Realizing on Demand Networking

John Strassner

Intelliden Corporation
90 South Cascade Avenue, Colorado Springs, Colorado 80903
john.strassner@intelliden.com

Abstract. The promise of e-business is being increasingly adopted. However,
applications are getting more sophisticated, and often require conflicting
resources and/or conflicting network configurations. Meanwhile, the
environment in which these applications operate is becoming more complex.
This paper describes what is needed to build On Demand Networking
capabilities. It will be shown that two related problems need to be overcome.
First, the services that the network provides are in general not related to how the
business operates. Second, network management must undergo a revolutionary
change — one that enables it to become autonomic. The result of this approach is
a new genre of management applications that ensure that the network delivers
the services asked of it by the business, on demand.

1 Introduction

Dr. Irving Wladawsky-Berger defines on demand computing this way: “An on
demand business is one that can respond with complete flexibility to changing market
conditions, customer demand or external threat, in real time, as they are occurring,
because all its business processes are thoroughly integrated” [1].

This is certainly a compelling vision. Imagine, for example, an autonomic network,
one which can self-heal, self-configure, self-protect and self-optimize according to
changing needs and the changing environment. Unfortunately, this vision looks
extremely unlikely given today’s management environment. It iS common practice to
use multiple management systems from the same vendor to manage different devices
manufactured by that vendor. Using heterogeneous devices exacerbates this problem,
since different languages and programming models are introduced. In addition, there
is no connection between management software to control network devices and
services and applications that provide revenue. Since Operational Support Systems
(OSSs) from best-of-breed applications, there are usually multiple management
applications of different categories.

Most importantly, however, there is no standard way to tie business rules that describe
how the organization operates to the network. Thus, there is no means to ensure that
the network delivers the services that the business needs at any given time. Until this
is solved, then it is impossible to have the network change the services that it provides
to accommodate changing business needs, because it is unaware of business needs in
the first place.

A. Marshall and N. Agoulmine: MMNS 2003, LNCS 2839, pp. 313-327, 2003.
© IFIP International Federation for Information Processing 2003

314 J. Strassner

This paper presents a new approach towards network management. This approach is
based on two observations. First, current network management approaches are not
enabling Service Providers or Enterprises to use business rules to develop and deploy
device configuration changes. Solving this problem enables business rules to drive the
configuration of the network. Second, any form of autonomic operation starts with a
simple premise: the autonomic entity must know itself. The solution must leverage the
knowledge of the system and its environment, and embed in the system the ability to
react to changes in the environment. This paper proposes a variant of the OMG’s
Model Driven Architecture (MDA) [2] as one way to implement this “higher
intelligence”.

The organization of this paper is as follows. Section 2 defines terms used in this
paper. Section 3 describes the current problems with network management and
anticipates new problems that will arise, based on the ever-growing complexity of
applications and user tasks. Section 4 provides a brief overview of the DEN-ng
information model (Directory Enabled Networks new generation) which is being
developed in the TeleManagement Forum (TMF). Section 5 describes the roles of
policy and process management, and how the DEN-ng models support them. Section
6 examines the generic MDA approach. Section 7 describes specific enhancements
made to MDA by this new On Demand Networking approach. Section 8 presents
conclusions and future work. Finally, Section 9 lists references for this work.

2 Terminology

Definitions in this section are taken from [3].

2.1 DEN versus DEN-ng

DEN, or Directory Enabled Networks [4], is a specification of an object-oriented
information model describing the entities in a managed environment, and how they
are related to each other. It also specifies a model mapping to an (L)DAP
implementation. The original DEN specification is not solely a mapping to an LDAP
model, nor does it have anything to do with WBEM, as [5] states.

DEN new generation is the next version of the DEN specification. It is tightly bound
to the TMF NGOSS architecture [6], and contains business, system, and
implementation entity definitions. Its main purpose is to define the functionality and
synchronize the relationships between Customers, Processes, Products, and Network
Services and Capabilities. It is the model that is being used in the approach described
in this paper.

2.2 Policy
A Policy is a set of rules that are used to manage and control the changing and/or

maintaining of the state of one or more managed objects. (Note in particular the use of
state in this definition, which is new — see [3] for more detail.)

Realizing on Demand Networking 315

2.3 Information Model versus Data Model

An information model defines the properties, operations, constraints, and relationships
of managed objects. It is independent of any specific repository, software usage,
platform, or access protocol.

