
M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 318–327, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automatic Customization of Embedded Applications
for Enhanced Performance and Reduced Power

Using Optimizing Compiler Techniques*

Emre Özer, Andy P. Nisbet, and David Gregg

Department of Computer Science
Trinity College, Dublin, Ireland

{emre.ozer,andy.nisbet,david.gregg}@cs.tcd.ie

Abstract. This paper introduces a compiler framework that optimizes embed-
ded applications written in C, and produces high-level hardware descriptions of
the applications for customization on Field-Programmable Gate Arrays
(FPGAs). Our compiler performs machine-specific and machine-independent
optimizations in order to increase the performance of an embedded application
and reduce area/power requirements without explicit programmer intervention.
Our experimental results show that our compiler framework can increase per-
formance by 38% with loop and expression parallelism for eight embedded
benchmarks. Also, area usage and power consumption are reduced by 69% and
55%, respectively through the efficient utilization of on-chip FPGA resources
for Xilinx Virtex-II FPGA chip.

1 Introduction

The attraction of using FPGAs is the ability to generate application specific logic
where the balance and mix of functional units can be altered. This has the potential to
generate orders of magnitude speedup for computationally intensive algorithms.
However, the time taken to develop and optimize an application for execution on an
FPGA using a traditional hardware description language (HDL) design flow may be
prohibitive.

Our goal is to develop a compilation framework (see Fig. 1) that takes an applica-
tion written in ANSI-C, translates it into an intermediate representation (IR) for per-
forming optimizations, and produces Handel-C code. Handel-C [12] is a high-level
HDL language that can reduce both the time and the expertise required to develop
embedded FPGA applications. However, the programmer must explicitly specify code
parallelism, the storage type (memory or registers), operand bit-widths, resource shar-
ing or private resource allocation using special language constructs. The detection and
exploitation of parallelism in an application and explicit specification of operand bit-
widths and decisions about how to allocate resources are tedious, error-prone tasks
which can be largely automated.

* The research described in this paper is supported by an Enterprise Ireland Research Innova-

tion Fund Grant IF/2002/035.

Automatic Customization of Embedded Applications for Enhanced Performance 319

Our compilation framework is built upon the Stanford SUIF1 compiler [8]. It per-
forms several architecture-independent optimizations as well as architecture-specific
optimizations on the SUIF IR such as loop parallelization, expression scheduling,
shared hardware structuring, operand bit-width specifications, the efficient utilization
of on-chip RAM and ROM, multi-ported RAM and dedicated multipliers in the target
FPGA chip. The final step of our compiler is to generate Handel-C code from the
optimized IR. The Handel-C compiler reads the generated Handel-C code and pro-
duces EDIF netlists for Xilinx Virtex-II XC2V6000 FPGA chip [13].

Fig. 1. Our compilation framework

The organization of the paper is as follows: Section 2 explains compiler optimiza-
tions for improving performance and analyzes performance results. Section 3 presents
optimizations and experimental results of area and power consumption. Section 4
discusses the related work in hardware compilation, and finally, Section 5 concludes
the paper with a discussion of future work.

2 Optimizations for Performance

This section introduces compiler optimizations to increase the performance of em-
bedded applications by taking advantage of the Handel-C parallelism constructs. Each
assignment statement in Handel-C takes exactly one clock-cycle to execute. The op-
erand reads of variables are initiated at the start of a clock cycle and a write to the
destination variable is finalized by the end of the clock cycle. This means that it is
permissible to have multiple reads and a single write to a variable occurring in the
same clock cycle.

