
Network Protocol System Passive Testing

for Fault Management:
A Backward Checking Approach

Baptiste Alcalde1, Ana Cavalli1, Dongluo Chen2, Davy Khuu1, and David Lee3

1 Institut National des Télécommunications GET-INT, Evry, France
{baptiste.alcalde,ana.cavalli,davy.khuu}@int-evry.fr

2 Department of Computer Science, Tsinghua University, Beijing, China
chdl@csnet1.cs.tsinghua.edu.cn

3 Bell Labs Research, Lucent Technologies lee@research.bell-labs.com

Abstract. Passive testing has proved to be a powerful technique for pro-
tocol system fault detection by observing its input/output behaviors yet
without interrupting its normal operations. To improve the fault detec-
tion capabilities we propose a backward checking method that analyzes
in a backward fashion the input/output trace from passive testing and its
past. It effectively checks both the control and data portion of a protocol
system, compliments the forward checking approaches, and detects more
errors. We present our algorithm, study its termination and complexity,
and report experiment results on the protocol SCP.

1 Introduction

Passive testing is an activity of detecting faults in a system under test by ob-
serving its input/output behaviors without interfering its normal operations. The
usual approach of passive testing consists in recording the trace produced by the
implementation under test and trying to find a fault by comparing this trace
with the specification ([4], [6], [7]). Other approaches explore relevant properties
required for a correct implementation, and then check on the implementation
traces of the systems under test ([1], [2]). Most of the work on passive testing
are based on finite state machines (FSMs) and they are focused on the con-
trol part of the tested systems without taking into account data parts. To cope
with protocol data portions, Extended Finite State Machines (EFSMs) are used
to model the systems, which include parameters and variables to encode data.
In [7] a first approach to perform passive testing on EFSMs was proposed. An
algorithm based on constraints on variables was developed and applied to GSM-
MAP protocol. However, this algorithm cannot detect transfer errors. In [5], an
algorithm based on variable determination with the constraints on variables was
presented. This algorithm allows to trace the variables values as well as the sys-
tem state, however, every transfer errors still cannot be detected.
To overcome this limitation, we propose a new approach based on backward trac-
ing. This algorithm is strongly inspired by this presented in [5], but processes

D. de Frutos-Escrig and M. Núñez (Eds.): FORTE 2004, LNCS 3235, pp. 150–166, 2004.
c© IFIP International Federation for Information Processing 2004

Network Protocol System Passive Testing for Fault Management 151

the trace backward in order to further narrow down the possible configurations
for the beginning of the trace and to continue the exploration in the past of
the trace with the help of the specification. This algorithm contains two phases.
It first follows a given trace backward, from the current configuration to a set
of starting ones, according to the specification. The goal is to find the possible
starting configurations of the trace, which leads to the current configuration.
Then it analyses the past of this set of starting configurations, also in a back-
ward manner, seeking for end configurations, that is to say configurations in
which the variables are determined. When such configurations are reached, we
can take a decision on the validity of the studied path.
This new algorithm is applied to Simple Connection Protocol (SCP) that allows
to connect two entities after a negotiation of the quality of service required for
the connection. Even it is a simple protocol it presents a number of key char-
acteristics of real communication protocols. The testing results are compared to
the passive testing algorithm in [5].
The rest of the paper is organized as follows. Section 2 describes the basic con-
cepts used in the paper. Section 3 contains preliminary algorithms for processing
transition back tracing. The section 4 presents the main backward tracing al-
gorithm. In section 5 the issues related to the termination and complexity of
the main algorithms are discussed. Section 6 reports the experiments of the
algorithm on the Simple Connection Protocol.

2 Preliminaries

We first introduce basic concepts needed and then present an overview of our
algorithm.

2.1 Extended Finite State Machine

We use Extended Finite State Machine (EFSM) to model the protocol systems.

Definition 1. An Extended Finite State Machine M is a 6-tuple M =< S, s0, I,
O, x, T > where S is a finite set of states, s0 is the initial state, I is a fi-
nite set of input symbols (eventually with parameters), O is a finite set of out-
put symbols (eventually with parameters), x is a vector denoting a finite set
of variables, and T is a finite set of transitions. A transition t is a 6-tuple
t =< si, sf , i, o, P, A > where si and sf are the initial and final state of the
transition, i and o are the input and the output, P is the predicate (a boolean
expression), and A is the ordered set (sequence) of actions.

Definition 2. An events trace is a sequence of I/O pairs.

In this paper we consider that the traces can start at any moment of the
implementation execution.

Given a trace from the implementation under test and a specification, the
algorithm will detect the three types of error that can occur in an EFSM.

