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Abstract. Following recent proposals for open and programmable network in-
frastructures, the paper discusses an out of band Virtual Signalling Protocol
(VSP), which bypasses the conventional control information channels and sup-
ports externally defined traffic control and resource management functionality.
The examination of VSP messages that run through the L and U interfaces (de-
fined according to the IEEE P1520 reference model) constitutes one of the ma-
jor objectives of the paper. The functionality of VSP is tested by means of an
implemented prototype platform, which enables the portable deployment of ad-
vanced traffic control and resource management algorithms in heterogeneous
ATM networks.

1   Introduction

Traffic control and resource management are important mechanisms for any Quality
of Service (QoS) providing network environment and this importance will continue to
grow towards broadband networking environments of the future, as more complex
services and stringent and more diverse QoS demands will emerge. In this setting,
signalling systems supporting advanced traffic control and resource management
functionality have to play a key role towards the assurance of requested QoS and the
simultaneous maximization of network availability and minimization of network op-
erational costs.

The native ATM signalling protocols (e.g., ATM Forum UNI 3.1 [1], ATM
Forum UNI 4.1 [2], ITU-T Q.2931 [3], ATM Forum PNNI 1.1 [4], etc.) support only
internally defined traffic control and resource management functionality through in-
band signalling channels. This fact contradicts the current trend of open signalling,
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which enables external functionality through out-of-band generic/abstract control
channels. The main idea of OpenSig (Open Signalling) [5,6] concerns the use of pro-
grammable interfaces, which provide open control and management access to various
network devices (e.g., ATM switches, IP and MPLS routers, etc.). According to
OpenSig, the control/management and data paths are strictly separated and the de-
fined open programmable interfaces can be seen as channels for flexible and transpar-
ent deployment of new advanced control and management algorithms.

Based on the OpenSig concept, various related works appear in the literature.
Among them, we can discriminate: An attempt for standardisation of open program-
mable interfaces for control and management of various types of networks (e.g.,
ATM, SS7, IP, etc.) by the IEEE P1520 project [7], a virtual out-of-band signalling
protocol by the Xbind project [8], and the Tempest open programmable framework
[9]. For the implementation of such out-of-band open signalling protocols, a variety
of architectures (e.g., FIPA [10], OMG MASIF [11], etc.), communication technolo-
gies (e.g., CORBA [12], DCOM [13], Java [14], etc.) and agent platforms (e.g.,
Grasshopper [15], Voyager [16], etc.) can be used.

Major issues for the selection of the appropriate open signalling protocol are
the availability and the simplicity of the employed programmable interfaces, the ma-
turity of the architectural framework that is going to be followed and the performance
overheads, which enforces in the underlying network and the required implementation
time [5]. Satisfying in an adequate level these issues, the paper presents a Virtual Sig-
nalling Protocol (VSP), which bypasses the conventional control information chan-
nels and supports externally defined traffic control and resource management func-
tionality. The presented VSP builds upon earlier work [17]; in introducing constructs
allowing the interaction of traffic control with resource management, towards in-
creasing the network’s potential for acceptance of calls in a dynamic way.

Besides the signalling protocol itself, the paper outlines a generic framework
for the employment of several IEEE P1520 constructs, such as L and U interfaces, as
well as NGSL (Network Generic Services Layer), in a standardised and systematic
way for the purposes of device independent traffic control and resource management.
The functionality of the VSP is tested through an implemented Java-based prototype.

The organization of the rest of the paper is as follows: Section 2 gives the
overall architectural framework, which incorporates the proposed virtual signalling
protocol. Section 3 presents the protocol, while Section 4 outlines the prototype im-
plementation and comments on the protocol’s performance. Finally, Section 6 con-
cludes the paper.