2.1 Loop Iteration Parallelization

Handel-C has three different loop constructs: for, par and seq. Each construct has the
same syntax:

for|par|seq(loop_index=LOWER_BOUND;loop_index<|>|=|!=UPPER_BOUND;step)
{Statements}

The way that the for loop in Handel-C works is the same as in C, i.e. the loop is
executed by the amount of the loop trip count. In a par loop, every iteration and every
statement in the iteration is executed in parallel. On the other hand, the seq loop fully
unrolls or replicates the loop and executes the iterations sequentially. Loop-carried

C SUIF
Compiler

Optimizations/
Transformations

IR SUIF-IR to
Handel-C

Translator

Optimized
IR

Handel-C
Compiler

Handel-C

EDIF
Xilinx EDA

Tools
Xilinx

Virtex-II FPGA
Final

Mapping

320 E. Özer, A.P. Nisbet, and D. Gregg

data dependency analysis can determine if loop iterations are independent and suitable
for parallel execution. A for loop whose iterations are independent can be replaced by
a Handel-C par construct. Note that the statements in the loop body are by default put
into a seq construct in our system and will execute sequentially. For example, the C
sample code on the left-hand side can be parallelized using Handel-C as shown on the
right-hand side below.

/* C sample for loop */ /* Handel-C par loop */
for (i = 0; i<10; i++) { par (i = 0; i<10; i++){

 seq {
 a[i] = b[i] + c[i]; a[i] = b[i] + c[i];
 d[i] = e[i] * f[i]; d[i] = e[i] * f[i];

 }
} }

The sample loop has independent iterations since there are no data-carried depend-
ences between iterations. The loop can be transformed into a par loop, and the loop
body is conservatively contained in a seq statement that guarantees that the two
statements execute sequentially. In this example, the two statements have no data
dependency and can run simultaneously. However, our parallel expression scheduling
algorithm described in the next section can detect this case and replace the seq with a
par construct.

The loops that cannot be parallelized can be fully unrolled by using a seq loop al-
though this may be of little benefit. The Handel-C compiler places each iteration
sequentially, and separate hardware is synthesized for each iteration in the final
FPGA. The advantage of fully unrolling is that there is no need for a loop increment
and comparison operations. The disadvantage is the amount of FPGA area consumed
by unrolled iterations. If area is of concern, then the for statement should not be re-
placed by a seq statement. The logic created by a for statement consists of the loop
body and the loop test. It is important to note that the loop bounds must be known in
order to translate a for into a par or a seq. Other loops such as do..while and while are
translated into par and seq loops if they can be transformed into a canonical loop
form.

2.2 Parallel Expression Scheduling

Expressions having no true data dependencies amongst them can be executed in the
same cycle by enclosing them in a par block. A variable can be read multiple times
and assigned to at most once in a par block. For instance, the three statements on the
left-hand side of the following code are data-independent and can execute in parallel
using a Handel-C par statement as shown on the right-hand side. All three statements
in this par block will execute in a single cycle, whereas it takes three cycles to exe-
cute the code if no par is used since a statement in Handel-C takes a cycle to execute.

 par {
 A = B * C; A = B * C;
 D = E + F * G; D = E + F * G;
 H = M; H = M;

 }

Automatic Customization of Embedded Applications for Enhanced Performance 321

Fig. 2. Pseudo-code for expression scheduling

Data dependency analysis is performed to find data-independent expressions and
put them in par blocks. A directed acyclic graph (DAG) scheduling technique is used
to schedule independent expressions into several parallel expression groups as shown
in Fig. 2. Each node in the DAG represents an expression and an edge represents true,
output or anti-dependency between two nodes. Anti and output dependencies are false
data dependencies that can be eliminated by variable renaming. However, renaming
uses temporary variables that demand more FPGA resources.

True and output dependencies restrict expressions to be grouped in the same par
block. On the other hand, anti-dependencies may or may not restrict the scheduling of
expressions. The expression that writes the anti-dependent operand (i.e. the sink ex-
pression) may be scheduled in an earlier cycle than the expression that reads the anti-
dependent operand (i.e. the source expression). The depth of the sink expression must
be made equal to the depth of the source one to guarantee that they will be at least in
the same par block.

After the computation of all depths in the DAG, the DAG is converted into a flat
list of nodes sorted in ascending order of their depths. The expressions with the same
depth are put into the same par block. If there is only one expression associated with a
depth, then a par block is not necessary.

