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Abstract. Tasked with designing a metadata management system for
a large scientific data repository, we find that the customary database
application development procedure exhibits several disadvantages in this
environment. Data cannot be accessed until the system is fully designed
and implemented, specialized data modeling skills are required to design
an appropriate schema, and once designed, such schemas are intolerant
of change. We minimize setup and maintenance costs by automating the
database design, data load, and data transformation tasks. Data creators
are responsible only for extracting data from heterogeneous sources ac-
cording to a simple RDF-based data model. The system then loads the
data into a generic RDBMS schema. Additional grouping structures to
support query formulation and processing are discovered by the system
or defined by the users via a web interface. Discovered and imposed
structures constitute emergent semantics for otherwise disorganized in-
formation.

1 Introduction

When a group of environmental scientists requested our help designing a meta-
data management solution for their scientific data repository, we speculated that
the database community’s flagship technology, relational database management
systems, would solve the problem neatly. We changed our assessment after fur-
ther investigation, judging that the high cost of database deployment and main-
tenance made the likelihood of adoption rather low. As an alternative, we present
a metadata collection, organization, and query architecture that lowers the cost
of entry by reordering steps in the database design methodology. Metadata is
gathered and loaded immediately using a simple RDF-based data model. After
the data is loaded, they are partitioned according to their signature, which is
inferred by the system. Additional grouping structures (views) can be defined by
users through a web interface. Organizing data via signatures results in a form of
schema that facilitates query expression and allows efficient query evaluation. By
performing schema design semi-automatically only after the data is loaded, we
sidestep the primary obstacles to database adoption in a scientific environment.
Additionally, the schema structures we discover can be adapted to changes in
the metadata stream, avoiding schema evolution problem.
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The context for our work is the CORIE Environmental Observation and
Forecasting System [4], designed to support study of the physical processes of the
Columbia River estuary. The CORIE system both measures and simulates the
physical properties of the estuary, generating 5GB of data and over 20,000 data
products and subproducts daily, including visualizations, aggregated results and
derived datasets. The data products are consumed for many purposes, including
salmon habitability studies and environmental impact assessments. The number
of files in the repository is around 6 million and growing by tens of thousands a
day. The existing repository is organized as a collection of directory structures
on a Linux filesystem. Descriptions for these files are found encoded in the file
name, in the content of the file itself, or in accompanying files.

For example, the data products generated from the simulation outputs have
descriptive information encoded within their filenames. Figure [I] shows an ex-
ample of descriptions found in and around the target file.

runid = “2003 184” output step =1
th
/forecasts/2003 184/run/1 salt.63

variable = “salinity”

1 salt.63

nodes = 55817 file's header provides
sea level = 4285 information required to
: parse the data

A nearby file provides
courant = 0 8 } context information to
interpret the data

Fig. 1. Metadata encoded in file names, headers, paths, “nearby” files.

The data repository is exhibiting growth in both the number and types of
files stored. We have encountered at least the following kinds of files:

— Observation data downloaded from field sensors.

— Simulation inputs downloaded from external servers, in varying stages of
pre-processing.

— Simulation parameter files.

— Simulation control information such as logs, status flags, and saved check-
points.

— Raw simulation outputs in multiple formats.

— Derived data products including reduced datasets, images, visualizations,
reports, and aggregations of multiple datasets.
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Additionally, there is a growing need for access to these data by people other
than the data creators; the heterogeneity of the sources of metadata across these
file types is an impediment.

To support general data access for non-expert users through these scattered
metadata, we describe two alternatives. Our initial plan was to build a straight-
forward database application. However, there was a possibility that such a sys-
tem would be difficult to deploy and maintain without considerable ongoing help
from us. After further thought, we aimed higher: a system for automatically and
adaptively organizing metadata.

1.1 The “Obvious” Solution

Our first thought was to define a schema to house the metadata in an RDBMS.
Next, data creators populate the schema by inserting a tuple for every file in the
repository. Then, a database application is constructed and tested for searching
the database.

There are several disadvantages to this approach. The data creators are not
necessarily data modelers; schema design requires somewhat specialized skills.
Even proficient data modelers would have trouble: The schema should be tuned
to declared use cases, but since new users are coming online continuously, not all
use cases are known at design time. We could undertake the modeling ourselves,
but the effort would still require a lot of interaction with the scientists, who do
not have much time to spare.

Data loading is also problematic; we cannot ask the scientists to manually
enter 6 million tuples. Portions of the data-loading task can be automated since
the data creators are often proficient programmers, but their knowledge does
not necessarily include RDBMS languages or APIs. Data loading constitutes a
significant up-front cost to this approach which must be paid before any benefit is
realized, so it is difficult to persuade the scientists to diligently record metadata
during the interim. Accurate test data with which to proof the system is also
needed but has an even lower priority.