In contrast, a data model is a concrete implementation of an information model that is
bound to a particular platform. It includes data structures, operations, and rules that
define how the data is stored, accessed and manipulated.

2.4 Model Mapping

A model mapping is a translation from one type of model to another type of model.
Model mapping changes the representation and/or level of abstraction used to another
representation and/or level of abstraction.

2.5 Business Driven Device Management (BDDM)

BDDM is defined as the ability to use business rules to manage not just the
construction of configuration files and commands for a device, but also to enforce
how the configuration of a device is created, verified, approved, and deployed. With
business-driven device management, configuration management becomes the
foundation for managing the entire network (see [7] for more detail).

3 Problems in Current Network Management Approaches

Current network management solutions, and especially OSSs, suffer from the inability
to use business rules to translate business needs and processes into device
configuration changes. This is being exacerbated by the ever-increasing complexity in
applications and the desire to build one network to serve the needs of multiple people.
This section will examine some of the problems in building an OSS.

3.1 Barriers to Operational Efficiency and Data Exchange

The three largest barriers to operational efficiency are: (1) fragmented business
processes, (2) fragmented data, and (3) incompatible systems with weak levels of
integration.

There are always business rules that govern how devices should be managed.
Unfortunately, these business rules tend to be ignored, because of the lack of
correlation between business rules and network configuration. For example, people
shouldn’t simply telnet into a router and start typing CLI to fix a problem. Yet they
do, because business processes either aren’t specified or are ignored. Unless the
network is treated like any other business asset, it will always be handled differently,
and it will always be “OK” to ignore business process. We need a paradigm shift —

316 J. Strassner

one which encourages the user to “play by the rules”. This means that we need to
automate how business rules govern network configuration, because no matter how
pretty and functional the GUI, people won’t use it if they can find an alternative
means to do the same job faster.

This paradigm shift requires a common information model to represent not just
different managed objects, but also the interaction between these managed objects.
(The question of why another information model should be built is answered in the
next subsection.) Currently, data exists as isolated information islands, because there
is no common information model that is used in building an OSS. This is because of
the proliferation of stovepipe management applications, and is shown in Figure 1
below (which is taken from a real OSS in the industry). Note that the figure is
supposed to look complicated.

Current systems, like that shown in Figure 1, are designed using stovepipe
applications because stovepipe applications provide best-of-breed functionality.
Unfortunately, each stovepipe application is designed with itself as the “center of the
universe”. This creates an interoperability nightmare, because objects and information
are continually renamed and redefined. It leads, inexorably, to systems with an
amazing amount of complexity, as shown in Figure 1. Such systems have a large
number of brittle interconnections, which means changing any component in this OSS
is a challenging task. Realizing that vendors won’t discard existing applications just
because a new information model exists, the approach is rather to build a common
mediation layer between these disparate management applications. This in turn means
that such mediation must be inherently extensible and automated to keep up with the
changing business demands.

3.2 Why Another Information Model?

Before the advent of DEN-ng and the TMF’s SID (Shared Information and Data)
model, there were three main policy models in the industry: (1) the DEN model [8]),
(2) the IETF model (as defined in [9], [10], [11], and [12], and (3) the DMTF model
([13]). Of these, DEN was used as the basis for both the IETF and the DMTF models.
There are in addition other efforts, such as Ponder ([14]), that imply additions and/or
changes to one or more of these models.

Policy models are critical to the approach proposed in this paper. However, they need
to be integrated with models of other objects (e.g., users, services, and so forth) so
that policy can be used to control these other objects.

With the exception of the DEN-ng model, the problem with all of them to date is
fourfold. First, they all focus on modeling the current state of an object. While this is
important, this does not describe the life cycle aspects of the managed object.
Therefore, models have only been used in the design process, and not in the actual
management process.

Second, current models can be categorized as either business or system models, but
not both. This makes it impossible to implement BDDM, and ensures that the
business and networking worlds will remain separate.

Realizing on Demand Networking 317

Fig. 1. A Traditional OSS

Third, previous models focus on policy as a domain that is only loosely integrated to
other domains. In contrast, the main use case for the DEN-ng policy model was to
define a policy model that was closely integrated with the rest of the managed

318 J. Strassner

environment. This would enable the policy information model to define how policy
interacted with the rest of the managed environment.

