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Abstract. In recent years, services that process user-generated data
have become increasingly popular due to the spreading of social tech-
nologies in online applications. The data being processed by these ser-
vices are mostly considered sensitive personal information, which raises
privacy concerns. Hence, privacy related problems have been addressed
by the research community and privacy-preserving solutions based on
cryptography, like [1–5], have been proposed. Unfortunately, the exist-
ing solutions consider static settings, where the computation is executed
only once for a fixed number of users, while in practice applications have
a dynamic environment, where users come and leave between the execu-
tions. In this work we show that user-data oriented services, which are
privacy-preserving in static settings, leak information in dynamic envi-
ronments. We then present building blocks to be used in the design of
privacy-preserving cryptographic protocols for dynamic settings. We also
present realizations of our ideas in two different attacker models, namely
semi-honest and malicious.

Keywords: Privacy, user-data oriented services, secure multi-party
computation, threshold homomorphic encryption.

1 Introduction

In the past decade, online social networks and personalized e-commerce applica-
tions have become very popular as they offer customized services to people. To pro-
vide customization and personalization the data collected frommany users need to
be processed by a service. One of the typical example of such user-data oriented
services are so-called recommender systems [6], which aim to generate personal
recommendations for a particular person from the likings of other similar users
by computing similarity scores based on profile information or user preferences.
Other examples of user-data oriented service that can be named here are reputa-
tion systems [7], collective decision making [8] and social classification [9].

Although user-data oriented services proved themselves to be very useful in
online services, as they increase the user satisfaction and business profit at the
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same time. But the benefits come with a number of privacy risks since such
services heavily depend on the data collected from the users, which is considered
private in many cases, for example in case of services for medical domain. The
user data can be re-purposed, transferred to third parties, sold or lost by the
service provider. In either case, the privacy of the users will be damaged and the
consequences will be unpredictable.

To overcome the above mentioned privacy problem, different measures includ-
ing laws and organizational means have been deployed. These measures are also
supported by the scientific solutions, which aim to guarantee the privacy of user
data, like data perturbation [10] and data anonymization [11]. The recent idea
in the field is to employ secure multiparty computations techniques [12], which
allow service providers to process user data through interactive protocols with-
out disclosing their content. This approach has been applied to a wide range of
applications including recommender systems [1–3], collaborative filtering [4] and
data clustering [5].

Unfortunately, the existing solutions only consider a static environment, where
the number of users involved in the group service does not change in time. Even
though these solutions provide provable privacy protection in static settings,
their sequential invocation with changing number of users leaks information,
damaging the purpose of the privacy-preserving protocol. As almost all of the
popular online services have a dynamic setting with constantly joining and leav-
ing users, we consider the privacy-preserving protocols that do not cope with
the threats of dynamic execution limited to be used in practice. Therefore, in
this paper we aim to provide a solution for privacy-preserving group services in
a dynamic setting based on cryptographic tools.

The groups with dynamic participation have drawn attention in the crypto-
graphic community, especially to solve the problem of key management [13, 14].
There is also prior work in data publishing to protect the privacy of users in case
of continuous publishing of data of dynamic user groups [15–17]. Nevertheless, to
the best of our knowledge, there has been no previous work addressing dynamic
settings for user-data oriented services.

In this paper we focus on dynamic settings for user-data oriented services: we
define the notion of privacy in this setting and propose novel tools to provide
privacy protection to the users of such services. To achieve this, we propose to
select a random sub-group of users and compute the services based on the data
from this random group, while keeping the group secret. We introduce three
different strategies to select this random sub-group, each suitable for a different
group service scenario, and present the protocols implementing each strategy in
two attacker models, namely semi-honest and malicious. For each protocol we
sketch a proof of its correctness and analyze the protocol with respect to number
of rounds, communication and computational complexities. Our protocols use
homomorphic encryption and zero-knowledge proofs, and are designed to be
executed in a constant number of interactive rounds and to be efficient in terms
of computational complexity.
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The rest of this paper is structured as follows. In Section 2 we formalize the
notion of user-data oriented services privacy-preserving in dynamic environment
and introduce a method for providing privacy in dynamic setting we use further.
In Section 4 we describe the cryptographic protocols in two different security
models, while Section 3 contains the cryptographic primitives used for these
protocols. In Section 5 we provide an analysis on the complexity of the proposed
protocols and some discussion on possible optimizations, and we conclude this
paper in Section 6.

2 Proposed Solution

In this section we define user-data oriented services (from now on group services),
the notion of privacy in a dynamic setting and propose a method to provide
privacy protection to the users of such services.

2.1 Definitions

In our settings, a user represents a party that holds a private input — value
selected from predefined field F. All users are numbered and denoted as Ui, their
private data is denoted as di ∈ F. We assume that the the upper bound of the
number of users in the system is N . All other parties that provide computation
resources for a group service are called service parties. We denote one of such
parties as A.

Definition 1 (Group service). A group service is the system that consists of:

– a set of users {Ui≤N}, each of them holding corresponding private input
di ∈ F;

– a predefined number of service parties, including A;
– a predefined function f :

⋃N
k=1 F

k → G, which is symmetric, i.e. for any per-
mutation π and values a1, . . . , aM ∈ F, M ≤ N : f(a1, . . . , aM ) =
f(π(a1, . . . , aM )).

A group service run (execution) is an invocation of the predefined multiparty
computation protocol (MPC) that involves a subset of M users {Uij} ⊆ {Ui≤N},
named participating (or involved) users, and all service parties. During an
execution of MPC the result r = f(di1 , . . . , diM ) ∈ G is computed and
outputted to A.

Described group service is called privacy-preserving in a static setting, if after
its execution party A learns only the value of r, and other parties do not learn
any information about r and di. The notion of dynamic settings is formalized as
follows:

Definition 2 (Group service (t,M)-dynamic execution). A group service
with users {Ui≤N} is executed (t,M)-dynamically when:
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– there exists a fixed subset of users UD ⊂ {Ui≤N} ∣∣UD
∣
∣ = M , named dynamic

users, remaining users UD = {Ui≤N} \ UD are named static ones;
– there exists subsets U1, . . . ,Ut ⊂ UD defining dynamic user participation,

such that
⋃t

j=1 Uj = UD and ∀Ui ∈ UD ∃k ∈ [1, t] : Ui /∈ Uk;
– the group service is executed t times, computing results r1, . . . , rt;
– on a k-th group service execution only the users from UD

⋃Uk are partici-
pating.