Once the data is loaded, the schema may be difficult to validate since the
database is free to diverge from what is encoded in the filenames, file content, etc.
Database APIs and a specialized schema constitute a “wide” interface between
data creators and metadata managers: Small requirements changes can result
in significant interface changes. A question of responsibility also arises: if a new
metadata field is required, who must update the database and possibly modify
or reload data?

1.2 An Alternative

Since the metadata sources may change frequently, those responsible for the
changes should also be responsible for their extraction. If we perform the extrac-
tion, we are obligated to maintain the code even as the underlying requirements
and metadata encodings change. If the scientists perform the database load, they
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will be responsible for maintaining the interface as the schema undergoes revi-
sion. We made the observation that decoupling metadata extraction from the
rest of the system was important for robustness.

In our approach, the interface between metadata extraction and database
loading is as narrow as possible. Data creators extract metadata “descriptors”
and deliver them through a very simple data model based on RDF. Descriptors
are extracted using collection scripts written by the data creators (or others) in
their choice of programming language. These descriptors are loaded as-is into a
generic RDBMS schema. Generic schemas are difficult to query and browse, and
usually exhibit poor performance. We therefore partition the data into groups
according to patterns found in the metadata. These groups act as a schema
to expose structure, simplify query expression, enable browsing, and improve
response time. Additional groupings of data can be defined by users through a
web interface providing a personalized view of the repository.

This approach offers several advantages. A narrower interface between meta-
data managers and data creators is valuable: To accommodate changing meta-
data requirements, simply update the collection scripts and the system reacts
appropriately. Metadata can be harvested and exploited prior to finalizing a
schema, delivering benefits much sooner. A single, generic metadata delivery
interface, controlled by collection scripts, can both load new data and update
existing data. Since the schema is built dynamically, new views can be easily
defined to support new users or new tasks. We use the term emergent seman-
tics to describe the paradigm of harvesting data first and organizing it second.
By organizing and publishing the gathered metadata back to users, they re-
tain responsibility and control over validation and adjustments. The collection
scripts used to gather metadata can be modified and re-executed to update the
database.

Several challenges must be overcome to realize these benefits. Queries over
a generic RDF schema are expensive and difficult to express. Techniques for
identifying patterns in the metadata stream must be devised. Once patterns in
the metadata are found, we must convert them into structures (signatures and
signature extetnts) to facilitate query expression and processing. Users may also
wish to impose their own structure on the data. As new users and new use cases
are introduced, requirements may change. If the metadata stream changes, can
the previously found structures adapt? In some cases, users may wish to pro-
mote previously found structures into hard constraints, rejecting non-conforming
metadata. This paper presents an architecture that takes initial steps towards
resolving these issues.

2 Harvesting Metadata

To extract metadata from scattered sources, we rely on collection scripts to assign
(property, value) pairs to each file. The output of collection scripts are then
interpreted as (subject, property,object) triples. In our application, collection
scripts are written primarily, but not exclusively, by the environmental scientists.
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They are proficient programmers and are most familiar with the file description
encoding schemes at the sources.

Collection scripts may be written in any language. To fire the collection
scripts and harvest the metadata we provide a program harvest. The harvest
program accepts a set of applicability rules and a target directory as input,
and produces (file, property,value) triples for each file in the directory. An
applicability rule consists of a regular expression, the path to a collection script,
and a path to an interpreter for the collection script, if necessary. The harvest
program recursively walks the target directory, testing the rules for each file. A
rule is activated if its regular expression accepts the string formed by the path
and file name being tested. For each activated rule, the program executes the
appropriate collection script. Multiple rules may fire for the same file, and the
same collection script might be triggered by multiple rules.

For the file in Figure [, a simple rule matching the “.63” extension trig-
gers a collection script that emits triples from the file name (e.g., <1_salt.63,
variable, salinity>), from the content (e.g., <1_salt.63, nodes, 55817>),
and from nearby files (<1_salt.63, implicitness, 0.8>). Alternatively, these
three sources could have been accessed by three separate collection scripts (re-
quiring three rules), all triggered by the same regular expression. Rules give
collection script writers significant flexibility with regard to software design. For
example, these three collection scripts may be written by different authors, at
different locations, with different metadata requirements.

Each script is expected to accept one command line argument, a file path,
and call a function Assert (property, value, type) for each metadata item it
wishes to record for the file. The Assert function is provided by the system for a
few languages (Perl, Python, C). If scripts are written in a language for which the
assert function has not been defined, the script may simply emit the property,
value, and type arguments to standard out in a comma-delimited format.

Initiating a separate process for each script execution is prohibitively expen-
sive, as there are around 20,000 files per run and a large repository of existing
runs. To improve performance, the harvest program uses embedded interpreters
for the two most popular languages, Perl and Python. For simplicity, the users
still write their code as if it is to be run from the command line; the harvest
program wraps each script in a virtual environment and executes it in the same
address space.