2   Software Switch Extensions Enabling Virtual Signalling

The incorporation of an open signalling protocol supporting externally defined traffic
control and resource management functionality into a heterogeneous networking plat-
form requires out-of-band control paths/channels, which can bypass the ones estab-
lished by fixed standards signalling protocols. Addressing this issue, Figure 1 presents
a generic architectural framework, which enables enhanced traffic control and re-
source management functionality to be communicated between the nodes of a hetero-
geneous network. A detailed description of the framework may be found in [17]. The
key-idea is that the network nodes export appropriate well defined programmable in-
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terfaces to distributed software entities, thus providing a virtual environment for the
deployment of traffic control and resource management functionality on top of the
nodes. The deployed functionality is then exchanged between the software entities
through an out-of-band signalling channel.
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Fig. 1. Software switch extensions enabling virtual signalling

In terms of P1520, each node in Figure 1 exports a generic and switch-
independent L interface, enabling the information flow between traffic control and re-
source management algorithmic components and the so-called Virtual Network De-
vice Layers (VNDLs). A VNDL constitutes a virtual (software) representation of a
node, containing all information relevant to the control and management algorithms
operating on top of the node. In the presented architecture, the VNDL (i.e., the col-
lection of appropriate managed/controlled objects) is built around a switch-
independent MIB, called SI-MIB, which provides a portable virtual representation of
the resources and traffic load conditions within the corresponding network node. For
an in-depth description of the SI-MIB see [18]. The communication between SI-MIB
and its corresponding underlying network node is based on a switch dependent CCM-
interface.

The distributed software entities implementing the control and management
algorithms (i.e., TCMs and RMMs) are uncoupled from equipment details by refer-
ring to (and manipulating) only switch-independent information contained in the SI-
MIB. These entities belong to NGSL; their communication coordinated by CFMs
through an out-of-band signalling channel. CFMs take instructions by a centralised
(per domain-level) routing module, which is responsible for intra-domain routing in a
heterogeneous ATM core network.
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 The following section presents an appropriate out-of-band Virtual Signalling
Protocol (VSP) to support the control information exchange of just described archi-
tectural framework.

3   The Virtual Signalling System

As indicated in Figure 1, the exchange of control information between switches oc-
curs at the virtual level out-of-band, i.e., outside the control paths/channels estab-
lished between the inter-connected switches, bypassing ATM signalling. This section
describes the exchange of VSP messages for handling a call request/call release.

The VSP’s traffic control functionality concerns CAC, while the corre-
sponding resource management functionality refers to bandwidth redistribution be-
tween Virtual Multiplexing Units (VMUs). A VMU corresponds to a group of Virtual
Paths (VPs) sharing common resources (part of the output port’s buffer space and link
capacity) and serving a traffic mix that consists of connections with the same QoS re-
quirements. Heterogeneous QoS may be supported by appropriately distributing traf-
fic into different VMUs. In this context, the generic distributed software entities TCM
and RMM of architectural framework of Figure 1 shift to CAC modules and Band-
width Redistributor (BR) modules correspondingly.

3.1   Call Set-up

In the process of handling a new call request, one of the following two things may
happen:

1. The CAC modules of all nodes across a path between the source and desti-
nation terminal accept the call request.

2. One of the involved CAC modules rejects the new call request. In that case,
the currently checked route is generally rejected and an alternative (if it ex-
ists) is examined. However if the route under examination is the last possible
one, instead of directly rejected, the offending CAC module triggers its cor-
responding BR to redistribute the bandwidth between VMUs to make room
for placing the new call. If the redistribution is successful in all offending
CAC modules, the call request is accepted, otherwise it is rejected.

(Note that for both cases, we consider whenever it is applicable that destination ac-
cepts the call request.)

For the first case (i.e., an accepted call request without bandwidth redistribu-
tion), the interactions between the end terminals (Source and Destination respectively)
and the routing module, CAC modules, call forwarding modules and SI-MIBs that are
placed on top of the switches are depicted in Figure 2. (The number associated with
each message in Figure 2 indicates the message’s relevant position in a chronological
sequence.)

As shown in Figure 2, the source terminal sends a call request message
(call_req) to the routing module. Parameters of call_req are the source and
destination terminal identification strings (parameters source_id and dest_id
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Fig. 2. Call acceptance without bandwidth redistribution

respectively), the requested level of service quality (parameter QoS), the expected
traffic profile of the requested call (parameter TrProf) and a unique identification
number (parameter RefNum), used to distinguish the call.