Clearly, (t,M)-dynamic execution of the privacy-preserving protocols designed
for a static setting revealsA information on the private data of the dynamic users,
as this information can be inferred from A’s observations (U1, r1), . . . , (Ut, rt).
We define the scenario, when A exploit such information leakage, as the new
group attack. This attack can be illustrated on the following example: assume
that U1 \ U2 = U3, then by comparing r1 and r2 A can reveal information on d3
(or even disclose the value of d3).

To eliminate such an information leakage, we define a upper-bound on the
amount of information on dynamic users’ private values that A can infer from
r1, . . . , rt and U1, . . . ,Ut available to it. More formally, for each Ui ∈ UD we give
a lower-bound for the value of entropy Hi = H(di | (U1, r1), . . . , (Ut, rt)).

Values of Hi cannot be restricted with absolute values, independent from f ,
as the quantity of information, which A can deduce from received computation
results, strongly depends on properties of f used in a specific group service. For
example, if f computes an average of its arguments, then A can learn the exact
values of private input of dynamic users (for some configuration of U1, . . . ,Ut).
In case f computes just the number of its arguments, A cannot infer any infor-
mation about di from received rk.

To restrict the values of Hi in general cases, but using the properties of a
specific f , two strategies can be used:

1. using the entropy of A’s prediction of private users’ input in a static case;
2. using the entropy of A’s prediction of private data of non-dynamic users in

a dynamic case.

The first approach is too strict for practice, therefore in this work we use the
second one and define the privacy in the context of a dynamic group service
execution as follows:

Definition 3 (Privacy-preserving (t,M)-dynamic execution). A (t,M)-
dynamic execution of a group service with users {Ui≤N} and dynamic users
UD ⊂ {Ui≤N} is called privacy-preserving, when after this execution the follow-
ing conditions hold:

– Party A learns only the values of rk and other parties do not learn any
information about rk and di.

– Party A can deduce less (or equal) amount of information on the private

inputs of dynamic users as on static ones: ∀Ui ∈ UD ∃Uj ∈ UD : Hi ≤ Hj.
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Group service is called privacy-preserving in a (t,M)-dynamic setting, if any
(t,M)-dynamic execution of a such group service is privacy-preserving.

2.2 Group Masking Method

Based on the previous definitions, we propose a general method, in which a
group service is made privacy-preserving in (t,M)-dynamic setting and secured
against the new group attack. The method is based on the idea of blurring the
difference between dynamic and static users. We achieve this by adding similar
random behaviour to both types of users. More formally the method is as follows:

Method (Group masking). Assume, that the group service with users {Ui≤N}
is executed (t,M)-dynamically and sets U1, . . . ,Ut ⊂ UD ⊂ {Ui≤N} define the
dynamic user participation in group service runs. On the k-th run, the set
Ũk ⊆ UD

⋃Uk, named included users, is randomly selected in a way that it

is kept hidden from A. The result rk is computed as rk = f({di | Ui ∈ Ũk}).
It is clear that group masking reduces the amount of information that A can

deduce about users’ private input during the dynamic execution, as it hides from
A which users are participating in the computations. Next, we check whether
and in what conditions this method hides enough information to guarantee the
dynamic privacy-protection.

Note that as the function f is symmetric, then for any x, y, z ∈ F the following
two observations hold:

H(x | r = f(x, y)) = H(y | r = f(x, y)) , (1)

H(x | r1 = f(x, y, z), r2 = f(z)) = H(y | r1 = f(x, y, z), r2 = f(z)) . (2)

Consequently, if Ũ1, . . . , Ũt are generated in a such way that an intersection and a
symmetric difference of any number of Ũk contain at least as many static users as
dynamic ones, then the method above guarantees that a group service execution
is privacy-preserving.

As far as the specific values of Ũk are hidden from A, we can relax the con-
dition above and state the following criteria: a group service dynamic execution
is privacy-preserving, when an intersection and a symmetric difference of any
number of Ũk contains on average more static users than dynamic ones. Next,
we check what conditions should be met to satisfy this criteria.

Let us consider the case, when all Ũk generated by the group masking method
are independent and uniform, in the sense of included users, i.e. on k-th group
service execution all involved users (both static and dynamic) have a same prob-

ability to be included in Ũk.
Let Ũk and Ũl be two sets of included users, both uniform in the sense above.

As the sets are uniform, then the probabilities p = P (Ui ∈ Ũk | Ui ∈ UD
⋃Uk)

and q = P (Ui ∈ Ũl | Ui ∈ UD
⋃Ul) are defined. Without loss of generality we

assume that p ≥ q.
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Consider the intersection and the symmetric difference of Ũk and Ũl. It is clear
that on average the following statements hold:

∣
∣
∣
(
Ũk

⋂
Ũl

)⋂
UD
∣
∣
∣−
∣
∣
∣
(
Ũk

⋂
Ũl

)⋂
UD
∣
∣
∣ = pq

(
N −M −

∣
∣
∣Uk

⋂
Ul

∣
∣
∣
)

, (3)
∣
∣
∣
(
Ũk 
Ũl

)⋂
UD
∣
∣
∣−
∣
∣
∣
(
Ũk 
Ũl

)⋂
UD
∣
∣
∣ = (p+ q − 2pq)

(
N −M −

∣
∣
∣Uk

⋂
Ul

∣
∣
∣
)

− p |Uk \ Ul| − q |Ul \ Uk| .
(4)

Note that as |Uk

⋂Ul| ≤ M , |Uk

⋂Ul|+ |Uk \ Ul| + |Ul \ Uk| ≤ M and q ≤ p,
then the minimums of Equations (3) and (4) are reached when |Uk

⋂Ul| = M .
And these minimums are non-negative iff N ≥ 2M , i.e. when the majority of the
users are static.

Consequently, when the majority of the users are static Equations (3) and (4)
are non-negative. That is, the intersection and the symmetric difference of any
two randomly selected (independent and uniform in the sense of included users)

Ũk and Ũl contains on average more (or equal) static users than dynamic ones.

It is clear that then the same property holds for any number of sets Ũk.
To sum up, if the majority of the users are static, then the group service

dynamic execution protected using uniformly and independently selected group
masks is privacy-preserving. Next in this work we will target only the settings
with majority of the static users.

Note that in real-world group services, for example in aforementioned recom-
mender systems, the utility of computed results depends on the number of users
involved in the computation. Hence, applying the group masking method in prac-
tice may cause the quality degradation of group service results, due to decreasing
the number of users involved in each group service execution. To eliminate such
quality fall-of we additionally restrict generated Ũk by introducing lower-bound
of the number of included users:

∀k ∈ [1, t] :
∣
∣
∣Ũk

∣
∣
∣ ≥ Q

(∣
∣
∣UD

⋃
Uk

∣
∣
∣
)

, (5)

where function Q(x) specifies the minimum number of parties (from x available),
which should participate in a group service execution to compute a result with
the level of utility sufficient compared to what can be achieved by involving all x
parties. We assume that Q is publicly known, but we will not specify it, because
its exact value is defined by a concrete group service and a concrete application.