152 Baptiste Alcalde et al.

1 2 1 2 3

i1/o1 or
i2/o2

i1/o4

i2/o2

i2/o5

(1)
(2)

(3)

SPECIFICATION IMPLEMENTATION

Fig. 1. Output(1), transfer(2), and mixed(3) errors

FAIL FAIL

FAIL
FAIL

ΟΚ

trace

past of
the trace

back tracing
of the trace

X

back tracing
of the past,
in order to
confirm X

Fig. 2. Overview of Backward Checking

Definition 3. The three types of error are:

1. the output errors: when the output of a transition in the implementation
differs from the output of the corresponding transition in the specification.

2. the transfer errors: when the ending state of a transition in the imple-
mentation differs from the ending state of the corresponding transition in
the specification.

3. the mixed errors: a mix between the two errors defined above.

2.2 Candidate Configuration Set

The backward checking algorithm processes in two phases as shown in figure 2.
The first step consists in following the trace w backward, from the end to the
beginning, according to the specification. The goal is to arrive to the set X of
possible start configurations of w. In order to keep information we use configu-
rations named Candidate Configuration Set (CCS) inspired from [5].

Definition 4. Let M be an EFSM. A Candidate Configuration Set (CCS), is
a 3-tuple (e, R, Assert) where e is a state of M , R is an environment (that is
to say that each variable v has a constraint R(v)), and Assert is an assertion
(Boolean expression).

The second step is the backward checking of the trace past. This step consists
in confirming at least one of the departure configurations extracted from the back

Network Protocol System Passive Testing for Fault Management 153

tracing of a trace. It means we must verify that the variable values or constraints
are compliant with the specification. We need to trace the transitions from their
end states to their start states until we reach a validation criteria. We need to
confirm the variables ranges. However, often there is only a subset of variables
that we can confirm, and we call these variables determinant of a trace.

Definition 5. A variable v is a determinant of a trace t if v must be necessarily
validated before validating t.

In order to keep information about determinants, we define a new structure
for the past of the trace: the Extended Candidate Configuration Set (also called
Extended Configuration).

Definition 6. Let M be an EFSM. An Extended Candidate Configuration Set
(ECCS) is a 4-tuple (e, R, Assert, D), where e is a state of M , R is an environ-
ment, Assert is an assertion, and D is a set of determinant variables.

Between the two steps we check the determinant variable set as follows:
every variable whose interval in a configuration of X - the set of possible start
configurations of the trace that is included in its specified domain - must be
added to the determinant variables set to be checked.

3 Preliminary Algorithms

In the following section, we present the preliminary algorithms that will be used
in the main algorithm. We begin with the inverse actions algorithm, and then
consistency checking and the transition back tracing algorithms.
What we do is checking backward the trace and then exploring its past as shown
in Fig 2, determining the variables. In order to perform this checking on the
whole trace and its past we need a process that checks a transition backward.
The algorithms presented in this section make it possible.

3.1 The Inversed Actions

A main difficulty is the application of the inverse action A−1. The inverse actions
will be processed in a reversed order. Hence the following normal ordered actions
{a1, . . . , an} will be processed in an order: {an, . . . , a1}.

Each inverse action depends on the type of the corresponding normal action.
There are three types of actions:

1. w ←− constant
2. w ←− f(u, v, . . .) where w is not a variable of f
3. w ←− f(w, u, v, . . .) where w is also a variable of f

These three types of actions are assignations: they overwrite the value of the
left variable w with the value of the right component. We note that the value
of w is modified by an action, but the other variables after action keep the value

154 Baptiste Alcalde et al.

they had before the action and that only the value of the variable w will be
modified by back tracing a transition. Except for this, every type of action must
be inverted:

1. Action of type 1. The value of w after the action is a constant. This gives
us a first occasion of detecting an error. If the constant does not conform
the current constraint then we are on an invalid path. Otherwise, we replace
every occurrence of w with the constant and refine the constraints of other
variables. However, it is impossible to know the value of w before the action;
indeed, actions simply overwrite the former value of w. After the action back
tracing the value of w is UNDEFINED;

2. Action of type 2. We could take that R(w) is equal to R(f(u, v, . . .)) but we
can be more precise: it is R(w) ∩ R(f(u, v, . . .)). In order to keep as much
information as possible, every occurrence of w will be replaced by f(u, v, . . .).
However, the value of w before action remains UNDEFINED;

3. Action type 3. This action brings no new constraint refinement on the vari-
able w (on the left side of the assignment) after the action (left member)
but it gives a constraint on the variable w (on the right side of the assign-
ment) before the action. Consequently, every occurrence of w will be replaced
by f−1(w).