Receiving call_req, the routing module defines the possible routes that
connect the source terminal to the destination one and selects to examine one of them.
The routing vector of the selected route (object RVector) is wrapped together with
the information of message call_req into a new message call_req_cont,
which is forwarded to the call forwarding module of the first node participating in the
chosen route (Source Call Forwarding Module - SrcCFM). The object Rvector
contains the pairs of input port – input VPI (parameters inputPortID and input-
VPI respectively) and output port – output VPI (parameters outPortID and out-
VPI respectively) for every hop contained in the selected route.

Moving now in the i-node of the routing path between source and destina-
tion, i-CFM sends to its corresponding CAC module (i-CAC) a message start_CAC
in order to commence the CAC process. The message start_CAC contains the pa-
rameters outPortID, QoS, TrProf and RefNum. i-CAC uses the first two of
these parameters in a message ask_info in order to retrieve from the i-SI-MIB (i-SI-
MIB), through a message CAC_info, appropriate information for the application of
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a CAC scheme. This information consists in available resources (parameter res) and
the load conditions (parameter BackgroundTraffic) within the (specified by the
parameters outPortID and QoS) Virtual Multiplexing Unit (VMU) of the source
switch (SrcSwitch).

Using the information of the parameters QoS, TrProf, res and Back-
groundTraffic, i-CAC performs a CAC scheme in order to accept or reject the
new call request. Given that i-CAC accepts the call (see Figure 2), it proceeds to
compute the new value updBackgroundTraffic of the parameter Back-
groundTraffic. Then, it firstly issues a message update_VMU to i-SI-MIB in
order to update the load conditions of the examined VMU (preventive bandwidth res-
ervation) and secondly it informs i-CFM, through a message CAC_answer, for the
success of the CAC process. CAC_answer includes a boolean parameter answer,
which actually contains the positive CAC answer for the examined scenario.

Subsequently, i-CFM forwards the message call_req_cont to the next
node along the route being examined and the aforementioned process is repeated on
all nodes along the selected route until the destination switch (DestSwitch). After the
receipt of CAC_answer by the destination CF module (DestCFM), the message
call_req_cont is forwarded to the destination terminal. The destination terminal
(according to the presented scenario) accepts the call request and returns a positive
message call_result to DestCFM (the boolean parameter result of the mes-
sage has the value true). The latter transfers this message to the previous call for-
warding module, which passes it to its own previous call forwarding module, etc.
Eventually, the message call_result reaches at SrcCFM and from there at the
routing module, which creates the message final_call_result and passes it to
the source terminal informing it about the call acceptance.

Besides passing a message call_result to the previous call forwarding
module, each call forwarding module sends a message connection to its SI-MIB
(with parameters inPortID, inVPI, inVCI, outPortID, outVPI, out-
VCI) directing the SI-MIB to create the appropriate VC cross-connections into the
underlying ATM switch. At the final stage, the successful set-up of a new call is the
result of the application of messages connection from all the involved to the new
call ATM switches.

If i-CAC does not accept the call request and provided that the examined
route is not the last one, it delivers a negative message CAC_answer (the parameter
answer takes the value false) to i-CFM. Subsequently, i-CFM sends to CFM of the
preceding node along the current route a negative message call_result (the boo-
lean parameter result of the message has the value false). In addition, each CFM
informs its corresponding SI-MIB to release the pre-reserved resources through a
message reverse_VMU. Eventually, the negative message call_result reaches
at SrcCFM and from there at the routing module. Subsequently, the routing module
starts to check an alternative routing path, which connects the source and destination
terminals.