2.3 Approaches to Select Included Users

As it was stated in Section 2.2, in the settings, where the majority of the users
are static, all subsets Ũk can be selected independently and uniformly, in the
sense of included users. Hence, generating of Ũk can be done without knowing
which users are static and which are dynamic, and which users, except involved
in k-th execution, exist in the system. So, for the sake of simplicity, we can
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assume that a group service is executed only once, and that all existing N users
are employed during that execution.

A group service execution using group masking method processes as follows:
a random subgroup U ⊂ {Ui≤N} is selected, and then result r is computed as
r = f({di | Ui ∈ U}) and outputted privately to A. Generating the subgroup
U is equivalent to generating a vector e ∈ {0, 1}N , such that ei = 1 iff Ui ∈ U .
Such a vector e is named a group mask.

To apply the group masking method in practice we propose three different
approaches for generating a group mask:

Approach 1. Vector e is generated uniformly randomly, such that it contains
exactly m ones, where m ≥ Q(N) is publicly known.

Approach 2. Each value ei is generated independently, such that P (ei=1) = p,

where p is publicly known and satisfies P (
∑N

i=1 ei ≥ Q(N)) ≈ 11.
Approach 3. Vector e is generated in two steps: (i) uniformly random m ∈R

[Q(N), N ] is generated; (ii) e is selected uniformly randomly, such that it
contains exactly m ones. In this approach, not only the value of e but also
the value of m should be hidden from A.

Note that for e generated according to Approach 1, the probability P (ei=1) =

m/N and the value
∑N

i=1 ei = m are known, while for e generated according to
Approach 2, only the probability P (ei=1) = p is known. For a vector generated
according to Approach 3 only the lower bound of P (ei=1) is known: P (ei=1) ≥
Q(N)/N , which is exactly equal to what we can be estimated based on limitation
from Equation (5). Hence, we can claim that Approach 3 generates group masks
e, such that a priori knowledge about e is minimum. Approach 2 leaks more
information on e than Approach 3, and Approach 1 leaks more than Approach 2.

As Approaches 1 and 2 generate group masks with the higher a priori knowl-
edge about the result, this approaches provide more information to potential
attackers than Approach 3 and thus they are less secure. Nevertheless, Ap-
proaches 1 and 2 have their own advantages, which make them preferable in
certain scenarios: Approach 2 can be implemented much more efficiently then
Approaches 1 and 3, and thus it introduces a tradeoff between complexity and
privacy. Approach 1 has one advantage over other two approaches — it generate
group masks with pre-defined number of involved users, which is important for
a certain applications, where the values of parameters, say threshold, depend on
the amount of data processed or the amount of user participated.

3 Preliminaries

In this sectionwe briefly introduce the cryptographicprimitives employed through-
out the paper, namely threshold homomorphic encryption and non-interactive
zero-knowledge proofs.

1 For example, due to de Moivre–Laplace theorem and the fact that Φ(−4) ≈ 0, p
satisfying the following inequation is suitable: Np+ 1−Q(N)− 4

√
Np(1− p) ≥ 0.
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3.1 Threshold Homomorphic Encryption

For our protocols we rely on homomorphic encryption that allows users to process
private data without disclosing them. We use its threshold version to make the
processing secure even in the case when all except one users are colluding.

A cryptosystem is called additively homomorphic when there exist an oper-
ation ⊗ such that applying ⊗ to encryptions of two messages, say x and y,
produces the cyphertext which decryption yields the sum of these messages:

D(E(x) ⊗ E(y)) = x+ y , (6)

where E and D represent the encryption and decryption functions. The public-
key cryptosystem is called K-out-of-N threshold, when contributions from any
K (from in total N) users are required to compute the decryption of a given
cyphertext.

In this paper we use the threshold Paillier cryptosystem either with a trusted
dealer [18] or without it [19]. Both cryptosystems have the same properties, so
we will not distinguish them further.

In the threshold Paillier cryptosystem the public key of the form pk = (n, g, θ)
is used. Here n is the RSA modulus, computed as a product of two random
safe primes 2p′ + 1 and 2q′ + 1; g is the generator of the field Z

∗
n2 such that

g = (n + 1)a · bn mod n2 for random a, b ∈ Z
∗
n; and θ = aβη mod n, where

β is randomly chosen from Z
∗
n and η = p′q′. The corresponding private key is

sk = βη. This key is shared between all users using the Shamir’s K-out-of-N
secret sharing scheme [20]: each Ui receive ski = f(i) mod nη, where f is a
random polynomial in Znη of degree K − 1, whose first coefficient is sk.

To encrypt a message x ∈ Zn with the public key pk = (n, g, θ), E(x, r) is
computed with a randomly chosen r ∈ Z

∗
n:

E(x, r) = gxrn mod n2 , (7)

where Δ = N ! is publicly known and precomputed.
To perform a threshold K-out-of-N decryption of a cyphertext c ∈ Z

∗
n2 con-

tribution of the users from the set S of size K is necessary. Each contributing
Ui ∈ S computes a partial decryption of c:

Di(c) = c2Δski mod n2 . (8)

Partial decryptions are then passed to a party (parties), which would like to
receive a decrypted plaintext, and combined as follows:

D(c) = L
(∏

Ui∈S
Di(c)

2μi mod n2
) · 1

4Δ2θ
mod n ,

where L(x) =
x− 1

n
, μi = Δ ·

∏

Uj∈S

j �=i

j

j − i
.

(9)

To secure the decryption protocol against malicious private key share holders,
the zero-knowledge proofs are used: each user, submitting its partial decryption
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Di(c) should also submit a proof to show that this value was computed correctly,
i.e. a proof of correct decryption. These proofs rely on the verification keys V K
and VKi=1,...,N , which should be generated and distributed together with the
public key during the initialization stage. The key V K is a randomly chosen
quadratic residue in Z

∗
n2 and each VKi is computed as V Ki = VKΔski mod n2.