Finally, previous information models have been built without considering how to
derive data models from them. Management data has too many diverse characteristics
to enable all types of management data to be stored in a single repository. Model
mappings provide formal methods to translate between models, and enable different
repositories to be federated.

3.3 Sharing and Reusing Data

Stovepipe applications, such as those shown in Figure 1, cause many integration
issues. A GUI shows its own application-centric view of the piece of the network that
it is managing, not of the entire system. However, an application is simply a
realization and manipulation of its underlying object model. Object models prescribe
their own view of the world upon the applications and systems that use them.
Unfortunately, this means that the same data will be needlessly redefined, or
restructured, or worse, conflict with other management data, instead of being reused.
This in turn implies that applications that could have used information from other
applications must instead build a duplicate process to obtain that data. For example, a
provisioning application requires up-to-date topological information as well as
knowledge of which hardware is running which release of which operating system.

3.4 Using Business Rules to Drive the Configuration of the Network

There are two conflicting desires for network design. First, people want to use the
same network to do more things, rather than have multiple networks doing specialized
tasks. Second, more people are using networks with more sophisticated applications.
The problem is that applications having vastly different resource utilization
requirements need to peacefully coexist and run concurrently on the same network.
Clearly, business rules must be used that decide which application gets priority usage
of shared resources. In order to meet these requirements, the current focus of network
management products must change to enable business rules to drive how the network
is configured.

DEN-ng uses the concept of viewpoints (as defined in RM-ODP, in [15]). A
viewpoint is an abstraction obtained by using a selected set of architectural concepts
in order to focus on a set of particular concerns within a system. One can think of the
DEN-ng models as organized along two dimensions — knowledge domain and
viewpoint. For each knowledge domain (e.g., policy, resource, service, and so forth),
three viewpoints (business, system, and implementation) abstract the entities and
relationships in that viewpoint. This makes DEN-ng unique, as other information
models don’t have the concept of viewpoints. This makes it possible to connect the
business, system, and implementation viewpoints, which enables business needs to be
translated to implementation software and hardware. This is a prerequisite to meeting
the needs of On Demand Networking.

Figure 2 shows a simplified UML diagram of how DEN-ng solves this problem.

Realizing on Demand Networking 319

sgnsUipFor sLA povems

1]

Custom er buys Product o Chan ges to SLA

Changes — = uses / ‘“-..\\ p—
to Product 1a/ \ 1.n

Device _Senvice |

| 1.0 "*H

Changes to o has
Device oy in dafinge

. Confi .
Configuration e e

T Changes to Service

Fig. 2. Business Changes Must Drive Network Configuration

Previous solutions have not integrated multiple viewpoints. In contrast, DEN-ng links
them firmly together by defining the (business) notion of a Product as containing
Resources and Services. Figure 2 is a simple UML drawing that shows that a
Customer buys one or more Products. (Note that the DEN-ng models are much more
complex.) Each Product uses one or more Devices, and provides one or more
Services. Note that Configurations exist for the Device and the Services that the
Device provides. Changes to a Product, a business definition of a Service, or an SLA
all affect the Devices and/or network definitions of Services in the Product, and hence
are reflected in Device Configuration changes. Finally, the network is driven by
business changes!

4 Overview of DEN-ng

The original goal of DEN was to define a set of network services that met the needs of
a set of applications according to the policies that were applicable at the current
moment. In essence, it proposed a lingua franca that enabled applications to express
their needs in terms that the network could understand, and vice-versa.

The DEN-ng work is being done in the TeleManagement Forum (TMF - see
www.tmforum.org) because the TMF had already started work on its NGOSS
architecture, and because the TMF realized the value of having a set of models that
met the requirements of the previous section.

DEN-ng, like DEN, is built around using a finite state machine model to describe and
control managed entities (another key point that other information models do not
have). DEN-ng defines three fundamental types of classes to support a finite state
machine: (1) classes to model the current state of a managed entity, (2) classes to

320 J. Strassner

model the changing of state of a managed entity, and (3) classes to control when the

state of a managed entity is changed.
Conceptually, DEN-ng is built as a framework of frameworks, as shown in Figure 3

below.