The Assert function, called from within a collection script, emits a triple
through temporary files or stdout. The stream of triples produced by a series
of calls made by amultiple collection scripts is then delivered to a relational
database for analysis, as described in Section [4]

3 Modeling Metadata

To interpret extracted metadata, we must choose a data model to capture the
descriptions. Rich data models that can capture complex relationships, con-
straints, and operations allow the same real world concept to be modeled in



182 B. Howe et al.

many different ways. To choose an appropriate translation into the data model’s
structures, modeling experts meet with domain experts, clarify the details, and
construct a prototype. This offline coordination is expensive in terms of time re-
quired, and usually involves several iterations. Other confounding issues impede
the data modeling efforts: dirty data, redundancy, ambiguity. Finally, if changes
are expected to be frequent, this design process might be repeated several times.

We sidestep these issues at this stage by adopting a very simple data model.
Very little transformation need be performed and very few initial modeling de-
cisions need be made to get the metadata recorded and queryable. Once the
descriptions are in a uniform, machine-readable format, richer modeling fea-
tures can be applied. Figure [2 contrasts the manual effort required by the two
approaches. In Figure [2] the term “Signature Extent” refers to the grouping
structures inferred by the system and will be explained in section 2]

To accommodate the heterogeneity of the data sources and simplify the scien-
tists’ collection scripts, we adopt a data model based on the Resource Description
Framework (RDF) [7] consisting of (subject, property, object) triples. We sacri-
fice expressive power for simplicity and uniformity: Simple facts can be recorded
immediately without regard to overall structure.

Of course, the additional expressive power of richer data models is important
for query formulation and processing. To recover these benefits, we must derive
relationships encoded in the (subject, property,object) triples. For example, if
several files all have the same set of properties, we can group the files together
to simplify queries and improve their performance.

User Interviews
Schema Design
Data Load
Prototype
Test

{ Queryable Data

Fixed Schema

Scattered Data

Signature Extents

Write Coll. Scripts

Fig. 2. Two methods of organizing data with different amounts of offline activity.
Signature Extents are a form of schema inferred by the system.

3.1 RDF: Shortest Route to Machine-Processable Metadata

We have been using the RDF terminology of “subject,” “property,” and “object.”
The word “object” connotes a fundamental feature of the RDF data model: Prop-
erties can reference arbitrary resources, making the overall data model a graph.
This feature distinguishes RDF from tree-based data models, e.g., LDAP [17].
RDF was designed to enable interoperability and automation by adorning
web resources with simple machine-processable metadata. Our domain is sim-
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ilar: We adorn files, the substrate of observation and simulation systems, with
metadata to enable access.

Formally, an RDF graph is a set of triples of the form (s, p,0). The property
(or predicate) p is drawn from a set of Uniform Resource Identifiers R. The
subject s is drawn from the union of R and a set of blank nodes B. The object
o0 is drawn from the union of R, B, and a set of literals L. Blank nodes act as
existentially quantified variables over the domain of a particular graph. RDF
graphs can be drawn as a graph using the union of R, B, and L as nodes and
drawing an edge for every triple. Edges are labeled with the property URI, and
non-blank nodes are labeled with either the URI or the string literal in quotes.
Blank nodes are, as might be expected, unlabeled.

We forego the use of more advanced features of RDF, such as RDF Schema for
defining classes and class membership, and reification for asserting RDF state-
ments about other RDF statements. Use of these features would again require
the up-front modeling effort we hope to avoid. We do allow literals to carry a
type as supported in RDF. Note that our interest is in the RDF model rather
than the XML-based syntax for RDF [16].

Even without the advanced features, the RDF data model can be used to cap-
ture the information expressed in much richer data models, though redundancy
is often introduced, and query facilities are sacrificed.

3.2 Interpreting RDF in Our Application

To model our metadata in RDF, we must first specify the sets R, B, and L.
Construct a set F' of URIs corresponding to files in the domain of interest.
Construct a set P consisting of properties associated with a file in F'. The set
of URIs R is F'U P. The set of literals L are simply string constants. Collection
scripts will only emit triples (f,p,0) where f € F,p€e P,and o€ LUF.
Figure Bl shows an example of an RDF graph used to model our domain.

/12003-49-01/sal_estuary_7.gif

source_data

variable

/1_salt.63

nodes

Fig. 3. An example of RDF used to model files and properties in our domain.
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The RDF data model allows a URI to appear as both a property and an
object in two triples & and y. In our application, however, property URIs may
not appear as objects, though file URIs may. Files that reference other files
are especially useful for tracking provenance; data products can reference the
datasets they are derived from, and datasets can reference the executable of the
simulation code used to generate it as well as the inputs.

The graph structure of RDF is one prominent feature RDF; the other is the
concept of blank nodes. Blank nodes are used to model anonymous structured
types. In Figure 3, we use a blank node (the gray oval) to capture the idea that
the region named “estuary” corresponds to the bounding coordinates xmin =
45.9, ymin = -123.1, xmax = 46.5, ymax = -124.5.