Afterwards a user can prove that Di(c) was computed correctly by proving that
logV KΔ V Ki = logc4Δ Di(c)

2. We refer the reader to the work [18] for further
details.

Note that if all users behave in a semi-honest fashion, then the decryption pro-
tocol can be simplified to achieve lower computational complexity: each partial
decryption is computed as Di(c) = c4μiΔski mod n2 and the combining function
is computed as D(c) = L(

∏
Ui∈S

Di(c) mod n2)/(4Δ2θ) mod n.
It is clear that this encryption function E has the following properties:

E(x, rx) ·E(y, ry) = E(x+ y, rxry) mod n2 , (10)

E(x, r)c = E(xc, rc) mod n2 , (11)

E(x, r1) · rn2 = E(x, r1r2) mod n2 . (12)

Hence E is homomorphic with respect to addition and multiplication by a con-
stant. Moreover, due to the property (12), any party that knows the public key
can build a cyphertext equivalent to the given one. This operation is denoted as
rerandomization: Rand (c) = c · rn mod n2.

The threshold Paillier encryption is semantically secure under the decisional
composite residuosity assumption in the random oracle model. We refer the
reader to the works [18, 21] for further information on encryption properties.

In this work all operations over plaintext values will be performed over Zn,
for encrypted values over Z

∗
n2 , and for randomness over Z

∗
n. That is, the field

used for each operation can be easily determined by the context, and thus we
will omit writing mod n and mod n2 for simplifying the notation. Also we use
the notation �x� to denote an encryption E(x, r). omitting the randomness for
simplicity.

3.2 Zero-Knowledge Proofs

Zero-knowledge (ZK) proofs are the protocols between two parties: the prover
and the verifier, during which the prover tries to convince the verifier that a
given statement is true, without leaking any information other than the veracity
of that statement. A lot of ZK proofs have been proposed recently, an overview
of the current development can be found in [22].

In case when a common random string is available to prover and verifier, the
existing ZK proof protocol can be made non-interactive using the method by [23].
One of the advantages of resulting non-interactive zero-knowledge (NIZK) proofs
is that they can be used not only in a two-party settings, but in a multiparty
settings with one prover and many verifiers.

For our protocols, we employ a few NIZK proofs: (i) proof of correct decryption
ΠCD(�x� , d, i), which shows that d = Di(�x�), based on ZK proof introduced
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[18]; (ii) proof of correct multiplication ΠCM (�x� , �y� , �z�), which shows that
z = xy, based on the proof introduced in [24]; (iii) and NIZK proof of knowledge
of a plaintext, which is chosen from in a given set, ΠPK(�x� , S), which shows
that x ∈ S, based on the general technique presented in [22].

4 Protocols

In this section we describe how the Approaches 1–3 introduced in Section 2 can
be employed to protect an existing group service against the new group attack
and to provide a privacy of user data in the dynamic settings.

The group service we consider computes the sum of the users’ private data.
More precisely, for users U1, . . . , UN , each holding corresponding private value
di, this group service evaluates

r = f(d1, . . . , dN ) =

N∑

i=1

di (13)

and outputs the result privately to A. The group masking method is applied to
this group service by modifying its function f to the following:

r = f(d1, . . . , dN ) =

N∑

i=1

diei , (14)

where e is a group mask, which is generated according to Approaches 1–3 and
is kept hidden from A and all parties that can collude with A.

We describe the protocols implementing the considered group service and its
versions that provide protection against the new group attack in the two security
settings:

A. Semi-honest settings, where all parties follow the protocol steps correctly,
but can collect the observation during the protocol execution in attempt to
obtain any information about private values of other parties.

B. Malicious settings, where all parties can additionally deviate from the pro-
tocol.

In both settings parties can collude either to disclose the private data of other
(non-colluding with them) parties or to corrupt the computation result. We as-
sume that the number of users participating in each coalition is upper bounded,
i.e. that there exists a predefined number K ≤ N such, that each coalition
involve at most K − 1 users and any number of service parties.

For each of these settings we provide four protocols: reference implementation
of the considered group service without using the group masking method and
three protocols for the group service protected with a group mask generated ac-
cording to Approaches 1–3. Presented protocols are referenced as Protocol PA

1 ,
where “A” denotes the target security settings and “1” denotes used approach
for generating a group mask (0 denotes the protocol without group masking).
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In the following protocols the first K users carry the major part of the com-
putations, therefore for simplifying further notation we assume, that in each
operation by default only that users are involved, i.e. “all users” should be read
as “users Ui≤K”. Note that at least one of these users is not colluding with
others.

We assume that the Paillier K-out-of-N threshold encryption scheme has
already been set up: its private key has been shared between all users (each
user receives share ski) and its public key pk and verification keys V K and
V Ki=1,...,N are known to all parties. In the following protocols all encryptions
are done using pk.

The described protocols work over channels of two types: broadcasted to Ui≤N

and point-to-point between A and Ui. Protocols are designed under the assump-
tion that each party has access to the random oracle and to the common ran-
dom string. The protocols widely use the well-known subprotocols for threshold
Paillier cryptosystem, like secure multiplication [25] and unbound fan-in multi-
plication subprotocols [25, 26].

4.1 Protocols for Semi-honest Setting

In this section we describe the protocols, which are secure in the semi-honest
settings, where parties can form a coalitions involving at most K − 1 users and
any number of service parties. Following protocols preserve the users’ privacy by
hiding their data from all other users and party A, and A’s privacy by hiding the
computation result from all users. We protect the protocols from the new group
attack by using group masking, where a group mask should be kept hidden from
all parties (as all parties can collude with A).

Reference Protocol. First, we describe the protocol for reference group service
implementation, which just outputs the sum of all users data to A without using
group masking. The protocol is described in Protocol PA

0 .

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui≤N broadcasts �di�.

2. Each user computes �r� =
�∑N

i=1 di
�
=

∏N
i=1 �di�.

3. All users jointly run decryption of �r� and open r to A.

Protocol PA
0 . GS without group masking, semi-honest setting.

Security and privacy properties of Protocol PA
0 can be verified as follows. On

Steps 1–2 users receive and process only encrypted data. No information can be
extracted from it as the K-out-of-N threshold Paillier cryptosystem is known to
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be semantically secure against K − 1 colluding private key holders. On Step 3
all users do partial decryption of �r� and A (and all colluding users) gets access
to both computation result r and its partial decryptions Di(�r�). Values Di(�r�)
do not leak any information about ski as it was shown in [18], and the value r
is a private output of A and thus is allowed to be learned by A and colluding
users. Hence, no information about private values is leaked during one protocol
execution. However, as the protocol does not use the group masking, it fails to
protect the privacy in the dynamic settings.

Protocol with Group Masking Using Approach 1. Next, we present the
protocol, which can cope with the new group attack. This protocol uses the
proposed group masking method, where the mask is generated according to
Approach 1.