The second examined case of call set-up concerns an accepted call request
after bandwidth redistribution. This scenario (see Figure 3) starts at the point where
the call request has been rejected across all the possible routes except the last one,
which is under check.
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Fig. 3. Call acceptance after bandwidth redistribution

According to Figure 3, the signalling path for this case is similar with the
path of the previous case until the point where i-CAC performing a CAC scheme does
not accept the requested call due to the fact that the examined VMU does not have
adequate resources to serve the request. Then, i-CAC sends a message engage_BR
to the respective Bandwidth Redistributor (i-BR) in order to initiate the bandwidth re-
distribution process. The latter scans the port (indicated by the parameter outPor-
tID of the message engage_BR) in which the examined congested VMU is at-
tached and finds another VMU with bandwidth surplus. The amount of bandwidth
needed by the incoming call is released from the VMU with unused residual band-
width and appended to the congested VMU, thus allowing it to serve the new call re-
quest. i-BR notifies i-CAC about the successful bandwidth redistribution through the
message redistribution_ok. Receiving this message, i-CAC continues its op-
eration as in the case of accepted call request without bandwidth redistribution. The
difference from the previous case is that it is the BR module, which updates the load
conditions of examined VMU (adding the new call request) and not the CAC one.

The last case in the call set-up area, which is depicted in Figure 4, concerns
the call rejection by the network.
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Fig. 4.  Call rejection by the network

According to this case, the call request has been rejected in its all possible
routes except the last one (as in Figure 3) where a i-CAC rejects the call request and
its corresponding i-BR fails to perform bandwidth redistribution. i-BR announces to i-
CAC its failure though the message redistribution_failure. Subsequently,
i-CAC sends to i-CFM a message CAC_answer (where the boolean parameter an-
swer of the message has the value false). i-CFM creates a negative message
call_result (the parameter result has the value false) and forwards it to
the previous call forwarding module along the route, which passes it to its own previ-
ous call forwarding module, etc. Eventually, the negative message call_result
reaches at SrcCFM and from there at the routing module, which creates the negative
message final_call_result (the parameter result has the value false)
and passes it to the source terminal informing it about the call rejection.

Besides passing a negative message call_result to the previous call
forwarding module, each call forwarding module (having performed bandwidth pre-
reservation) sends a message reverse_VMU to its SI-MIB (with parameters out-
PortID, QoS and BackgroundTraffic) directing the SI-MIB to recall to the
corresponding involved VMU the original load conditions.
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3.2   Call Release

According to the call release scenario depicted in Figure 5, the source terminal initi-
ates the call release function by sending a message call_release to the routing
module. The message call_release contains a parameter RefNum, which is used
by the routing module to locate the first node of the routing path under release. Then
the routing module forwards the message call_release to the call forwarding
module of the first node (SrcCFM), which passes it both to its corresponding CAC
module (SrcCAC) and to the next call forwarding module along the route under re-
lease.
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Fig. 5. Call release

Considering the i-node of the routing path between source and destination, i-CAC
forwards the message to the i-SI-MIB and gets a reply in the form of a message
call_release_info. The message call_release_info contains the pa-
rameters QoS, TrProf, res and BackgroundTraffic. These parameters are
used for the calculation of the updated (the final amount after the call release) back-
ground traffic on the specified VMU (parameter updBackgroundTraffic). The
VMU is updated with the new load conditions through the message update_VMU,
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sent by i-CAC to i-SI-MIB. Besides the message update_VMU, i-CAC sends a mes-
sage release_conn (with parameters inPortID, inVPI, inVCI, outPor-
tID, outVPI, outVCI) to the i-SI-MIB, directing it to remove the VC cross-
connections created to serve the released call. The aforementioned procedure is per-
formed on every node along the route, leading, as requested by the source terminal, to
a complete call release from the network.

As an overall observation on Figures 2,3,4 and 5, it is apparent that some of the
messages run through the L and U interfaces (defined according to the IEEE P1520
reference model), while some others are internal messages within NGSL.

4   A VSP Prototype Implementation

A prototype implementation of VSP runs over a software platform, which can be in-
stalled over heterogeneous ATM network islands for providing advanced traffic con-
trol and resource management functionality. The platform includes various distributed
software entities created by extending an intelligent agent platform, which was built
using the BAT object library [19]. VSP is implemented through facilities based on the
Java Remote Method Invocation (JRMI) programming and the powerful mechanism
of signature matching. The invocation of methods belonging to the distributed soft-
ware entities of the platform is based on the agent ontology specified by FIPA 10. The
directory services of BAT are employed to locate and invoke the agents in the distrib-
uted environment. Every agent incorporates at least one worker module, which is usu-
ally implemented in a thread form, to carry out the agent’s transactions.