Table 1. Benchmarks

Benchmark Description
adpcm encoder 16-bit PCM to ADPCM speech encoder
matrix multiplication 8-by-8 matrix multiplication
shellsort Shell Sort algorithm of 32 integer numbers
2D convolution 8-by-8 2D convolution algorithm with 3-by-3 kernel matrix
FIR 32-tap Finite Impulse Response filtering
IDFT 32-point Integer Inverse Discrete Fourier Transform
huffman encoder 32-character Huffman Encoding algorithm
g721decoder CCITT G.721 ADPCM decoding

foreach Procedure begin
build_DAGs();
foreach DAG in Procedure begin

topological_sort(DAG);
foreach Node in DAG begin

compute_depth(Node);
foreach Predecessor of Node begin

if (Is Edge(Node, Predecessor) anti-dependency?) then begin
if (depth(Node) < depth(Predecessor)) then depth(Node) = depth(Predecessor);

end
end

end
sort_by_depth(DAG);
schedule(DAG);

end
end

322 E. Özer, A.P. Nisbet, and D. Gregg

2.3 Experimental Results

The benchmark programs used in this study are shown in Table 1. They represent
various embedded computing fields such as DSP, image processing, telecommunica-
tions and scientific computing. All benchmarks perform integer arithmetic because
Handel-C supports only integer arithmetic. For each benchmark, our compiler carries
out loop parallelism and expression scheduling and finally generates the Handel-C
code. The Handel-C code is then passed to the Handel-C compiler, which in turn
generates an EDIF netlist for the Xilinx Virtex-II XC2V6000 FPGA device. Xilinx
Virtex-II XC2V6000 is a 6M-gate chip with 8448 Configurable Logic Blocks
(CLBs). Each CLB is made of four slices, each of which has two 4-input look-up
tables (LUTs), two 16-bit D-type registers, dedicated multiplexers and fast carry look-
ahead chain. In addition to an array of CLBs, the Xilinx Virtex-II XC2V6000 FPGA
chip has also 324KByte block RAM/ROM and 144 18x18-bit multipliers. We used
Xilinx ISE 6.2 tool set with standard placement/route effort levels.

In order to form a baseline model for performance comparison, each benchmark is
also transformed into Handel-C without performing any of the aforementioned op-
timizations. Our metric for performance comparison is the total execution time for
each benchmark. The total execution time is determined by multiplying the total cy-
cles required to execute the benchmark by the minimum clock period. The total cycles
is computed as the sum of every individual or parallel statement. The minimum clock
period is the clock period required to operate the FPGA after each benchmark is
mapped and implemented onto the FPGA.

Fig. 3. Speedup results in the total execution time

Fig. 3 presents the speedups in terms of percentage reduction in the total execution
time for each benchmark using two parallelization techniques. The highest speedups
come from matrix multiplication, huffman encoder and FIR by 78%, 70% and 59%,
respectively. matrix multiplication has three nested loops from which the outermost
two loops can be translated into par loops because there are no loop-carried data de-
pendencies across their iterations. For huffman encoder and FIR, the loops that are
converted into par loops have a great amount of expression parallelism. The speedups

0
10
20
30
40
50
60
70
80
90

100

ad
pc

m en
co

de
r

FIR
ID

FT

matr
ix

mul

hu
ffm

an
 en

co
de

r

sh
ell

so
rt

2D
 co

nv
olu

tio
n

g7
21

de
co

de
r

Mea
n

Sp
ee

du
p

(%
)

Automatic Customization of Embedded Applications for Enhanced Performance 323

of the other benchmarks vary between 7% and 18%. Smaller performance improve-
ments in these benchmarks are caused by the fact that none of the loops can be paral-
lelized. Only parallel expressions contribute to the speedups. In summary, an average
of 38% improvement in performance can be obtained over eight benchmarks.

3 Optimizations for Area and Power

This section discusses machine-specific optimizations to reduce area and power con-
sumption in the Xilinx Virtex-II XC2V6000 FPGA chip. Such optimizations typi-
cally attempt to utilize on-chip resources of block RAM/ROM and multipliers present
on the FPGA chip so that precious FPGA area can be allocated to more compute-
intensive operations or tasks.