Approach 1 requires the group mask e to have the following property: e ∈R

{0, 1}N and exactly m its components are equal to 1. To generate such vector we
use the multiple-try method, which process as follows: (i) users generate t vectors
βj ∈R {0, 1}N in parallel such, that ∀l ∈ [1, N ] : P (β·,l=1) = m/N ; (ii) users

select as e the first βj , such that its elements sum bj =
∑N

l=1 βj,l is equal to m.
Multiple-try method is applicable for generating a vector e as the rate of

suitable candidates βj , i.e. vectors satisfying
∑N

l=1 βj,l = m, is fixed:

S = P

(
N∑

l=1

βj,l=m

)

=

(
N

m

)
mm(N −m)N−m

NN
≈
√

N

2πm(N −m)
. (15)

Consequently, by executing the sufficient numbers of tries t, we can guarantee
that the method will fail, i.e. will not generate e, only with negligible probability
2−κ, where κ denotes the statistical security parameter (usually is chosen around
80).

In practice, we can note that S ≥ 1/
√
2πm, and though we can use the

following estimation of the value t: t =
⌈
κ
√
2πm ln 2

⌉ ≈ �1.74κ√m�.
To perform described multiple-try approach in privacy-preserving manner,

we should generate each vector βj jointly random, i.e. in a such way that K
users contribute to it and any subgroup of users together cannot infer, which of
candidates for βj are more likely.

Jointly-random generation of vector β ∈R {0, 1}N is performed in the follow-
ing way: (i) each Ui independently generate vector αi ∈R {0, 1}N ; (ii) generated
vectors are composed into β using exclusive OR (XOR) as β = α1 ⊕ . . .⊕αK ,
where XOR combination is computed bitwise by employing the unbounded fan-in
XOR subprotocol [25]. Obviously, if XOR subprotocol is secure, then even K − 1
colluding users can not extract any information about β.

The following formula holds for βl as for a XOR-combination of K equally
distributed random values αi,l (see [27] for construction):

P (βl=1) =
1

2
− 1

2
(1− 2P (α·,l=1))K . (16)
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Consequently, to satisfy the property ∀l ∈ [1, N ] : P (βl=1) = m/N , each αi

should be generated following the next element distribution:

q = P (αi,·=1) =
1

2
− 1

2
K
√
1− 2m/N . (17)

Note that the formula above is inapplicable in cases when m > N/2 and K is
even. For that cases we suggest to increment the value of K, i.e. to involve one
more user into the procedure of generation of β.

Protocol for Approach 2, which is based on the described tools, primitives from
Section 3 and aforementioned subprotocols, is given in Protocol PA

1 . Security
and privacy of the protocol rely on the security properties of the underlying
cryptographic primitives. Note that opening of values bj on Step 3 does not leak

any information about e, as m =
∑N

i=1 ei is a priori knowledge.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Each Ui generates t random αi,j ∈R {0, 1}N such, that: ∀l ∈ [1, N ], ∀j ∈
[1, t] : P (αi,j,l=1) = q.

2. Users jointly run the unbounded fan-in XOR subprotocol tN times in parallel,
computing for each j ∈ [1, t], l ∈ [1, N ] value �βj,l� =

�⊕K
i=1 αi,j,l

�
.

3. Users locally compute �bj� =
�∑N

l=1 βj,l

�
=

∏N
l=1 �βj,l�, and jointly run t decryp-

tions in parallel to open values bj to U1.
4. U1 selects minimum j, such that bj = m, and broadcasts �e� = �βj�. This step

fails with probability 2−κ.
5. Each Ui≤N computes �diei� = �ei�

di and broadcasts the result.

6. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
1 . GS with 1-st group masking, semi-honest setting.

Protocol with Group Masking Using Approach 2. Protocol PA
1 can be

simplified to achieve relaxed requirements of Approach 2, where only the prob-
ability of user participation is fixed, but not the total amount of participating
users.

Resulting protocol is presented in Protocol PA
2 . This protocol utilizes less

computational resources and discloses less information about generated e than
Protocol PA

1 , but is not applicable for several kinds of group services (see Sec-
tion 2 for examples).

The security of Protocol PA
2 can be verified in a same way as for the pre-

vious protocol. The correctness of generated e, i.e. the fact that it follows the
distribution stated in Approach 2 P (ei=1) = p, can be easily verified using
Equation (16).
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Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Each Ui generates αi ∈R {0, 1}N such, that:

∀j ∈ [1, N ] : P (αi,j=1) =
1

2
− 1

2
K
√

1− 2p .

2. Users jointly run the unbounded fan-in XOR subprotocol N times in parallel,
computing for each j ∈ [1, N ] value �ej� =

�⊕K
i=1 αi,j

�
.

3. Each Ui≤N computes �diei� = �ei�
di and broadcasts the result.

4. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
2 . GS with 2-nd group masking, semi-honest setting.

Protocol with Group Masking Using Approach 3. Now we present the
protocol that uses Approach 3 for generating a group mask. Approach 3, com-
pared to Approaches 1 and 2, generates masks with minimum constraints, and
hence discloses less information to potential attackers.

Approach 3 requires the group mask e to have the following property: e ∈R

{0, 1}N and
∑N

i=1 ei is uniformly random in [Q(N), N ]. To generate such e, three
steps are executed: (i) uniformly random r ∈R [0, N−Q(N)] is jointly generated
(next N − Q(N) is denoted as σ for notation simplicity); (ii) r is converted to
v ∈ {0, 1}σ, which contains exactly r ones; (iii) v is supplemented by Q(N) ones
and permuted to produce e.

To implement the described protocol steps we need to present two additional
protocols: secure unary conversion and jointly random shuffling.

Secure unary conversion. This protocol transforms encrypted integer �r�, which
is from the interval [0, σ], to encrypted vector �v� : v ∈ {0, 1}σ of the following
form:

v = (1, . . . , 1
︸ ︷︷ ︸

r

,

σ−r
︷ ︸︸ ︷
0, . . . , 0) .

We implement this protocol using Lagrange polynomial interpolation. Indeed,

each vector element vi can be computed using the function vi(x) = (x
?≤ i) as

vi = vi(r). Admitted region of vi(x) is Zσ+1, and hence, vi(x) can be evaluated
in all possible σ + 1 points and then represented as a Lagrange polynomial:

vi(x) =

σ∑

j=0

vi(j)

σ∏

l=0
l �=j

x− l

j − l
=

σ∑

j=0

αi,jx
j . (18)

Using the observation above, we can describe the secure unary conversion
protocol. First, all users jointly run the prefix multiplication subprotocol [25, 26]
to compute (

�
r2

�
, . . . , �rσ�) from �r�. And then, each user locally computes for
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all i ∈ [1, σ] �vi� = �vi(r)� = �αi,0�
∏σ

j=1

�
rj

�αi,j
using the same randomness for

encrypting �αi,0�. The common random string can be used as the source of such
randomness.