Core Framework
Resource Service Policy
— Framework Framework Framework
RS 2
= Q ae] les] o]
Q Q o5 < by A
sl |2|s |8 |25 |7 5 z
g lg =18 |= o |2 |m E|m 2| = T
- o S I9 = =] = | =
= Zlz|8|g |2 |E|2ve|BEve|Eag|lEa
= k< <) © IS & g 328 1|13¢5 S |38
sl |glse|5|2|z|Z2|2ze|2:z¢6|2¢8|ez
s|&|®|%|&|z|E|z|582|552|58|5¢8
— —) (¢ o D o] o=
g |2 |2|2°E|2"8|28|2E
& jud & =3 =3
— —_ — /1) [4)°]

Fig. 3. Simplified View of DEN-ng

The Core Framework contains high-level entities and relationships that enable more
specific domain models (even from other standards bodies and fora) to be integrated
into a single cohesive whole. The Product model provides an abstraction for
containing Resources and Services, and links both to other business entities, like
Customer. The Location model enables semantics to be attached to locations. The
Party model is an abstraction for individual and groups of users, along with
organizations. The event model is based on the UML metamodel definition of event,
and has been refined to include RM-ODP concepts of announcement and
interrogation [16]. The Interaction model is based on several UML metamodel
concepts, such as Collaborations, and is used to define the semantics of how entities
interact with each other. The Resource Framework provides additional abstractions
for representing physical, logical and network resources (each of which has their own
detailed domain model). The Service Framework abstracts Services into two types —
Services that a Customer is explicitly aware of, and Services that a Customer is not
explicitly aware of. For example, a VPN is a service that a Customer can buy, so it is
a CustomerFacingService. That VPN may use BGP to advertise routes, but
(hopefully!) the Customer is blissfully unaware of BGP. Thus, BGP is a
ResourceFacingService. Finally, the Policy model is divided into two domains. The
Structural Framework contains a set of entities that can represent Policy across the
Policy Continuum [3]. The Policy Behavioral Framework connects the representation
of Policy to the other models in DEN-ng.

Note that the TMF has defined a Shared Information Model (SID) in [17] that is
beginning to incorporate some of the DEN-ng models. Similarly, DEN-ng is heavily
influenced by the SID. The SID is currently chartered just to work on the business
model, whereas DEN-ng is focused on building out the business, system, and
implementation viewpoints of the Resource, Service, and Policy domains. DEN-ng
uses the SID work and then extends that work to the system and implementation
viewpoints. These extensions are being proposed back into the formal SID work.

Realizing on Demand Networking 321

Unlike the other information models cited in this paper, DEN-ng and the SID use
modern software techniques (such as Patterns [18], [19]) and various types of
abstraction techniques, such as roles [20]. Two critical abstractions introduced by
DEN-ng are capabilities and constraints. Capabilities are a means of abstracting the
functionality of a device into a set of interoperable building blocks.

Diefine
BGP Peers
Rauter(config)# router bap aulonomous-sysiam [edit]
Router{config-router)# neighbor routing-instances {
{ ip-address | peer-group-name} remaote-as number routing-instance-name §
Reauter(config-router)# neighbor ip-address activate protocals {

bep
graup granp-name; §
peer-as av-inmber,
neighbor fp-address, §

RRER

Fig. 4. Normalizing Different CLIs

Figure 4 shows an operator trying to accomplish the same task on two different
routers. Even though the task is the same, the CLI is completely different. More
importantly, the device on the left has different configuration modes, which are absent
in the device on the right. Thus, the programming model for these devices is different.
This makes it hard to build a single end-to-end service involving these two devices.
Capabilities normalize the different functions of heterogeneous devices, so that a
single control plane can be used to manage each device. This enables generic
functions to be described independently of the programming model and type of
device, which simplifies using heterogeneous devices.

The DEN-ng model also differs from other models in the level of granularity of
information that it models. For example, in addition to high-level concepts like
Product and Device, it contains very low-level concepts, such as a Devicelnterface, or
the Configuration of a Device. This is because one of the important goals of the DEN-
ng model is to be able to model configuration changes, as well as to show how policy
can be used to control the deployment of these changes. Experience has shown that
this mix of levels of abstraction is required to implement support for On Demand
Networking, because the On Demand Network serves multiple users operating at
multiple levels of abstraction.

Constraints are used to model restrictions on using certain device functions by the
current environment. For example, one application may prohibit the use of a
command, or restricting configuration changes to a particular time.

This combination of capabilities and constraints is essential for realizing the most
fundamental of all requirements for building an autonomic network: self-knowledge.