3.2 Final Checking Phase

The check consistency process is from [5] and is able to detect inconsistency
in the definition of the variables by refining the intervals of variables and its
constraints.
There are no big differences between the transition back tracing algorithms for
the trace and for its past, and we ignore in the trace algorithm what can happen
to the set of determinants before the action. Indeed, in the trace we do not
determine variables; we can only refine their values, and we invalid the trace if
the constraints are not consistent. For the trace we must check the output before
processing the inverse actions. After processing every action we can determine
the variables involved in the input if its constraint is consistent with what we
found. Otherwise, we invalid the transition.
On the other hand, we must check that the variable values that we found are
consistent with the predicates. Otherwise, the path is invalid. Therefore, in the
checking we must determine if a transition is valid or not. We need a process
called check pred for the past of the trace to modify the set of determinants.
In the case of back tracing, we just need to add the predicates to the set of
assertions and process check consistency - no specific operations are needed.
The pseudo code for back tracing of the trace and of its past, followed by the
check pred and check consistency algorithms are presented in the appendix.

Network Protocol System Passive Testing for Fault Management 155

3.3 Example

We show now an example of this process. Consider the common steps of the trace
and past cases, a transition without input/output, and we include the variable
set D into parentheses.

 P : u>=1
A : x=1

 y=y+1
 z=v+w R = < u [0;3] , x [1;4] ,

y [2;8] , z [1;2] , a [7;9] ,
v undef , w undef >

Asrt = -
(D = {u,x,y,z,a})

fi

 P : u>=1
A : x=1

 y=y+1
 z=v+w R = < u [0;3] , x [1;1] ,

y [2;8] , z [1;2] , a [7;9] ,
v,w undef >
Asrt = -

(D = {u,x,y,z,a})

fi

R = < u [0;3] , a [7;9] ,
y [1;7] , cste [1;2] ,

v,w undef ,
x,z undef >

Asrt = {v+w=cste}
(D = {u,a,y,v,w})

 P : u>=1
A : x=1

 y=y+1
 z=v+w R = < u [0;3] , x [1;1] ,

y [2;8] , z [1;2] , a [7;9] ,
v,w undef >
Asrt = -

(D = {u,x,y,z,a})

fi

R = < a [7;9] , y [1;7] ,
u [1;3] , cste[1;2] ,

v,w undef ,
x,z undef >

Asrt = {v+w=cste}
(D = {u,a,y,v,w})

Starting point

After inversed actions

After check_pred

4 Main Algorithms

We are ready to present our main algorithm of backward checking.

4.1 Backward Checking of a Trace

The backward checking for a whole trace can be derived from the algorithm for
back tracing a transition (Back trace transition):

– trace: The observed trace. gettail(trace) removes and returns the last i/o
pair from trace.

– X : Set of starting extended configurations from back trace of an event trace.
Each configuration is a 4-tuple (e, R, Assert, D)

– X ′: Current set of extended configurations
– V : Set of known extended configurations
– c′: A new configuration
– : Returns TRUE if the sequence is correct, and FALSE otherwise

156 Baptiste Alcalde et al.

1. V ←− X
2. while

X �= ∅ & i/o := gettail(trace) do
3. .X ′ ←− ∅
4. .for each configuration c ∈ X do
5. . .for each transition t where

t.end state = c.state and
t.i/o = i/o do

6. . .
.c′ ←−Back trace transition(t, c)

7. . . .X ′ ←− X ′ ∪ {c′}
8. . . .V ←− V ∪ X ′

9. .X ←− X ′

10. return FALSE

4.2 Backward Checking of the Past of an Event Trace

The backward checking algorithm applied to the past of a trace consists of
a breadth-first search in the past of the configurations, which are extracted from
the back tracing of a trace due to the fact that one cannot use a variable value
before it is assigned. In order to validate a trace, we only need to find a path
binding a set of assignments or predicates to one of the configurations extracted
from back tracing. We now proceed to the main algorithm. We first define the
operations � and \ on the Extended Candidate Configuration Sets (ECCS) that
will be used for pruning the exploration tree of the past. Then we study the
path convergence and discuss the algorithm termination, the correctness and
the complexity.

The � Operation. It is an intersection between two configurations:

Definition 7. Let be three configurations c1 = (e, R1, Assert1, D), c2 = (e, R2,
Assert2, D), and c = (e, R, Assert, D). We define the intersection operator � as
follows. If c = c1 � c2, then:

1. for each variable v, R(v) = R1(v)∩R2(v) where ∩ is the intervals intersection
operator

2. Assert = Assert1 ∧ Assert2 where ∧ is the boolean “and” operator

Remark on �. The configuration states and the variable sets, which are not
validated yet, are the same. If they are not, the “intersection” equals to NULL.

The \ Operation. It is a privation. Given two configurations c1 and c2, the
result of c1\c2 is a couple (ca, cb). We obtain ca by removing c2 from c1, but
only in case of each variable is restricted to the intersection of the intervals c1

and c2, respectively. cb is the rest of c1.