By our definitions, collection scripts are not capable of emitting blank nodes
directly. To retain simplicity, elements of structured property values are attached
to the files directly, a decision that introduces redundancy but retains simple
semantics for the collection scripts. In Section [£4] we will describe how these
structured types can be correctly abstracted after extraction and load.

4 Analyzing RDF Using RDBMS

We have modeled our domain of files and metadata using RDF. Our use of
RDBMS technology to store and manipulate RDF data is the subject of this
section. As reported in the literature, RDBMS are an appropriate choice for
managing RDF data. However, since we have no schema information at this
stage, we adopt a generic schema that captures the RDF triples directly. This
approach has been called the vertical representation [3], generic schema, or edge
schema in the literature for various data models and applications. We dis-
cuss querying the data in terms of SQL: Query languages for RDF have been
proposed [18[25], but either tend to rely on schema information encoded as RDF
Schema [8], or are based on subgraph matching for which scalability has not
been demonstrated.

Two variants of the generic RDF schema appear in Figure [fa. A Triples
table stores RDF triples in terms of string representations of the URIs. To im-
prove performance, a Resources table might abstract the string representations
of uris and leave integer keys in the Triples table for faster processing of set
operations on resources (Figure @b).

4.1 Performance

The use of a single table for storing the RDF graph faithfully supports the RDF
specification, but makes queries over RDF difficult to write. For example, to re-
trieve all the files (subjects) which exhibit the properties variable, region, and
plottype, 2 self-joins (in standard SQL) are required. Figure[§ shows the SQL
for such a query over the schema of Figuredh. To ask for files that exhibit an n-
property signature, an (n—1)-way join is required. More generally, each property
to be viewed (projection) or used to filter results (selection) contributes a join on
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Triples
a) " "
subject property object
file://forecasts/2003-184/images/anim- property:region estuary
sal_estuary_7.gif
file://forecasts/2003-184/images/anim- property:variable salt
sal_estuary_7.gif
file://forecasts/2003-184/images/anim- property:plottype animation
sal_estuary_7.gif
file://forecasts/2003-184/images/anim- property:source file://forecasts/2003-
sal_estuary_7.gif 184/run/1_salt.63
b) Resources Triples
id | uri subject | property | object
1 file://forecasts/2003-184/images/anim- 1 3 7

sal_estuary_7.gif

2 file://forecasts/2003-184/run/1_salt.63

1 4
1 5
1 6

N[ |

property:region

property:variable

property:plottype

property:source

estuary

salt

Clw|[w|loa|u|s]|w

animation

Fig. 4. Two possible schemas for modeling RDF in RDBMS.

SELECT r.subject as file, r.object as region,

p.object as plottype, v.object as variable
FROM statements r, statements p, statements v
WHERE r.subject = p.subject

AND p.subject = v.subject

AND r.property = ‘property:region’
AND p.property = ‘property:plottype’
AND v.property = ‘property:variable’

Fig. 5. Simple SQL to find resources exhibiting properties variable, region, and plot
type.

the Triples table. The SQL is awkward to generate or write, and performance is
terrible with respect to the number of conditions. Our current database captures
30 million RDF triples describing 6 million files, so performance is important.

Using a single Triples table, we can express arbitrary RDF graphs. In prac-
tice however, we observe that the files have one of several signatures. For example,
most data products derived from simulation output are associated with a vari-
able (e.g., salinity, velocity, temperature), a region (e.g., estuary, far, plume),
and plot type (e.g., isolines, transect, timeseries). Figure [@ shows a transect plot
(a) and an isolines plot (b) for the salinity variable in the estuary region.

Each of these plots exhibit the three metadata attributes involved in the
query of Figure [l If this signature is common, we can improve performance by
materializing the signature extent proactively, reducing the query to “SELECT *
FROM <signature name>”
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Fig. 6. Two data products from the CORIE simulation system.

4.2 Signatures

A signature is the set of properties used to describe a particular file. A signature
extent is a set of files that all exhibit the same signature. Computing the extents
involves finding the unique signatures exhibited in the current database instance
of the Triples table. We materialize these extents as tables in the relational
schema. This approach is only wise if the number of signatures is small relative
to the number of files. Considering that there are intuitively related sets of files
such as data products, simulation outputs, etc., this assumption appears valid.
Note, however, that the number of signatures is not simply equal to the number
of scripts. Multiple scripts, possibly written by different people, can fire for the
same file. Further, nothing constrains a script to output the same properties for
every file. For example, we use collection scripts that output different parameters
depending on which version of the simulation is being considered.