322 J. Strassner

The world will never adopt a single command language, or use a single programming
model, or agree on a single platform. The only way to define knowledge is through a
set of abstractions that can accommodate the different functionality and behavior of
the elements of a system. The DEN-ng model is the first step in that direction.

S The Holistic Combination of Policy and Process Management

Business process automation can be characterized by the separation of the expression
and execution of business processes and services from the software that implements
these business processes. This separation enables the application of business
management techniques to the business processes that are implemented. There are
two major efforts for standardizing business processes — the eTOM of the TMF [21]
and ITIL [22]. The eTOM team in the TMF is currently producing a mapping between
the eTOM and the relevant portions of ITIL.

Policy management is defined as the usage of policy rules to mange the configuration
and behavior of one or more entities. The DEN-ng policy model [3] is designed as a
class hierarchy that is used to represent the structure of policy rules as well as their
semantics. This combination enables the DEN-ng policy model to be used as reusable
objects that control the state transitions of the managed objects of the environment.
This enables models to be built to represent the entire life cycle of the managed
system.

Policies have traditionally been used primarily as a means to prioritize the allocation
and access to resources by different applications. Commercial implementations, as
well as the literature, have not defined how this prioritization occurs — it is just
assumed that it has occurred, and is simplified into administrators listing policy rules
in an ad-hoc fashion. The answer to this question lies in realizing that Policy implies
the use of a methodology. Finite state machines have been chosen in DEN-ng because
they are standardized in UML and they are a simple, well-known, and effective
concept.

Currently, Process Automation techniques and Policy Management are separated.
Instead, the approach defined in this paper suggests that the holistic combination of
policy management and process management is what is needed. A simple, yet elegant,
model ensues from this combination: policies are used to define goals to be achieved,
which result in the selection of one or more processes. The execution of these
processes are monitored, and their collective results analyzed to adjust (if needed) the
set of policies that are active at any given time. Thus, a closed loop system is
achieved. This is shown in Figure 5.

The above process starts with the important concept of separating the act of
constructing a configuration change from the act of deploying that change. This
realizes the basic fact that no two types of configuration changes are different. Sadly,
most current approaches do not make this separation.

Realizing on Demand Networking 323

Business Rules

N
N

" Configuration Management Process q
Construct
[Configuration Deploy Configuration Changes————»
Changes . Approval Installation_| Validation |
f N Process Process Process

Policy Selects Who \ J \ J N J

Performs Which

Tasks When Policy Defines Policy Defines Policy Defines

Which Approvals How the Changes How the Changes
Are Needed are Installed are Validated

Fig. 5. Using Policy and Process Management for Resource Configuration

Consider two different configuration changes — a simple change of the SMTP address
of a device, versus changing BGP peering relationships. These are very different in
nature — the former is a simple and straightforward change, whereas the latter can be
quite complicated, and can affect many different parts of the organization. However,
even though the first change is simple, most organizations will define a time period
for implementing this change. This is, of course, a business policy; the question is,
how is it enforced in the network?

The latter change is more complicated to construct. In addition, this change could
affect other devices and other services. Other (business) organizations will probably
need to look at this change, since it could have significant adverse financial
consequences if it is implemented incorrectly. Thus, this change should require
multiple levels of technical and business approval. Unless all of these different
reviews are related to each other, it will be impossible to relate device and service
changes to external events, which could adversely affect the liability of the business.
Again, how is this enforced in the network?

This paper proposes that policy and process management work together to control
how a resource is (re)configured. The output of the business processes is monitored;
the results of monitoring the business processes are used to adjust the set of policies
that can be used at any given time. This closed loop system ensures a stable,
repeatable means for adjusting the network to meet the demands of the organization.

324 J. Strassner

6 The Generic Model Driven Architecture (MDA) Approach

MDA is defined by the OMG in [23]. The heart of the MDA effort is based on the use
of open standards defined in the OMG — Unified Modeling Language (UML) [24];
Meta-Object Facility (MOF) [25]; XML Meta-Data Interchange (XMI) [26]; and
Common Warehouse Meta-model (CWM) [27]. MDA uses these four standards to
help separate business and application logic from their implementation. This results in
better application reuse and increases the overall portability of an application that uses
MDA. More importantly, it helps an organization implement their intellectual
property in a modular fashion. A notable feature of MDA is that it addresses the
complete life cycle of designing, deploying, integrating, and managing applications
and their data.