3.1 On-chip RAM and ROM Utilization

Arrays are implemented using look-up tables and flip-flops in the FPGA slices. For
FPGA devices that support on-chip block RAM and ROM such as in the Xilinx
Virtex-II architecture, these arrays can be declared as ram, rom and mpram (multi-
ported ram) in Handel-C to use on-chip RAM/ROM hardware resources so that the
FPGA slices can be allocated for other uses. The difference between an array and a
ram variable declaration is that any number of array elements can be read or written
in a single clock cycle in an array, whereas only a single location in a single ported,
single bank RAM array can be read or written in a single clock cycle. Similarly, ROM
can be read only once in a clock cycle. If an array is to be used more than once in the
same cycle, it can be declared as mpram to allow simultaneous read/writes through
multiple ports in the same cycle. mpram supports only dual-port memory accesses.

A compiler algorithm is written to analyze the global and local array declarations
and to find out whether they can be declared as ram, rom or mpram. An array variable
can be declared as rom if it is not accessed more than once in a statement or a par
block and all accesses are reads. The array variable can be declared as ram if it is not
accessed more than once in a statement or a par block and not all accesses are reads.
If it is accessed at most twice in a statement or a par block, then it can be declared as
dual-port mpram. Array variable names can also be passed as arguments in procedure
calls, and alias names can be used at the call sites. Thus, argument-parameter alias
analysis is also performed for the whole program to determine the set of alias names
for each array name passed as an argument to procedures. The array variable has to be
kept as an array declaration if it is accessed more than twice in a statement or a par
block.

3.2 On-chip Dedicated Multiplier Utilization

Customized multiplication units can take up a vast amount of slices in the FPGA. If
the widths of multiplicands are wider, the multiplication operation takes longer and
this can cause a drop in the overall clock frequency of the FPGA since every instruc-

324 E. Özer, A.P. Nisbet, and D. Gregg

tion in Handel-C takes exactly one cycle. Hence, it is requisite that the compiler must
assign some of multiplication operations to the dedicated fast on-chip 18x18-bit mul-
tipliers in the FPGA chip. If the widths of the multiplicands are larger than 18 bits,
several multipliers can be tied together to form wider multipliers. A multiplier can be
assigned to more than one operation but only one of them can access it at any cycle.
This will create a multiplexer logic in front of the multiplier to route only one set of
multiplicands to the multiplier. As more sets of multiplicands share a multiplier, the
multiplier becomes slower due to its wide multiplexer. The compiler must intelli-
gently distribute multiplication operations among the dedicated multipliers so that
none of the multipliers has prohibitively wide multiplexers. Fig. 4 shows the on-chip
18 by 18 bit multiplier assignment algorithm.

Fig. 4. The pseudo-code for the dedicated multiplier assignment algorithm

The algorithm puts each multiplication operation into a list by traversing each pro-
cedure. Then, the list is sorted by the sum of bit-widths of multiplicands of each op-
eration in descending order. Each multiplier is assigned a weight that shows the esti-
mated length of its multiplexer if more than one set of multiplicands share the multi-
plier. After all the weights are initialized to zero, an operation is popped off the list. If
the bit-width of any of its multiplicands is less than or equal to 18, then only one
multiplier is needed. Otherwise, more than one multiplier is needed to implement the
current multiplication. The number of the required multipliers is computed by divid-
ing the maximum bit-width by 18. After determining the exact number of multipliers,
the multiplier list is searched to select the multipliers with the lowest weights. Then,
the multiplication operation is assigned to these selected multiplier(s) and their
weight(s) are incremented by the sum of the bit-widths of the two multiplicands. The
same steps are applied to all operations in the multiplication operation list until all of
them are assigned to the dedicated multipliers. The objective of the algorithm is to
ensure that the multipliers to which long multiplications (i.e. the ones with wider
operand bit-widths) are assigned are not multiplexed with many different sets of mul-
tiplicands of other multiplications.