The protocol is, obviously, secure, as all computations are done over encrypted
data and the prefix multiplication subprotocol is secure.

Jointly random shuffling. This protocol generates a jointly random permutation
π, applies it to a given vector and rerandomizes the result. This subprotocol is
based on matrix representations of permutations.

Matrix form of permutation π =

(
1 2 3 4 5
3 5 2 4 1

)

is the following full-range matrix

P (π):

P (π) =

⎛

⎜
⎜
⎜
⎝

0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

⎞

⎟
⎟
⎟
⎠

. (19)

Applying a permutation to a vector and composing two permutations in the
matrix form are performed using left-multiplication: π(v)T = P (π) · vT and
P (π2◦π1) = P (π1)·P (π2). Moreover, if a permutation matrix and a source vector
are both encrypted, then applying the secure matrix multiplication subprotocol
[25] to them produces rerandomized shuffle, i.e.

�
P (π) · vT �

= Rand (π(�v�))T .
Now we can describe the jointly random shuffling protocol. This protocol

uses t-speedup method, which aims to decrease computational complexity of the
protocol in t times by executing t additional rounds. For simplicity we assume
t | K. The protocol is as follows:

1. Each user generates random permutation πi.
2. Each group of t users builds an aggregate permutation by sequential combin-

ing permutation matrices P (πi), . . . , P (πi+t): Uj receives �Pi,j−1� from the
previous user in a group (Ui sets �Pi,i−1� = �E�), permutes matrix elements
according to P (πj), rerandomizes the resulting �Pi,j� and broadcasts it.

3. All �Pi� are combined using the unbound fan-in matrix multiplication subpro-
tocol [25, 26]. Resulting permutation matrix P (π) then applied to the given
vector using the secure matrix multiplication.

We can use unbounded fan-in matrices multiplication subprotocol in the pro-
tocol above only in case, when the matrix size/field size ratio is negligible:
N/n ≤ 2−κ. As in practice κ = 80 and n is at least 1024 bit long (accord-
ing to recommendation of [28]), the protocol is applicable for the settings with
N ≤ 2944 users, which is quite mild restriction.

The protocol is secure, because all underlying cryptographic primitives are
known to be secure and the following observations hold. For any coalition A

there is at least one group of users Ui, . . . , Ui+t, which involves Ui+k such that
Ui+k /∈ A. It is clear, that due to the rerandomization used by Ui+k on Step 2 of
the protocol, coalition cannot learn the value of Pi,i+k even in case it knows the
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value Pi,i+k−1. Hence, Pi,i+k is uniformly random and unknown to users from
A, and consequently these users cannot select πi+k+1, . . . , πi+t in a such that
resulting Pi = Pi,i+k · P (πi+k+1) · . . . · P (πi+t) will not be random. And thus,
coalition A (and any other) cannot reveal a combined permutation of at least one
group, and consequently, the combined permutation π. Also, this permutation
cannot be traced by comparing the source and the permuted vectors, because the
permuted vector is rerandomized due to the properties of encrypted permutation
matrix.

In the following protocol we use t = 6 as a tradeoff between round and com-
putational complexities: doubling the number of rounds gives a six-time gain in
the amount of computations. For simplicity we assume K = 0 mod 6.

By combining two described protocols we can obtain the protocol, which im-
plements Approach 3 for group mask generation. We present the protocol in
Protocol PA

3 . The protocol is secure, because all underlying subprotocols and
cryptographic primitives are secure. The protocols’ Steps 1–3 and Steps 4–7
should be executed in parallel to reduce an overall round complexity and execu-
tion time.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Users jointly run the bounded random number generation subprotocol [29] and
produce �r� : r ∈ Zσ+1.

2. Users jointly run the prefix multiplication subprotocol and compute
(
�
r2

�
, . . . , �rσ�) from �r�.

3. U1 builds and broadcasts vector �v�:

�vi� =

{
�αi,0� ·∏σ

j=1

�
rj

�αi,j if i ∈ [1, σ],

�1� if i ∈ [σ + 1, N ].

4. Each Ui generates random N-dimensional permutation πi, and builds P (πi).
5. Each Ui=1 mod 6 sends �Pi� = �P (πi)� to Ui+1.
6. For k ∈ [2, 6] one by one: Ui=k mod 6 receives �Pi−1� from Ui−1, computes �Pi� =

�Pi−1 · P (πi)� = �Pi−1�
P (πi), rerandomizes the result and broadcasts it.

7. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-
ing combined permutation matrix �P (π)� =

�∏1
i=K Pi

�
.

8. Users jointly run the secure matrix multiplication subprotocol and compute �e� =
�
P (π) · vT �T

.

9. Each Ui≤N computes �diei� = �ei�
di and broadcasts the result.

10. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
3 . GS with 3-rd group masking, semi-honest setting.



434 D. Kononchuk et al.

4.2 Protocols for Malicious Setting

In this section we describe the protocols, which are secure in the malicious set-
ting, where each party can violate the protocol and can participate in a coalition
involving at most K−1 user. Hence, in this settings we have one additional secu-
rity requirement to thus stated in Section 4.1: the correctness of all computations
done locally by parties should be publicly verified.

We use non-interactive zero-knowledge proofs for verifying correctness of local
operations. When one party sends a proof, all receivers should verify its correct-
ness. We also suppose that on each step of the protocols each party performs
basic consistency checks for each processed values: validating that plaintext in-
deed lays in Zn, randomness in Z

∗
n, and cypertext in Z

∗
n2 . We omit these checks

in the protocol descriptions.
We assume that in the case of detecting a protocol violation, the party aborts.

Note that in the following protocols all data received by the users is sent through
the broadcast channel. Hence, malicious parties cannot cause two honest users
to receive different data. And consequently, if any honest user aborts due to a
protocol violation, others will abort simultaneously. Note that if A is malicious,
it can refuse to check the validity of data received from users, and thus an
undetected protocol violation can occur. But as A receives data only on the last
step of Protocols PB

0 –PB
3 , such violation cannot harm the privacy of the users.

Reference Protocol. Similarly to the previous settings, in the malicious set-
tings we first present the protocol for reference group service implementation
without using the group masking. The protocol is described in Protocol PB

0 .

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui≤N broadcasts �di� together with ΠPK(�di� ,F).

2. Each user computes �r� =
�∑N

i=1 di
�
=

∏N
i=1 �di�.

3. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. User U1 additionally sends the value �r� to A.

Protocol PB
0 . GS without group masking, malicious setting.