Computing signatures is similar to extracting association rules in a data
mining application. Instead of identifying which item groups tend to be found
together in a single customer order, we find properties that tend to be found
associated with a single file. However, we need not invoke the full power of data
mining, since we are only interested in association rules of 100 percent confidence;
data mining algorithms use sophisticated techniques to estimate the confidence
level and prune the search space.

Computing the signatures might seem to require application code, but we
can exploit set-valued attributes to express the computation using a dialect of
SQL. We simulate set-valued attributes in Postgres [30] using sorted arrays. The
SQL to compute all the unique signatures in the database is given in Figure [7]
The outermost query simply projects out the signatures, removing duplicates.
The GROUP BY operator in the nested query applies an aggregation function
(array_accum) that constructs an array dynamically from the elements of the
group. The result of the nested query is a set of (file, signature) pairs. To model
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SELECT DISTINCT signature FROM (
SELECT subject as file,
array_accum(property) as signature
FROM (
SELECT DISTINCT subject, property
FROM Triples
ORDER BY subject, property
)
GROUP BY subject

Fig. 7. SQL to compute unique signatures.

sets correctly using arrays, we must remove duplicates and sort the elements;
this is the purpose of the innermost query.

For each signature, a signature extent can be computed with attributes for
each property in the signature. The materialized view can be computed using
SQL of the form in Figure [ but a much faster method again uses set-valued
attributes and a crosstab operation. The crosstab operation is known by various
names in the literature. The designers of the SchemaSQL language [20] propose
a fold operator, and Online Analytical Processing (OLAP) systems include a
CUBE operator [14].

The SQL in Figure[7 can be adjusted slightly to generate the profile for every
subject in the triples table (Figure Bh) rather than the set of unique signatures.
We can materialize this adjusted query, calling the materialized table FileSigna-
tures. Now, for each unique signature s, we want to 1) find the set of file URIs
F, whose signature is s, 2) find the set of triples {(f,p,0) | f € Fs}, 3) sort
the results by subject and propertyti, and 4) perform the crosstab operation to
convert the properties into attribute names in the query results. Steps 1-3 are
captured by the SQL in Figure Bb. The result of the crosstab is materialized as
a signature extent and is available for further querying by users. This process is
repeated for each signature inferred by the system.

This approach is far more efficient than the SQL in Figure[d, since that ap-
proach requires O(n) joins, where n is the number of attributes in the signature.
The crosstab algorithm is linear with respect to the number of files and the
number of triples. Our focus in this paper is on semantics, but our experiments
have shown that the improved query is over an order of magnitude faster.

Signatures provide an overview of the data collected with the harvest mech-
anism. Users can check their assumptions about the metadata that is collected
by reviewing the set of signatures found and which signature a particular file
exhibits. For example, in our domain, users expected that all files containing pa-
rameters to the simulation would have the same signature. However, two similar
but distinct signatures were found by the system, exposing the fact that that

! The single-pass crosstab algorithm used requires that the data be sorted.
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b) )
SELECT subject, SELECT t.subject,
array_accum(property) t.property,
as signature t.object
FROM ( FROM FileSignatures fs,
SELECT subject, property Triples t
FROM Triples WHERE fs.signature = <s>
ORDER BY subject, property AND fs.subject = t.subject
) ORDER BY t.subject, t.property

GROUP BY subject

Fig. 8. Partial SQL to compute signature extents. The relation FileSignatures in (b)
is the result of query (a).

parameter files created for different versions of the code had a slightly different
format. A new collection script to parse the older parameter files was created.

4.3 Update Semantics

So far, we have discussed how to efficiently compute signature extents from a
large set of RDF triples, but how are these data to be maintained as the RDF
stream changes? New simulations result in new files being delivered with po-
tentially new signatures. As requirements change, existing collection scripts will
evolve and new collection scripts will be written. New applicability rules may
also be defined, causing existing collection scripts to operate on new files. In
each of these situations, there are three classes of changes that must be accom-
modated: new files with potentially new signatures, new properties for existing
files resulting in a change of signature, or new values for existing properties of
existing files. How the system reacts to these possibilities is the subject of this
section.

New Files. When new files are presented to the system, they may or may
not exhibit a previously encountered signature. If they do, then a new tuple
may be inserted into the appropriate signature extent, and no schema changes
are required. If the signature has not been previously encountered, then a new
signature extent can be created and a the new tuple inserted into it.

New Properties, Existing Files. If a collection script is modified and then re-
executed over existing data, two possibilities must be addressed. First, the newly
modified collection script may emit different values for an existing property of an
existing file. We describe this case in the sequel. Second, a collection script may
emit an entirely new property for an existing file, changing the file’s signature.
Since we have previously computed signature extents and materialized them, we
must massage the database to accommodate this new signature.

One choice is to simply drop and reload the database whenever the collection
scripts are modified or another change is made, but an incremental strategy is
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desirable. If the file’s new signature has been previously encountered, then an
extent exists for it, and the tuple can be deleted from the old signature extent and
inserted into the new one. If the signature has not been previously encountered,
then a new signature extent must be created first.