Definition 8. Given four configurations c1 = (e, R1, Assert1, D), c2 = (e, R2,
Assert2, D), ca = (e, Ra, Asserta, D) and cb = (e, Rb, Assertb, D), we define the
privation operator \ as follows. If (ca, cb) = c1\c2, then:

1. for ca:
(a) for each variable v, we have got: Ra(v) = R1(v) ∩ R2(v) where ∩ is the

intervals intersection operator

Network Protocol System Passive Testing for Fault Management 157

(b) Asserta = Assert1 ∧ Assert2, where ∧ is the boolean “and” operator
2. for cb:

(a) Rb = R1

(b) Assertb = Assert1 ∧ (
|V |−1∨
i=0

(vi ∈ R2(vi))) where ∧ is the boolean “and”

operator, and ∨ is the boolean “or” operator (be careful of priorities of
parenthesis)

Remark on \. If Assert2 equals to ∅, then ca equals to NULL. Indeed Assert2
means we have to keep all of the values that R2 allows, yet on the contrary
Assert2 implies that we must delete all of them.

General remark. The operations � and \ may return configurations, which are
inconsistent. For example, the result of c1\c1 is not consistent. Moreover, some
results may need to be refined. Indeed when two assertions are concatenated
the constraints intervals of each variable may have to be changed. So we should
use the Check consistency procedure that has already been presented. For
now, we consider that the results of � and \ are automatically checked and
transformed by Check consistency.

Examples. Consider the configurations c1 = (e, < x = [0; 5], y = [0; 3] >, , {x})
(where means no assertion) and c2 = (e, < x = [0; 2], y = [−1; 1] >, {x >
y}, {x}), and three configurations ci, ca and cb, which are defined as following:

– ci = c1 � c2

– (ca, cb) = c1\c2

We first determinate ci. Ri is defined as the intersection of R1 and R2, and
Asserti is Assert1 ∧ Assert2. Then we have:
ci = (e, < x = [0; 2], y = [0; 1], {x > y}, {x}).

Determinating ca and cb is a little bit more complicated. Ra is the intersec-
tion of R1 and R2, and Asserta is Assert1 ∧ Assert2. Then we have:
ca = (e, < x = [0; 2], y = [0; 1] >, {x ≤ y}, {x}).

At last for cb, we have the following properties. Rb equals R1, and we must
add x < 0 ∨ x > 2 and y < 0 ∨ y > 1 to Assertb. Then we have:
cb = (e, < x = [0; 5], y = [0; 3] >, {(x < 0 ∨ x > 2) ∧ (y < 0 ∨ y > 1)}, {x}).

Note that the two last configurations ca and cb are not refined as it was de-
fined in [5]. If we apply the Check consistency procedure, we obtain:
ca = (e, < x = [0; 1], y = [0; 1] >, {x ≤ y}, {x}) and cb = (e, < x = [3; 5], y =
[2; 3] >, , {x}).

Path Convergence. Consider a step r of our algorithm. If we find a configu-
ration c that we have already found earlier, in a previous step or earlier in the
step r, we have got a “path convergence” phenomena.

158 Baptiste Alcalde et al.

c

1 2

3 4

path P1

path P2

convergence point

common past

Fig. 3. Example of Path Convergence

Definition 9. Two paths P1 and P2 are convergent (in the past!) if they lead to
the same configuration c.

Consequently both P1 and P2 have the same past. So we will obtain the same
information if we explore the common past from P1 or from P2. Consider that
we have first followed P1. When we find that P2 converges toward c, we do not
continue the exploration: we prune P2 at c. The pruning enables us to deal with
the infinite exploration paths.
Unfortunately extended configurations make convergences hard to be detected;
they are non-empty intersections of configurations. We proceed as follows. Given
three configurations c, c1 and c2, let c be equal to c1 � c2. Suppose that c2 has
been found before c1. Then we have the following:

– c =NULL. c1 and c2 are independent and the respective pasts of c1 and c2

must be explored;
– (c =NULL) ∧ (c = c1). c1 is included in c2 and we must delete c1;
– (c =NULL)∧(c = c1). c2 is included in c1 and we must substitute c1 by c1\c2

The algorithm Check redundancy, that will be described later, deals with
the convergence cases.

Algorithm of Backward Checking of the Past of a Trace. The Back-
ward checking past algorithm backward traces the past of a trace in order to
validate it. The input is the set of starting extended configurations, which we
extracted from the trace back tracing.

Note that if the start configuration is invalid (not reachable from the initial
configuration set) then we have to explore backward all the configurations to tell
whether there is no valid path from the initial configuration set. However, if it
is indeed valid, finding a valid path is enough. In most cases of passive testing,
the traces do not contain faults and it is desirable to use a heuristic method to
find a valid path. We now present such a procedure.