foreach Procedure
begin

MULOP_LIST = find_multiplication_operations();
sort_by_bitwidth(MULOP_LIST);
initialize_multiplier_weights(MULTIPLIER_LIST);
while (not end of MULOP_LIST)

begin
OP = pick_operation(MULOP_LIST);
n = bitwidth(OPoperand1);
m = bitwidth(OPoperand2);
if (max(n,m) > 18) then number_of_required_multipliers =
else number_of_required_multipliers = 1;
MUL_SET = find_smallest_weighted_multipliers(MULTIPLIER_LIST,number_of_required_multipliers);
assign(OP, MUL_SET);
increment_multiplier_weights(MUL_SET,(n+m));

end
end

;
18

),max(




 mn

Automatic Customization of Embedded Applications for Enhanced Performance 325

3.3 Experimental Results

Area usage and power consumption are measured for each benchmark. Similar to
Section 2.3, our base model for comparison are the same benchmarks with no on-chip
RAM/ROM and multiplier utilization optimizations. For the area usage, we measure
the percentage reduction in the number of FPGA slices on the chip. The dynamic
logic power consumption consumed by the logic implemented on the FPGA chip is
measured after a complete placement and routing of the design on the FPGA using
Xilinx�s XPower estimation tool. We set the FPGA�s clock frequency and source
voltage to 100MHz and 1.5V, respectively. Also, circuit switching activity rate is set
to 100% or ½ the clock frequency, which is the rate at which a logic gate switches.

Fig. 5. The percentage reduction in the number of FPGA slices using on-chip RAM/ROMs and
multipliers

Fig. 5 shows the percentage reduction in the number of FPGA slices on the chip.
The black bar denotes the reduction contributed by only on-chip RAM/ROM and the
grey bar represents the reduction contributed by only on-chip multiplier utilizations. It
is possible to save an average of 69% of FPGA slices for all benchmarks as shown in
the last column. Of this average, 64% comes from the on-chip RAM/ROM utilization
and only 5% savings from the slices are due to the on-chip multiplier utilization. The
arrays in all benchmarks can fit into the on-chip RAM/ROM structures. Although the
majority of FPGA slice savings is caused by efficient utilization of on-chip
RAM/ROMs, a reasonable amount of reduction has been made using on-chip multi-
plier optimizations such as in FIR, 2D convolution and g721decoder. These three
benchmarks have several multiplication operations that are allocated to on-chip mul-
tipliers. On the other hand, adpcm, shellsort. huffman, matrix multiplication and IDFT
have either no multiplication or only one multiplication operation. Thus, the contribu-
tion of on-chip multiplier utilization to the area reduction for these benchmarks re-
mains less than 1%.

Fig. 6 presents the percentage reduction in dynamic logic power consumption of
on-chip RAM/ROM and multiplier utilizations for eight benchmarks. The large num-
ber of FPGA slice savings allows energy-efficient designs by reducing the logic
power consumption proportional to the number of slices. Over eight benchmarks, an

0
10
20
30
40
50
60
70
80
90

100

ad
pc

m FIR
ID

FT

matm
ul

hu
ffm

an

sh
ell

so
rt

co
nv

olv
e

g7
21

Mea
n

%
 S

av
in

gs

on-chip RAM/ROM on-chip multiplier

326 E. Özer, A.P. Nisbet, and D. Gregg

average of 55% (i.e. 51% due to on-chip RAM/ROMs and 4% due to on-chip multi-
pliers) reduction in dynamic logic power consumption is possible by utilizing on-chip
FPGA resources.

Fig. 6. The percentage reduction in the dynamic logic power consumption using on-chip
RAM/ROMs and multipliers

4 Related Work

There have been several projects [1] [2] [3] [4] [5] [6] [7] [9] [10] [11] that attempt to
transform modified C programs to custom hardware by way of producing low-level
HDL languages such as Verilog or VHDL. In spite of their portable nature, these
languages are not suitable to explore instruction-level and loop-level parallelism.
Hence, we use Handel-C as our backend language whose high-level constructs allow
us to exploit both instruction and loop-level parallelism with explicit control.

5 Conclusion

We have introduced a compilation framework that optimizes embedded applications
written in C to improve performance, and reduce area/power requirements. Loop
parallelism and expression scheduling are applied to decrease the total execution time
of the programs. We have shown that an average of 38% improvement in perform-
ance is possible with these parallelizations for all benchmarks. We have also pre-
sented the experimental results of machine-specific optimizations for utilizing on-chip
block ROM/RAMs, and dedicated multipliers to reduce area and power consumption
of the Xilinx Virtex-II XC2V6000 FPGA chip. Our results have showed that an
average of 69% reduction in area and an average of 55% reduction in logic power
consumption over eight benchmarks can be attained through the efficient utilization of
on-chip resources.