UML is the key enabling technology for the MDA, as it enables every application to
be based on a normative, platform-independent UML model. In the OMG approach, a
platform-independent model (PIM) is mapped onto one or more platform-specific
models (PSMs).

7 The New on Demand Networking MDA Approach

The MDA is a good approach. Nascent efforts in implementing the mappings are also
good approaches. However, the scope of this paper is slightly different. It is not trying
to solve the general PIM-PSM problem, nor is it trying to build general code
generators. Instead, it is trying to use MDA techniques to build a new type of network
management system — one that is driven by business requirements.

In order to connect the business world with the networking world, we need a way of
representing information from the business and system viewpoints, and a method to
tie them together. In order to implement this in a product, we need to tie the
implementation viewpoint with the previous two viewpoints. Thus, these three
viewpoints jointly affect the design of the models. The fact that there are three
viewpoints means that abstraction must be used to encourage subject-matter experts in
the business, system, and implementation domains to use the approach. The business
entities are designed in response to standard process descriptions from the eTOM.
The system view is the abstract specification of how these entities work together. The
implementation view is the preparatory step towards implementing the system, and
ensures that fundamental characteristics, such as the support of namespaces, are used.
Experience has proven that building separate models to support these viewpoints
cannot work, because it is impossible to keep the models synchronized. Rather, the
analogy of a “database view” is used — information is hidden or shown as appropriate
to support the current viewpoint.

Models are important to the On Demand Networking architecture, because they
represent reusable abstractions that capture, in a formal way, the components used in
the business, and how those components relate to the overall infrastructure as well as
the managed environment. Thus, it is the model that drives the development of the
application.

Realizing on Demand Networking 325

The key to using models for On Demand Networking is to use UML’s inherent
extensibility features to capture the unique semantics of networking. A UML Profile
is a collection of model elements that have been customized for a specific domain or
purpose by extending the metamodel using stereotypes, tagged definitions, and
constraints. A stereotype is a model element that defines additional values (based on
tag definitions), additional constraints, and optionally a new graphical representation.
Tag definitions specify new kinds of properties that may be attached to model
elements. The actual properties of individual model elements are specified using
Tagged Values. Constraints express (typically) invariant conditions that must hold
true for the set of entities that are being modeled. Note that constraints by definition
do not have side effects, and therefore cannot alter the state of the system.

Figure 6 shows the code generation process used for DEN-ng.

DENNng
Ade] Data Model
UML Model Mapping Rules
Schema
Normalization | s} ‘s“"e’;'“ Generator
Process s

Behavioral

Mapping Rules

Fig. 6. Generating Code for On Demand Networking

Since DEN-ng contains business, system and implementation information, this
process is independent of the type of model for which code is being generated. The
UML source files are parsed and put into a canonical format as preparation for being
mapped into a set of data models. This process uses one or more model mapping rule
files to generate schemata for the appropriate target data models, along with rules that
define precise semantics for the behavioral components of the UML models. We have
to date successfully generated schemata for directories as well as for Java
environments. More importantly, data coherency is maintained even though the two
data models are significantly different, because they are both derived from the same
information model.

It is important to understand why both of these data models are generated. Directories
are for searching, and should only be used for storing entities that change much
slower than the replication frequency of the directory. The Java entities are used for
session computation, and are better suited to implement business rules and constraints
specified in the model. They are used for per-session computation, with the result
being persisted in an appropriate repository.

326 J. Strassner

8 Conclusions and Future Work

This paper has presented a new approach to building support for On Demand
Networking. This support is based on four key principles. First, the DEN-ng
information model is used as a single means to represent management information.
This choice is made because of its following unique characteristics: it is based on
UML, it is inherently extensible through its use of patterns, it supports multiple levels
of abstraction and multiple viewpoints, it uses a finite state machine, and it contains
low-level information modeling (e.g., a “device interface”) that other information
models do not have. Second, the DEN-ng information model supports multiple
mappings to different data models. This is mandatory to support the diverse types of
management information that On Demand Networking requires. Third, the holistic
combination of policy management and process management are used to mange
entities in the On Demand Network. Conceptually, policies control state transitions of
a managed entity, and processes are used to implement the goal of the policy. Finally,
a variant of the OMG’s MDA approach was defined. This variant was specifically
tailored to meet the needs of On Demand Networking.