New Values, Existing Properties, Existing Files. To support update of
property values, we must modify our interpretation of RDF. The RDF data
model allows a single property to be asserted more than once for a particular
subject. Instead, we enforce that no two triples in a given database instance may
have the same subject and property. To accommodate updates to a property’s
value, we interpret the assertion of a property as a command to overwrite the
previous value, if one exists. This interpretation implies that there is a total
order on the RDF triples, corresponding to their arrival in the system.

To define the total order, we must consider executions of the harvest pro-
gram, executions of collection scripts, and the order of assertions produced by a
collection script. Executions of the harvest program can be serialized naturally
by the server. However, within a single execution of the harvest program, multi-
ple collection scripts may attempt to assert the same property for the same file.
To resolve this ambiguity, we defer to the order of the applicability rules. Recall
that these rules specify which collection scripts to fire for which files. The latest
rule that causes a duplicate assertion to be made overrides any previous rules.
The applicability rules are managed by the data creators just as the collection
scripts are, so changes can be made unilaterally. There is also the possibility that
a single collection script may assert the same property for the same file twice
in a single execution. We rely on the script author to understand that only the
later value will be retained.

To minimize redundant work, we keep track of which collection scripts were
executed with which execution of the harvest program. If the harvest program is
re-executed over existing files, we only fire those collection scripts that are new
or have been modified since the last execution. This policy reduces the amount
of time required to harvest metadata and reduces the conflicts that must be
resolved during loading.

Batches. The semantics we have just described can result in a great deal of data
reorganization work. Very small changes to a collection script can result in many
insertions, updates, and deletions, and potentially require new database tables to
be created. There is a tradeoff between processing new metadata incrementally
and buffering batches of metadata to process all at once.

If we enact the policies above after every triple arrives, we will obtain the
correct semantics, but we will fire multiple SQL statements for every triple. The
volume of data is large enough that this approach is unacceptable. Fortunately,
triples generally arrive in batches, usually corresponding to an execution of the
harvest program. We interpret the triples in a batch as arriving simultaneously,
and only compute the new schemas once per batch. As described, there may
be duplicate properties for one file asserted in a single batch. We remove these
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duplicates inside the harvest program, according to the semantics above, prior
to the database load operation. Therefore, even though we consider each batch
as a simultaneous set of updates, no ambiguity can arise.

In our application there is a natural batching strategy. For each run of the
CORIE simulation code, around 20k files and around 100k triples are loaded
into the system. If we consider this set a batch, we can balance the tradeoff
between stale data and computing signatures that are replaced without ever
being accessed.

Deletes. Deletes are more problematic. If we do not support deletes, there is no
way to remove properties associated with files to support changing requirements,
which prevents the correct signatures from being exhibited. But in order to
support deletes, we must allow authors of collection scripts to specify that a file
should no longer have a given property. (Note that we do not wish to support
deletes of files themselves. The fact that a file once existed is important lineage
information.)

We entertained two possible semantics for deletes: 1) Whenever a batch of
metadata arrives for a file, assume the old metadata is incorrect and drop it
all. These semantics agree with the update semantics already specified; new
triples will still “replace” old triples since the old triples are deleted beforehand.
The problem with these semantics is that collection scripts are prevented from
extending the metadata associated with an existing file. They must produce all
metadata for a file in every batch. Another choice is to 2) allocate a special URI
“value:delete” that is interpreted as a deletion when it appears as the object of a
triple. The problem (other than the inelegance of requiring a specially interpreted
value) is that the collection scripts must produce “delete commands” as well as
standard metadata, complicating their design and implementation. Although the
collection scripts are expected to undergo refinement and change, using them
as an interface to perform “one time only” database mutations is awkward.
Currently, our implementation uses the second semantics.

4.4 Blank Nodes Revisited

Recall that blank nodes represent placeholders for unnamed subjects and objects
in an RDF graph. Semantically, blank nodes are existentially quantified variables.
In our design, collection scripts can not emit make use of blank nodes. The
subject of every RDF triple represents a physical file. Collection scripts have no
way of expressing triples whose subject is a blank node.

The disadvantage of this design is that collection scripts must redundantly
emit the same information for many files. For example, all region information
(xmin, xmax, ymin, ymax, region name) is linked directly to the file rather than
linked to a blank node as in Figure 8] The concept of region is a separate entity
and should be abstracted using a blank node in the RDF graph. In a relational
setting, we note that region name functionally determines xmin, ymin, xmax,
and ymax. Normalization procedures prescribe that we decompose a signature
extent involving these properties by extracting a “region” table.
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Since the collection scripts cannot express this feature of the data, we rely on
tools to discover it after the data has been loaded. Several algorithms exist for
discovering these functional dependencies [23]. The results of these algorithms
can be used to further refine the schema. The tradeoff is twofold: First, a more
complex schema may make data exploration more difficult for users unfamiliar
with relational principles. Second, the processing of new RDF tuples becomes
more expensive as the schema becomes more complex. The logic to transform
a batch of RDF triples into a set of tuples becomes complex when considering
updates, deletes, and now decomposed tables. Since some changes to collection
scripts may require a significant amount of data to be corrected or reloaded,
minimizing the complexity of the load operation is important.