Note that the additional transmission by U1 on Step 2 is unavoidable, as
for the verification of the proof ΠCD(�r� , Di(�r�), i) submitted by Ui, A should
known the value of all parameters, including �r�.

Security, privacy and correctness of Protocol PB
0 can be verified as follows. On

Step 1 no information about di can leak, because K-out-of-N threshold Paillier
cryptosystem is semantically secure even against K − 1 colluding private key
holders, and ΠPK is zero-knowledge. Broadcasted encryption �di� is proven to
be formed correctly by ΠPK(�di� ,F). On Step 2, all computations are done
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over encrypted data and thus are secure. Correctness of these computations are
checked by A on Step 3: if value �r� computed by Ui is not equal to �r� available
to A, then A detects incorrectness of ΠCD(�r� , Di(�r�), i). On Step 3, A learns
Di(�r�) and ΠCD(�r� , Di(�r�), i), which reveals nothing about Ui’s secret key
due to security of threshold Paillier encryption and zero-knowledge of ΠCD.
Correctness of the executed partial decryptions are verified by ΠCD. Hence, the
protocol is secure and privacy-preserving in the malicious static setting.

Protocol with Group Masking Using Approach 1. Approach 1 requires
the value e to have the following properties: e ∈R {0, 1}N and exactly m its
components are equal to 1.

To generate such e, we use an approach based on permutations. Users take
the predefined vector

v = (1, . . . , 1
︸ ︷︷ ︸

m

,

N−m
︷ ︸︸ ︷
0, . . . , 0)

and randomly permute it to produce e: e = π(v). The permutation is done using
the jointly random shuffling protocol introduced in Section 4.1.

The jointly random shuffling protocol should be adjusted to remain being
secure in the malicious settings. We require each Ui publishing �P (πi)� to pro-
vide NIZK proof of P (πi) correctness, named ΠPMC , which is described below.
Furthermore, we prefer not to use t-speedup method, as it requires to employ
complicated and computational intensive NIZK proofs of correctness of local
rerandomized permutations of N ×N matrices.

Recalling the example of permutation matrix in Equation (19), one can note
that a permutation matrix is a zero-one matrix containing exactly one 1 in each
column and row. As in practice N < n, this condition can be formalized for any
permutation matrix P (πi), which elements are denoted by pkl, as follows: ∀k, l ∈
[1, N ]pkl ∈ {0, 1} and ∀k ∈ [1, N ]

∑N
l=1 pkl =

∑N
l=1 plk = 1. The feasibility of the

first of these properties can be proved using existing technique introduced in [30]
and denoted ΠBZO(�p11� , . . . , �pNN�). To construct the proof for the second

property note: if
∑N

l=1 pkl = 1, then
∏N

l=1 �pkl� =
�∑N

l=1 pkl

�
= E(1, rk) =

grNk mod N2 = ck and only the user, who built an encryptions �pkl� = E(pkl, rkl),

knows the value of rk =
∏N

l=1 rkl. This user can prove his knowledge by proving

the knowledge of N -th root of (ck/g) = rNk mod N2 using ΠRK(
∏N

l=1 �pkl� , N)
introduced in [31].

To sum up, Ui can prove that �P (πi)� is formed correctly using one invocation
of ΠBZO and 2N invocations of ΠRK , all of which can be done in parallel and
non-interactively. We denote this proof as ΠPMC(�P (πi)�). It is straightforward
that ΠPMC is zero-knowledge. The resulting protocol using this primitive is
described in Protocol PB

1 .
Security, privacy and correctness of Protocol PB

1 can be verified as follows.
Correctness of P (πi) broadcasted on Step 1 is verified by ΠPMC , its privacy is
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Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui generates random N-dimensional permutation πi, builds P (πi) and
broadcasts its encryption �P (πi)� together with ΠPMC(�P (πi)�).

2. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-
ing combined permutation matrix �P (π)� =

�∏1
i=K P (πi)

�
.

3. Each Ui≤N locally multiplies �P (π)� with plaintext vT = (1, . . . , 1
︸ ︷︷ ︸

m

,

N−m︷ ︸︸ ︷
0, . . . , 0)T and

obtains �e�T .
4. Each Ui≤N computes �diei� = �ei�

di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)
and ΠCM (�di� , �ei� , �diei�).

5. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

6. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
1 . GS with 1-st group masking, malicious setting.

preserved as ΠPMC is zero-knowledge and threshold Paillier encryption is se-
mantically secure. Computations on Step 2 are secure, privacy-preserving and
correct due to the corresponding properties of the unbound fan-in matrix multi-
plication subprotocol. Computations on Step 3 obviously do not leak any data.
Their correctness is verified on Step 4: if Ui computes the different value of �ei�
than honest Uj, then Uj will not accept ΠCM (�di� , �ei� , �diei�) as valid. Cor-
rectness of �diei� computed on Step 4 is verified using ΠCM (�di� , �ei� , �diei�),
the fact that used �di� is well-formed — by ΠPK(�di� ,F).

Step-by-step verification of security, privacy and correctness of the other steps
of the protocol is skipped here, as it can be done similarity to Protocol PB

0 .

Protocol with Group Masking Using Approach 2. Approach 2 requires
value e to have the following properties: e ∈R {0, 1}N and for all i ∈ [1, N ]
P (ei=1) = p.

To generate ei with respect to the distribution above, we use the following
technique: (i) users jointly generate N uniformly random ri ∈ [0, 2k−1]; (ii) each

ei is computed as ei = ri
?
< �2kp�. The value of k is publicly known and should

be selected in a such way that relative error �2kp�/(2kp)− 1 is negligible.
As ri is a random number from [0, 2k−1], it can be generated as k independent

bits by employing the random bit generation subprotocol [29]. The comparison

(ri
?
< �2kp�) can be done using the bitwise less-than subprotocol from [32], which

compares bit-decomposed number with publicly known constant. To use this
subprotocol we should additionally restrict the value of k: k < logn−logK−κ−1.
In practice κ = 80 and n is 1024 bit length, and thus this restriction is satisfied
when k ≤ 943− logN .



Privacy-Preserving User Data Oriented Services for Groups 437

The protocol based on the described technique and aforementioned subproto-
cols is given in Protocol PB

2 . Its security, privacy and correctness are based on
the corresponding properties of underlying cryptographic primitives and can be
verified in the same way as for the previous protocols.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Users jointly run the random bit generation subprotocol kN times in parallel and
produce �b1,0� , . . . , �bN,k−1�, where each bi,j ∈ {0, 1}.

2. Users jointly run the bitwise less-than subprotocol N times in parallel, computing

for each i ∈ [1, N ] value �ei� =

�

bi,k−1 . . . bi,0
?
< �2kp�

	

.

