. Table 1 lists the Area
Under the Curve (AUC) obtained for different values of REL. Fig. 5 illustrates
the ROC curve for four different REL values .

Fig. 6 illustrates the performance of the proposed algorithm on three sample
histology scenes, one entirely benign scene, one entirely malignant scene obtained
from marked cancerous region by the pathologist, and one scene comprising both
malignant and benign glands in close proximity of each other. Experimentally
classified benign and malignant units are marked by blue and yellow ellipses,
respectively. In all the examples, strong agreement between the pathologist’s
marking and experimental classification of glands corroborates the effectiveness
of the proposed algorithm.

Fig. 6. Application of the proposed technique on three sample histology scenes. The
yellow and blue ellipses are used to denote the malignant and benign gland units re-
spectively. Sample scenes containing a) only benign glands, b) only malignant glands
and c) both the benign and malignant glands. The green annotation mark by patholo-
gist denotes the separation of benign and malignant glands. All the images are shown
in the same scale of magnification.

4 Conclusion

In this paper, we have proposed a technique for the classification of individual be-
nign and malignant glands based on two novel features, Number of Nuclei layers
and Ratio of Epithelial layer area to Lumen area. To the best of our knowledge,
this is the first work to quantify nuclei layers associated with each gland based
on angular histogram. This is also the first report of individual gland labeling
as malignant or benign without relying on the surrounding histology informa-
tion. Since most reports on automatic cancer annotation are region based, cases
with very small cancerous area might not be diagnosed by those approaches.
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The application of individual gland-based technique proposed here will lead to
a more sensitive cancer annotation and thus improved diagnosis of early stage
prostate cancer. In the future, we plan to implement this technique on entire
whole mount images. Moreover, we plan to investigate the relationship between
the proposed features and long term disease progression.
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