For these reasons, we compute functional dependencies and perform pre-
scribed decomposition only offline after a batch of data has been loaded. Fur-
ther, we publish the data in terms of signatures, even though the underlying
schema may be more complex. Modern RDBMS support this form of logical
data independence quite well.

Performance is currently adequate considering the database represents over
6 million files and over 30 million RDF triples. After applying the techniques
discussed in this paper for speeding up execution of collection scripts, identi-
fication of signatures, and population of signatures, we can re-load the entire
repository, including re-harvesting the RDF triples, in a few hours. This level
of performance is necessary, since there is a possibility that the majority of the
database must be effectively reloaded if significant changes to collection scripts
are made at one time.

5 Web Interface

Having imposed some structure on the metadata stream, we publish the data to
the web for validation, exploration, and query. Generally changes to a database
schema require changes to an application since applications reference table names
and column names explicitly. However, an application can be designed generi-
cally by retrieving table names and column names from the catalog rather than
hard-coding them. The HTML to display a table’s information is generated dy-
namically from the catalog. We took this approach, extending source code for
a free generic database interface [28]. The entry point is a list of tables in the
current database.

5.1 Validation Using Signatures

The initial view in the web interface shows the signatures inferred by the sys-
tem. In addition to a system generated name, the properties that make up the
signature are displayed, giving an overview of how the files are organized in the
database.

The list of signatures computed by the system provides immediate informa-
tion about what sort of data is being captured. For example, users can see that
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some signatures are very similar, differing in only one property (e.g., <plottype,
region, variable, animation> versus <plottype, region, variab1e>). This
configuration suggests that the presence of the animation property is acting as
a boolean. If the animation property exists, then the file type is an animated
gif; if not, it is a single frame. The value of the animation property may be
irrelevant. Perhaps a better configuration is for files in both signature extents to
assert a GIFtype property, with either the value animation or single frame.
If this configuration improves understanding, appropriate adjustments to the
collection scripts can be made, and the database schema will adapt.

5.2 Query

The interface also allows users to construct simple queries via the signatures.
Properties encountered in the metadata stream are shown, along with a range
of values. This kind of summary information is important for validation as well
as query formulation. For example, one of the parameters to the simulation,
implicitness, indicates a coefficient controlling the weights of implicit and explicit
methods for solving for each timestep. Those unfamiliar with the application can
see the range of values found in the database before issuing a query. In fact, those
unfamiliar with the term use these value ranges as clues to its meaning.

Figure [0 illustrates the query interface. To construct a query, users select
signatures from the left, which populates a list of properties on the right. If a
single extent is selected, then these properties simply form the SELECT clause
of a SQL statement. If multiple signatures are selected, the natural join between
the two is computed. Allowing only the natural join limits the expressiveness of
this query interface, but has suited our purposes for the application thus far.
Defining the precise query features necessary in this domain is an open problem.
Selection conditions can be added at the bottom of the screen. The query can
also be saved as a materialized view, which is refreshed at system-configurable
intervals.

After retrieving the results of queries, the user can view the file (useful for
images) or make annotate the file. Figure shows the results of a query, and
demonstrates how the user can click a link access the file itself.

The query interface allows us to make efficient use of the scientists’ time. We
can meet with them for an hour, browse through signature extents, and construct
views on the fly. In several of these meetings, we have discovered anomalies in the
metadata that reflected real anomalies in the source data. We receive comments
such as the following;:

— “Why are there only 3 salinity data products for this simulation run? I was
expecting 4 thousand!”
— “Why are there two copies of the parameter file for every simulation run?”

— “The date should be divided into month and year; we should change that in
the collection scripts.”
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Fig. 9. To express queries and saved views, users select signatures on the left and add
selection conditions at the bottom.

6 Related Work

Our base representation of RDF triples is directly related to the work of Agrawal
et al. in managing E-commerce data [3]. Their system also copes with frequently
changing attributes by adopting a vertical representation of data that is isomor-
phic to our base representation of RDF triples. The authors observe that such
a representation makes queries difficult to express, as we have also argued. A
horizontal view is constructed over the vertical representation of the data to ease
this difficulty. The authors’ notion of horizontal representation is very different
from our signature extents, however. The horizontal representation is a single
table that exhibits all attributes exhibited by any item in the database, acting
as an implementation of the Universal Relation [22]. Null values are used to fill
the table where an attribute has not been defined for an item. The resulting
table may have thousands of attributes, and many of the tuples are very sparse.
Our extents actually partition the data among many “horizontal” tables, each
having only a handful of columns and significantly fewer tuples. Using extent
tables, we can achieve interactive query performance with at least an order of
magnitude more data than Agrawal et al. describe.
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Fig. 10. Query results allow access to the file itself.