3. Each Ui≤N computes �diei� = �ei�
di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)

and ΠCM (�di� , �ei� , �diei�).

4. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

5. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
2 . GS with 2-nd group masking, malicious setting.

Protocol with Group Masking Using Approach 3. Approach 3 requires
value e to have the following properties: e ∈R {0, 1}N and

∑N
i=1 ei is uniformly

random in [P (N), N ].
To generate such e we use the same approach as in Protocol PA

3 : (i) generate
vector v with uniformly random number (greater or equal to Q(N)) of ones,
using secure unary conversion subprotocol; (ii) shuffle v to produce e.

The protocol based on the described technique is stated in Protocol PB
3 . Note

that Steps 1–4 and Steps 5–6 can be executed in parallel to reduce an overall
round complexity and execution time. We leave it to the reader to verify the
security, privacy and correctness of the protocol.

5 Complexity Analysis

In this section we give the complexity of the protocols introduced in Section 4.
We focus on three aspects of the performance of the protocols: number of inter-
active rounds executed, amount of data transferred through the network and the
computational complexity of local operations executed by the parties.

The most computational intensive local operations are exponentiations in the
cyphertext domain. In practice, the complexity of other operations can be con-
sidered as negligible comparing to exponentiation of a cyphertext, and thus, can
be omitted from consideration while estimating the total local workload.

For the sake of simplicity, here we give only the asymptotic approximation
for the number of executed exponentiations and transferred bits. Also we do not



438 D. Kononchuk et al.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Users jointly run the bounded random value generation subprotocol and produce
�r� : r ∈ Zσ+1.

2. Users jointly run the prefix multiplication subprotocol, computing
(
�
r2

�
, . . . , �rσ�) from �r�.

3. Each user computes vector �w�:

∀i ∈ [1, σ] : �wi� = �αi,0� ·
σ∏

j=1

�
rj

�αi,j

using common randomness for encrypting �αi,0�.
4. Users set value �v�:

�v� = (�1� , . . . , �1�
︸ ︷︷ ︸

P (N)

)‖ �w�

using common randomness for encrypting �1�.
5. Each Ui generates random N-dimensional permutation πi, builds P (πi) and

broadcasts its encryption �P (πi)� together with ΠPMC(�P (πi)�).
6. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-

ing combined permutation matrix �P (π)� =
�∏1

i=K P (π1)
�
.

7. Users jointly run the secure matrix multiplication subprotocol and compute �e� =
�
P (π) · vT �T

.

8. Each Ui≤N computes �diei� = �ei�
di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)

and ΠCM (�di� , �ei� , �diei�).

9. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

10. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
3 . GS with 3-rd group masking, malicious setting.

consider the workload and bandwidth that is required to create, transfer and
verify the NIZK proofs employed through the protocols for the malicious setting,
but consider only the number of invocations of these proofs.

The number of interactive rounds, executed exponentiations in the field Z
∗
n2

and number of bits transferred through the network during an execution of Pro-
tocols PA

0 –PB
3 are presented in Table 1. The number of invocations of different

NIZK proofs during an execution of Protocols PB
0 –PB

3 are presented in Table 2.

5.1 Possible Optimizations

The presented protocols are constant-round, i.e. the number of interactive rounds
executed during each protocol run is constant and does not depend neither on
system configuration nor on input data. This property is significant as in prac-
tice the round complexity affect on the overall system performance is crucial,
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Table 1. Complexity of the protocols

Number of rounds Number of exponentiations Number of bits transferred

Protocol PA
0 2 O (N) O (N)

Protocol PA
1 10 O

(
K2Nκ

√
m
)

O
(
K2Nκ

√
m
)

Protocol PA
2 8 O

(
K2N

)
O

(
K2N

)

Protocol PA
3 22 O

(
K2N3

)
O

(
K2N2

)

Protocol PB
0 2 O (N) O (N)

Protocol PB
1 9 O

(
K3N3

)
O

(
K2N2

)

Protocol PB
2 12 O

(
K2Nk

)
O (KNk)

Protocol PB
3 21 O

(
K3N3

)
O

(
K2N2

)

Table 2. Number of invocations of NIZK proofs in the protocols

ΠCD ΠCM ΠPK ΠPMC

Protocol PB
0 O (K) 0 O (N) 0

Protocol PB
1 O

(
K2N2

)
O

(
K2N3

)
O (N) O (K)

Protocol PB
2 O (KNk) O (KNk) O (KN) 0

Protocol PB
3 O

(
K2N2

)
O

(
K2N3

)
O (N +Kκ) O (K)

and thus, proposed protocols can be used for settings with many users, with
higher value of K and other parameters. Nevertheless, for the settings where
only few users are involved, or where the security settings are relaxed (in terms
that maximum number of user involved in each coalition K − 1 is smaller),
protocols with lower communicational and computational complexities can be
used: linear or logarithmic-round protocols.

For example, unbounded fan-in XOR subprotocol can be executed inO (logK)
rounds, using the logarithmic-depth arithmetic circuits. Shuffling subprotocol
can be executed in O (K) rounds using mixnets [33].

Also note that presented protocols are designed for the general case ofK ≤ N ,
while for the settings with higher restrictions on maximum number of colluding
users the more efficient solutions can be proposed. For example, when K ≤ N/2,
i.e. when there is no coalition involving the majority of the users, protocols based
on the Shamir secret sharing [20] can be used.

Other possible approach for optimisations, is to reduce the users’ workload by
passing their duties to the separate service parties. It can be done, for example,
by introducing service parties B1, . . . ,BK such, that no more than K−1 of them
are colluding. It is clear, that in this settings Protocols PA

0 –PB
3 can be carried by

these service parties, while users only need to once pass their encrypted private
data.
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6 Conclusion

In this paper we propose a method to provide protection of user data processed
by a group service in dynamic scenarios, which are more realistic than static
ones for a wide range of applications. This method is realized using a set of
cryptographic protocols, which are designed with performance in mind, offering
the powerful privacy-protection tool for group services in two mostly addressed
security settings. The protocols are shown to be correct, secure and privacy-
preserving. The complexity analysis with respect to the versions in two attacker
models clearly shows the advantages and disadvantages of the protocols in terms
of computational and communication costs, and the level of privacy protection.
Our protocols can be further used as building blocks for implementing privacy-
preserving group services in a dynamic setting.

Acknowledgements. We would like to thank Sebastiaan de Hoogh for sug-
gesting the t-speedup method for the shuffling subprotocol in Protocol PA

3 . This
publication was supported by the Dutch national program COMMIT.
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