In order to guide the heuristic search, we have figure out the end configura-
tions. A configuration set c is an end configuration set if it satisfies one of the
following conditions:

1. c ∩ c init = ∅ where c init is the initial configuration set of the machine
2. c.D = ∅
3. c is contained in another configuration set that has been explored

Network Protocol System Passive Testing for Fault Management 159

The second criteria is valid, since c.state is reachable from the initial state
of the machine, and there must be a valid path from the initial configuration.

We now present a heuristic search. We assign a weight for each configuration-
transition pair < c, t >. Since we want to trace back to the initial configuration
or reduce c.D, we increase the weight of such pairs. A priority queue Q contains
all the configuration-transition pairs to be explored, sorted by their weights. The
pair with the highest weight is placed in the head of Q and will be selected first.

The weight wgt of a configuration-transition pair < c, t > with an initial
value 0 can be incremented by the following rules:

1. if t.start state = c init.state, wgt += w1
2. if t.start state has not been explored, wgt += w2
3. if t.action defines k variables in c.D, wgt += w3 ∗ k

The first two rules guide the search towards the initial state of the specifica-
tion while the third one is to reduce the set of determinants. It is important to
remark that we don’t need to reach the initial state itself, and that a transition
determining every variables left in the set of determinants is enough to conclude
on the correctness of the explored path. This explains the importance of the
third rule (we can note that the initial state is a particular case of it as it is
supposed to determine every variables).

The values of w1, w2, and w3 can be given after practical usage.
The following is the procedure where

– Q: Set of configuration-transition pairs to be explored
– V : Set of already-explored Extended Configurations
– : Returns TRUE if the trace is correct, and FALSE otherwise.

1. initialize Q,V
2. while Q �= ∅ do
3. .take the first item < c, t >

from Q
4. .build a new configuration c′:

c′ ←−Back past transition(t, c)
5. .if c′ == NULL
6. . .goto 2
7. .if c′.D = ∅ do
8. . .return TRUE

9. .c′ =Check redundancy(c′, V)
10. .If c′ �= ∅ do
11. . .V ←− V ∪ c′

12. . .for each transition t where
t.end state = c′.state do

13. . . .calculate the weight of
< c′, t >

14. . . .insert < c′, t > into Q by
its weight

15. return FALSE

In the worst case, this algorithm will explore backward all the possible con-
figurations. When Q becomes empty no valid path is possible from the trace
information from the passive testing and “FALSE” is returned - there are faults
in the protocol system under test.

160 Baptiste Alcalde et al.

5 Algorithm Termination and Complexity

In the first part of the algorithm (backtracking of the trace) there is no problem
of termination because we follow the trace, so this step finishes when the trace
finishes. The problem we had and we solved is in the second part of the algorithm
(in the past of the trace). We present these problems in the following subsection.

5.1 Loop Termination

There are two problems that we must solve: infinite paths, and infinite number
of paths. These problems are often caused by loops.
A first infinite path case occurs when a path infinitely often reachs a configura-
tion. This problem is solved thanks to the detection of path convergence (see 4.2),
and ECCS operations that prevents exploring more than once in a configuration.
A second case occurs when a variable is infinitely increased or decreased. In this
case the loop is limited by the upper or lower bound of the interval of definition
of the variable.
There are two cases when we have an infinite number of paths. First, a con-
figuration has an infinite number of parents. Secondly there is an infinite path
from which several paths start. But if the configurations number is finite, then
a configuration can not have an infinite number of parents.
We proved the termination of the algorithm, and we present in the next subsec-
tion a study of the algorithm complexity.

5.2 Complexity

In the first part of the algorithm (trace) the complexity depends on the trace.
We have:

Proposition 1. Suppose that the observed event trace is of length l, then the
complexity of the first part of the presented algorithm is proportional to l.

For the second part (past of the trace) the complexity depends on the number
of possible configurations. A configuration includes a state number, interval of
definition of variables, and a list of determinant variables. The complexity of the
second part of the algorithm is:

Proposition 2. Let ns be the number of states in the EFSM of the specification,
|R(xi)| the number of values the variable xi can take (in the interval of defini-
tion), and n the number of variables, then there is in O(ns(

∏
i |R(xi)|)(2n − 1))

possible configurations.
We must balance this complexity with the power of the algorithm. The worst

case of this algorithm is the case where there is an error because we must check
every path of the past. When there is no error our algorithm gives a sure answer
(in constrast with former algorithms) at the first correct path we meet (that is
supposed to be fast using the heuristic). Anyway, the backward checking - if we

Network Protocol System Passive Testing for Fault Management 161

Upper Layer

Simple Connection Protocol

Lower Layer

CONreq(qos) NONsupport(ReqQos)

connect(ReqQos) accept(qos)
or refuse

data(FinQos) abort

CONcnf(+,FinQos)
or CONcnf(-)

Data Reset

Fig. 4. Simple Connection Protocol: Layers

consider only the trace analysis - is an improvement of former algorithm, and
has the same complexity.