Schema extraction from semi-structured data has been studied intensely [12]
[3)26]. The RDF data model provided a closer match with our desired semantics
than the more general semi-structured data models. Further, semi-structured
data models are oriented toward graphs with deep and complex structure. The
schema information extracted with these systems would not necessarily provide
guidance for query formulation in our domain.

RDF databases are gaining popularity in both research and commercial con-
texts [ATITR]. These systems organize the data according to RDF Schema infor-
mation provided along with the RDF data. Contrast this situation with our do-
main, where the schema information is not recorded explicitly and is frequently
changing. Systems that allow querying of unstructured RDF [25] operate via
graph matching and have not yet demonstrated scalability. Further, the users
are required to “fish” for query results, since no schema structures are present
to guide query formulation. Guha has done some early work on a scalable native
RDF database that does not rely on RDF Schema, but thus far results are not

provided [15].

More recent work by Christophides et al. advocates views over RDF
databases constructed as virtual RDF classes [21], which recalls our design. How-
ever, users are charged with building the views using a specialized language. We
are taking steps towards deriving appropriate views using only the base RDF
data and the patterns therein.
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Relational representations of XML data are also of interest. Some depend
on RDF Schema information, which we do not have. Earlier work compares
generic representations of XML [IT]. The edge schema captures parent-child
relationships between nodes in the XML tree, and is very similar to the common
representation of RDF triples we have adopted. Binary representations involve
separate tables for each element label, with results constructed via joins.

Metadata standards such as Dublin Core [I] and those produced by the
Federal Geographic Data Committee (FGDC) [2] provide pre-defined schemas
for metadata. These standards are usually intended to be human-readable, and
are not usually amenable to structured querying. Further, the standards are
often intended for large granularity datasets rather than individual files. For
example, in our domain, an entire year’s worth of simulations may be described
by a single FGDC document.

Research on ontology models and tools has become commonplace in the last
few years. The OWL languages for capturing ontological properties [6], based
on RDF, have become W3C recommendations. While work on ontologies show
promise for capturing complex relationships across domains, adoption has been
slow due to practical issues. Usually ontology tools assume that a Ontologist,
Knowledge Engineer, or Cybrarian [24] is available to model source metadata
in the target system. This task is far from trivial, which is why job titles such
as those mentioned have been invented. Our framework streamlines the process
of converting scattered source data to machine-processable metadata. Inferring
and exploiting the complex relationships supported by ontology models remains
future work.

The Grid [10] community has recognized the need for a comprehensive meta-
data management solution in Grid environments. The MCAT metadata infor-
mation catalog supports metadata processing in the context of the San Diego
Super Computing Center’s Storage Request Broker (SRB) [5]. More recently,
the Metadata Catalog Service (MCS) [29] has been shown to perform well under
heavy query workloads and large database sizes [27]. Our goals differ from these
systems, however. We are working toward a system that can adapt to evolving
requirements with little or no user intervention. The MCAT system is designed
to process metadata queries over using specialized query structures. While the
schemas providing structure to the data are not necessarily fixed, users must
explicitly update the schema to reflect changing requirements. The ability for
MCAT to handle frequent changes is unclear. Other features such as location
transparency and replication are important and complementary to our own work.

7 Future Work

There are several research directions to follow based on this work, primarily in
the area of finding and exploiting richer structures in the RDF data. Currently we
infer simple groupings from the data patterns, and we discussed using functional
dependencies to further refine the schema. However, views defined by users in
the web interface provide very important information as to how users will access
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their data. Beyond simply materializing these views, the schema can be designed
to make these user views efficient. Finding automatic techniques to transform
the schema based on user-defined views is an interesting direction to take.

Although we acknowledge that inferred functional dependencies can lead to
improved schema design, we have not applied the same analysis to other data
dependencies from relational theory: join dependencies and inclusion dependen-
cies. In fact, a rigorous interpretation of these dependencies in our domain would
be useful.

We exploit patterns in the metadata stream to facilitate query expression and
improve performance. However, a schema serves another purpose as well: enforce-
ment of constraints on the data. If patterns found by the system are acknowl-
edged by users, the system could promote the patterns into hard constraints.
After this promotion, violations of the constraints in the metadata stream would
be rejected outright as errors. Providing a flexible transition between reactive
and proactive pattern exploitation presents interesting theoretical and practical
challenges.

The query interface provided via the web supports only simple natural joins,
making many useful queries impossible to express. We predict that an interface
can be designed that supports all relevant queries in our scientific domain without
requiring the full power of SQL.
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