Figure 6 outlines a portion of the platform, operating on top of a small ATM net-
work consisting of one domain with three switches. As shown in this figure, the sys-
tem consists of a number of distributed software entities that communicate through
VSP. Five different types of entities may be identified:

1. Terminal Agents – TAs: Software agents representing the terminal devices.
They are responsible for the message call request creation providing
the user interface for the definition of the corresponding parameters
(source_id, dest_id, QoS, and TrProf).

2. Routing Agent – RA: Single central agent responsible for intra-domain
routing in a core ATM network. RA also has coordinating responsibilities.

3. CAC Agents – CAs: Distributed agents responsible for the performance of
the CAC function on the ATM switches. CAs are also responsible for the
forwarding of messages call request and call result. Each CA
groups with its corresponding SwWA agent, leading to a “one-to-one” for-
mation dedicated to the respective underlying ATM switch.

4. Switch Wrapper Agents - SwWAs: Delegated agents that wrap the ATM
switches by abstracting their hardware resources into the SI-MIB. Switch
wrapper agents sit on top of the ATM switches and provide the virtual envi-
ronment for the deployment of traffic control and resource management op-
erations on the switches.

5. Bandwidth Redistributors – BRs: The main purpose of a BR is the conges-
tion relief of VMUs. It achieves this goal by transferring to a congested
VMU a part of the surplus bandwidth of a VMU attached to the same port.
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The bandwidth reallocation takes place when an incoming call cannot be
served by a fully utilized VMU along its route.
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Fig. 6. A VSP prototype implementation

For details on the structure, functionality and implementation of the above
entities, the reader is referred to [20]. Using the implemented prototype, the VSP call
performance was benchmarked. Figure 7 depicts the VSP call set-up (without BR in-
volvement) and call release delays. The involvement of BR in a call set-up process
adds 5ms per hop. As Figure 7 shows, the average call set-up delay on a single Fore
ASX-200BX ATM switch was measured at 76ms, increasing almost linearly with the
number of nodes/hops per route. The corresponding average call release delay was
measured at 33ms, increasing also linearly with the number of nodes/hops per route.
The almost linear increment of VSP call set-up and release time constitutes a signifi-
cant proof of protocol’s robustness and scalability. Furthermore, concerning the fair-
ness of VSP, it should be noted that all calls are treated equally.

An actual picture of VSP call performance is given through the comparison
of VSP call set-up and release time with the native UNI 3.0 ones. According to [21],
for a Fore ASX-200BX ATM switch (this type of switches are used in the imple-
mented prototype) the call set-up and call release delays are 27ms and 6ms respec-
tively. The variation of VSP’s delays to UNI 3.0 ones can be both justified and ac-
cepted. It can be justified by the out-of-band nature of VSP and performance
limitations of Java. It can be accepted considering that the goal of VSP is not to give
call set-up/release times faster than the conventional standardized signaling protocols
achieve, but to provide externally defined traffic control and resource management
functionality.
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Fig. 7. VSP call performance

5   Conclusion

Following recent proposals for programmable network infrastructures, the paper pres-
ents a Virtual Signalling Protocol (VSP), which bypasses the conventional control in-
formation channels and supports externally defined traffic control and resource man-
agement functionality. Furthermore, the paper gives a generic framework for the
employment of the IEEE P1520 L and U interfaces, as well as of NGSL in a stan-
dardized and systematic way for the purposes of device hardware independent traffic
control and resource management.  It should be noted that, although the protocol pre-
sented in the paper is tailored to ATM networking equipment, it is fairly general and
can be extended for covering network nodes of a different technology (provided that
this technology supports the potential for QoS concept and at least some notion of
“connection” or, more generally, “traffic flow”).
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