6 Experiments on SCP Protocol

We now report the application of our algorithms on the Simple Connection
Protocol (SCP). SCP is a very interesting protocol for test purpose because
it includes most possible difficulties for passive testing in a small specification.
Therefore, it can show the efficiency of the algorithm on bigger real protocols.
We first describe this protocol and then report the experiments of the algorithm
from [5] and our new algorithm.

6.1 The Simple Connection Protocol

SCP allows us to connect an entity called upper layer to an entity called lower
layer (Fig 4). The upper layer performs a dialogue with SCP to fix the quality
of service desirable for the future connection. Once this negotiation finished,
SCP dialogues with the lower layer to ask for the establishment of a connection
satisfying the quality of service previously negotiated. The lower layer accepts
or refuses this connection request. If it accepts the connection, SCP informs the
upper layer that connection was established and the upper layer can start to
transit data towards the lower layer via SCP. Once the transmission of the data
finished, the upper layer sends a message to close the connection. On the other
hand, if the lower layer refuses the connection, the system allows SCP to make
three requests before informing the upper layer that the connection attempts
all failed. If the upper layer wishes again to be connected to the lower layer,
it is necessary to restart the QoS negotiation with SCP from beginning. Every
variable is defined in the interval [0; 3]. An EFSM specification of SCP is in the
figure 5.

6.2 Experiments of the Two Algorithms

Consider a false implementation of SCP, that has been used in [2]: the pred-
icate of the transition S3©−→ S1© is replaced by TryCount = 0. The fig-
ures 6, 7 and 8 show the executions of the first algorithm and of the backward

162 Baptiste Alcalde et al.

S1

S2

S3

S4

TryCount := 0
ReqQos := 0
FinQos := 0

I/O : CONreq(qos)/NONsupport(ReqQos)
P : CONreq.qos > 1
A : ReqQos := CONreq.qos

I/O : CONreq(qos)/connect(ReqQos)
P : CONreq.qos <= 1
A : ReqQos := CONreq.qos

I/O : refuse/connect(ReqQos)
P : TryCount != 2
A : TryCount := TryCount + 1

I/O : accept(qos)/CONcnf(+, FinQos)
P : -
A : FinQos := min(accept.qos, ReqQos)

I/O : Data/data(FinQos)
P : -
A : -

I/O : refuse/
 CONcnf(-)
P : TryCount = 2
A : -

I/O : Reset/
 abort
P : -
A : -

Fig. 5. Simple Connection Protocol: EFMS specification

checking algorithm (trace and past) on the trace CONreq(1)/ connect(1),
refuse/CONcnf(-).
The figure 6 shows that the error is not detected by the algorithm presented
in [5]. The trace is left ”possible” for it.
The figure 8 shows the execution of backward checking algorithm in the past.
We obtain the configuration (S2, < TryCount = 2; ReqQos = 1; FinQos =
[0; 3];CONreq.qos = 1 >, , {TryCount; ReqQos; CONreq.qos}) from the back
tracing of the trace (Fig. 7) and we continue in the past. After the first step of
the while loop, X is empty because the transition S2©−→ S2© leads to a contradic-
tion between CONreq.qos value (=1) and the predicate CONreq.qos > 1, and
the transition S1©−→ S2© is also invalid due to a contradiction between ReqQos
value (=1) and the action ReqQos = 0. Then there is no more configuration to
backtrack and the algorithm terminates, returning FALSE - there are faults in
the protocol implementation.

7 Conclusion

Apparently, passive testing is a promising method for protocol fault manage-
ment, as it allows to test without disturbing the normal operation of a protocol
system or service. In this paper, we present a new backward checking algorithm.
It detects output and transfer errors in an implementation by observing and
analyzing its event traces. A major difficulty of passive testing is its analysis for
faults. Our approach provides a backward trace analysis that is efficient and also
a compliment to the forward analysis in [5], and can uncover more faults.