Future work will explore three different areas of research. First, more complicated
network support will be built, to prove that this approach does indeed work
generically. Second, the introduction of other autonomic elements, such as network
devices or host systems, will be explored. Third, the concept of knowledge that spans
multiple system elements for On Demand Systems will be examined.

References

[1] Please see:
http://www7b.software.ibm.com/dmdd/library/techarticle/0302iwb/0302iwb.html

[2] Please see: www.omg.org/mda

[3] J. Strassner, “Policy-Based Network Management”, Morgan Kaufman Publishers, ISBN
1-55860-859-1, to be published 2003

[4] J. Strassner, Directory Enabled Networks, Macmillan Technical Publishing, 1999, ISBN
1-57870-140-6

[S] The DMTF has redefined DEN to fit better to its CIM and WBEM efforts. The author
does not agree with this redefinition. The DMTF definition is found here:
http://www.dmtf.org/standards/standard den.php

[6] TM Forum, NGOSS Architecture, TMF 053

[7] J. Strassner, “A New Paradigm for Network Management: Business Driven Device
Management”, SSGRRs Conference, August, 2002

[8] J. Strassner, “Directory Enabled Networks”, Chapter 10, Macmillan Technical
Publishing, ISBN 1-57870-140-6

[9] B. Moore, E. Ellesson, J. Strassner, A.Westerinen, "Policy Core Information Model —
Version 1 Specification", RFC 3060, February 2001

[10] B. Moore, L. Rafalow, Y. Ramberg, Y. Snir, A. Westerinen, R. Chadha, M. Brunner, R.
Cohen, J. Strassner, “Policy Core Information Model Extensions”, draft-ietf-policy-pcim-
ext-06.txt, November 2001

[11] Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, B. Moore, “Policy QoS Information
Model”, draft-ietf-policy-qos-info-model-04.txt, November 2001

[12]

[13]

[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

Realizing on Demand Networking 327

S. Gai, J. Strassner, D. Durham, S. Herzog, H. Mahon, F. Reichmeyer: “QoS Policy
Framework Architecture”, February 1999

Current work is in the DMTF Members only site, under:
http://www.dmtf.org/apps/org/workgroup/policy/. The current release of CIM’s policy
model as of this writing is version 2.7.1, and is located at:
http://www.dmtf.org/standards/standard_cim.php.

Please see the following web page for detailed information about Ponder:
http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml

Open Distributed Processing Reference Model — Foundations, ISO/IEC 10746-2, 1996
Open Distributed Processing Reference Model — Overview, ISO/IEC 10746-1, 1998
TMEF, “Shared Information/Data (SID) Model”, GB922 and its Addenda (one for each
domain, 10 so far)

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software”, ISBN 0-201-63361-2, October 1994

The Patterns Homepage contains a variety of useful links, and is at:
http://hillside.net/patterns/

D. Bdumer, D. Riehle, W. Siberski, M. Wulf, “The Role Object Pattern”, can be
downloaded from: http:/jerry.cs.uiuc.edu/~plop/plop97/Proceedings/richle.pdf

F, “eTOM, the Business Process Framework”, GB921, version 3.5, 2003

The home page of ITIL is: http://www.itil-itsm-world.com/

The home page of the MDA effort is: www.omg.org/mda

The home page for the UML effort is:
http://www.omg.org/technology/documents/formal/uml.htm

The home page for the MOF effort is:
http://www.omg.org/technology/documents/formal/mof.htm

The home page for the XMI effort is:

http://www.omg.org/technology/documents/formal/xmi.htm
The home page for the CWM effort is:

http://www.omg.org/technology/documents/formal/cwm.htm

	1 Introduction
	2 Terminology
	2.1 DEN versus DEN-ng
	2.2 Policy
	2.3 Information Model versus Data Model
	2.4 Model Mapping
	2.5 Business Driven Device Management (BDDM)

	3 Problems in Current Network Management Approaches
	3.1 Barriers to Operational Efficiency and Data Exchange
	3.2 Why Another Information Model?
	3.3 Sharing and Reusing Data
	3.4 Using Business Rules to Drive the Configuration of the Network

	4 Overview of DEN-ng
	5 The Holistic Combination of Policy and Process Management
	6 The Generic Model Driven Architecture (MDA) Approach
	7 The New on Demand Networking MDA Approach
	8 Conclusions and Future Work
	References