Network Protocol System Passive Testing for Fault Management 163

step event configurations

0 - (Si; < TC = [0; 3], RQ = [0; 3], FQ = [0; 3], Crq.qos =
[0; 3], acc.qos = [0; 3] >,)
(for each i state number)

1 CONreq(1) / con-
nect(1)

(S3; < TC = [0; 3], RQ = 1, FQ = [0; 3], Crq.qos = 1,
acc.qos = [0; 3] >,)

2 refuse / CONcnf(-) (S1; < TC = 2, RQ = 1, FQ = [0; 3], Crq.qos = 1,
acc.qos = [0; 3] >,)

Fig. 6. Execution of the First Algorithm

step event configurations

0 - (Si; < TC = [0; 3], RQ = [0; 3], FQ = [0; 3], Crq.qos =
[0; 3], acc.qos = [0; 3] >,)
(for each i state number)

1 refuse / CONcnf(-) (S3; < TC = 2, RQ = [0; 3], FQ = [0; 3], Crq.qos =
[0; 3], acc.qos = [0; 3] >,)

2 CONreq(1) / con-
nect(1)

(S2; < TC = 2, RQ = 1, FQ = [0; 3], Crq.qos = 1,
acc.qos = [0; 3] >,)

Fig. 7. Back Tracing the Trace

step

0 current (S2, < TC = 2; RQ = 1; FQ = [0; 3]; Crq.qos = 1 >, , {TC;RQ;
conf. Crq.qos})
seen (S2, < TC = 2; RQ = 1; FQ = [0; 3]; Crq.qos = 1 >, , {TC;RQ;
conf. Crq.qos})
transition
s2©←−s2©

back
tracing

next
config.

∅

transition
s2©←−s1©

back
tracing

next
config.

∅

validation there is no more configuration: return FALSE

Fig. 8. Back Tracing the Past of the Trace

Passive testing is a formal approach for network protocol system monitoring
and measurement where Internet protocols such as OSPF and BGP were mon-
itored for fault detection [3]. Formal method will continue to exhibit its power
in network protocol system fault management in a wider range of applications
and protocol layers.

8 Appendix

Back trace transition(t,c) Algorithm
This algorithm is used for backtracing a transition during the trace processing.

– : returns c′ if c′ t−→ c is possible, NULL if not.

164 Baptiste Alcalde et al.

1. if (output.v �∈ c.R(v)) do
2. .return NULL
3. else
4. .c′ = clone(c)
5. .c′.R(v) = Def(v)
6. .replace every occurrence of v in

c′.Asrt by
output.v

7. inverse list of actions
8. foreach action a do
9. .if action a is: w ←− constante

then
10. . .if c′.R(w) ∩ constante = ∅

then
11. . . .return incorrect trace
12. . .else
13. . . .c′.R(w) = Def(w)
14. . . .replace every occurrence of

w in c′.Asrt by constante
15. .if action a is: w ←− f(x) then

16. . .replace every occurrence of w
by

f(x) in c′.Asrt
17. . .if w ∈ x then
18. . . .c′.R(w) = R(f−1(x))
19. . .else
20. . . .c′.Asrt = c′.Asrt∧

(w ≤ f(x) ≤ w)
21. . . .c′.R(w) = Def(w)
22. foreach predicate p do
23. .normalize p
24. .c′.Asrt = c′.Asrt ∧ p
25. if (input.v �∈ c′.R(v)) do
26. .return NULL
27. else
28. .c′.R(v) = Def(v)
29. .replace every occurrence of v by

input.v in c′.Asrt
30. check consistency(c′)
31. return c′

Back past transition(t,c) Algorithm
This algorithm is used for backtracing a transition during the past trace pro-
cessing.

1. c′ = clone(c)
2. inverse list of actions
3. foreach action a do
4. .if action a is: w ←− constante

then
5. . .if c′.R(w) ∩ constante = ∅

then
6. . . .return incorrect trace
7. . .else
8. . . .c′.R(w) = Def(w)
9. . . .replace every occurrence of

w in c′.Asrt by constante
10. . . .D = D − w //w is

validated
11. .if action a is: w ←− f(x) then

12. . .replace every occurrence of w
by

f(x) in c′.Asrt

13. . .if w ∈ x then

14. . . .c′.R(w) = R(f−1(x))

15. . .else

16. . . .D = D − w

17. . . .c′.Asrt = c′.Asrt∧
(w − cst ≤ f(x) ≤ w − cst)

18. . . .c′.R(w) = Def(w)

19. . .D = D ∪ y

20. check consistency(c’)

21. check pred(p,c’)

22. return c′

Check pred(P, c) Algorithm

1. for each predicate v = f(x) ∈ P
do

2. .if (c.R(v) ∩ c.R(f(x)) ⊆ c.R(v))
then

3. . .c.D = c.D − v // v is
validated

4. . .c.R(v) = c.R(v) ∩ c.R(f(x))
5. .else return FALSE
6. return TRUE

Network Protocol System Passive Testing for Fault Management 165

Check consistency(c) Algorithm
The following algorithm derives from the one presented in [5]. It tests configu-
rations consistency, refines their constraints and delete all unused assertions. It
returns the processed configuration if the initial one is consistent, or NULL if it
is not.
Variable assignment Rule (R): for each variable range if we have a set of
non empty intervals from the processing of the conjunctive terms then the new
variable range consists of an interval whose lower (upper) bound is the minimum
(maximum) of all the interval lower (upper) bounds.

– c: configuration that must be refined
– c′: copy of c. Note c′ = (e, R, Assert, D)
– return the refinment of c, or NULL
– S: a new set of intervals
– At: a new assertion

1. c′ ←− c
2. transform c′.Assert in DNF
3. S ←− ∅
4. At ←− ∅
5. for each conjunctive term Dt of

c′.Assert do
6. .dt true ←− TRUE
7. .refine ←− TRUE
8. .while refine = TRUE do
9. . .refine ←− FALSE

10. . .Rl ←− c′.R
11. . .R′

l ←− ∅
12. . .for each predicate p of Dt do
13. . . .normalize p
14. . . .if

∑
i
(aiRl(xi)) ⊆ R(∼ Z)

do
/*p is TRUE*/

15.remove p from Dt

16.go to 12
17. . . .if∑

i
(aiRl(xi)) ∩ R(∼ Z) = ∅ then

18.dt true ←− FALSE
19.go to 28
20. . . .for each xj , j = 1, . . . , k

do

21. . . .

.R′
l(xj) ←−

R(∼Z)−
∑

i�=j
(aiR(xi))

aj

∩Rl(xj)
22.if R′

l(xj) = NULL do
23.dt true ←− FALSE
24.go to 35
25.if R′

l(xj) ⊂ Rl(xj) do
26.refine ←− TRUE
27.Rl(xj) ←− R′

l(xj)
28. .if dt true = FALSE then
29. . .remove Dt from c′.Assert
30. .else
31. . .for each variable v do
32. . . .At ←− At ∧ (v ∈ Rl(v))
33. . . .S(v) ←− combination of

S(v) and
Rl(v),

according to R
34. if |S| = 0 do
35. .return NULL
36. else
37. .c′.R ←− S
38. .c′.Assert ←− c′.Assert ∧ At
39. .return c′

Check redundancy(c, V) Algorithm
The following algorithm aims to deal with convergence cases, in order to solve
the infinite loops problem.

– c: configuration to be checked
– V : set of already-seen configurations
– X : set of configurations from redundancy check
– X ′: intermediate set of configurations

166 Baptiste Alcalde et al.

1. X ←− {c}
2. for each configuration cV ∈ V do
3. .X ′ ←− ∅
4. .for each configuration ci ∈ X do
5. . .c′i ←− ci � cV

6. . .if c′i =NULL do
7. . .X ′ ←− X ′ ∪ {ci}
8. . . .goto 4
9. . .else if (c′i �=NULL)&(c′i = ci)

do

10. . . .goto 4
11. . .else if (c′i �=NULL)&(c′i �= ci)

do
12. . . .(ca

i , cb
i) ←− ci\c′i

13. . . .if ca
i �=NULL do

14.X ′ ←− X ′ ∪ {ca
i }

15. . . .if cb
i �=NULL do

16.X ′ ←− X ′ ∪ {cb
i}

17. .X ←− X ′

18. return X

References

[1] J.A. Arnedo, A. Cavalli, M. Núñez, Fast Testing of Critical Properties through
Passive Testing, Lecture Notes on Computer Science, vol. 2644/2003, pages 295-
310, Springer, 2003. 150

[2] A. Cavalli, C. Gervy, S. Prokopenko, New approaches for passive testing using an
Extended Finite State Machine specification, in Information and Software Tech-
nology 45(12) (15 sept. 2003), pages 837-852, Elsevier. 150, 161

[3] R. Hao, D. Lee, and J. Ma, Fault Management for Networks with Link-State
Routing Protocols Proceedings of the IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), April 2004. 163

[4] D. Lee, A.N. Netravali, K. Sabnani, B. Sugla, A. John, Passive testing and ap-
plications to network management, IEEE International Conference on Network
Protocols, ICNP’97, pages 113-122. IEEE Computer Society Press, 1997. 150

[5] D. Lee, D. Chen, R. Hao, R.E. Miller, J. Wu and X. Yin, A formal approach for
passive testing of protocol data portions, Proceedings of the IEEE International
Conference on Network Protocols, ICNP’02, 2002. 150, 151, 152, 154, 157, 161,
162, 165

[6] R.E. Miller, and K.A. Arisha, On fault location in networks by passive testing,
Technical Report #4044, Departement of Computer Science, University of Mary-
land, College Park, August 1999. 150

[7] M. Tabourier and A. Cavalli, Passive testing and application to the GSM-MAP
protocol, in Information and Software Technology 41(11) (15 sept. 1999), pages
813-821, Elsevier, 1999. 150

	Network Protocol System Passive Testing for Fault Management: A~Backward Checking Approach