0
10
20
30
40
50
60
70
80
90

100

ad
pc

m FIR
ID

FT

matm
ul

hu
ffm

an

sh
ell

so
rt

co
nv

olv
e

g7
21

Mea
n

%
 R

ed
uc

tio
n

in
 L

og
ic

 P
ow

er

on-chip RAM/ROM on-chip multiplier

Automatic Customization of Embedded Applications for Enhanced Performance 327

We are exploring various compiler optimizations such as shared expressions, stor-
age reuse, expression splitting and combining, and software pipelining. Our ultimate
aim is to develop an iterative hardware compilation environment that can apply com-
piler transformations using feedback-directed data from timing, resource mapping and
power estimation tools to optimize for combinations of performance, power consump-
tion and area.

References

1. M. Wazlowski, L. Agarwal, T. Lee, A. Smith, E. Lam, P. Athanas, H. Silverman, and
S. Ghosh. “PRISM-II Compiler and Architecture”, Proceedings of IEEE Workshop on
FPGAs for Custom Computing Machines, Napa, California, April 1993.

2. B. A. Draper, A. P. W. Böhm, J. Hammes, W. Najjar, J. R. Beveridge, C. Ross, M. Cha-
wathe, M. Desai, J. Bins, “Compiling SA-C Programs to FPGAs: Performance Results”,
International Conference on Vision Systems, Vancouver, July, 2001.

3. M. Hall, P. Diniz, K. Bondalapati, H. Ziegler, P. Duncan, R. Jain, and J. Granacki,
“DEFACTO: A Design Environment for Adaptive Computing Technology”, Proceedings
of the 6th Reconfigurable Architectures Workshop (RAW’99), 1999.

4. J. Frigo, M. Gokhale, and D. Lavenier “Evaluation of the Streams-C C-to-FPGA Compiler:
An Application Perspective”, 9th ACM International Symposium on Field-Programmable
Gate Arrays, Monterey, CA, February, 2001.

5. T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “The Garp Architecture and C Compiler”,
IEEE Computer, April 2000.

6. M. Budiu, and S. C. Goldstein, “Fast Compilation for Pipelined Reconfigurable Fabrics”,
7th ACM International Symposium on Field-Programmable gate Arrays, 1999.

7. D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Specifying and Compiling Ap-
plications for RaPiD”, Field-Programmable Custom Computing Machines, 1998.

8. R. P. Wilson, R. S. French, C. S. Wilson, S. Amarasinghe, J. M. Anderson, S. W. K. Tji-
ang, S. W. Liao, C. W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy, “SUIF: An In-
frastructure for Research on Parallelizing and Optimizing Compilers”, Tech. Report, Com-
puter Systems Laboratory, Stanford University, CA, USA, 1994.

9. S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “SPARK: A High-Level Synthesis Frame-
work For Applying Parallelizing Compiler Transformations”, the 16th International Con-
ference on VLSI Design, New Delhi, India, Jan. 2003.

10. Jonathan Babb, Martin Rinard, Andras Moritz, Walter Lee, Matthew Frank, Rajeev Barua,
and Saman Amarasinghe, “Parallelizing Applications Into Silicon”, Proceedings of the
IEEE Workshop on FPGAs for Custom Computing Machines '99 (FCCM '99), Napa Val-
ley, CA, April 1999.

11. V. Kathail, S. Aditya, R. Schreiber, B. R. Rau, D. C. Cronquist and M. Sivaraman, “PICO:
Automatically Designing Custom Computers”, IEEE Computer, vol. 35, no. 9, pp. 39-47,
September 2002.

12. Celoxica, Handel-C Language Reference Manual, Version 3.1, 2002.
13. Xilinx, Xilinx Virtex-II Architecture Manual, Sep. 2002.

	1 Introduction
	2 Optimizations for Performance
	2.1 Loop Iteration Parallelization
	2.2 Parallel Expression Scheduling
	2.3 Experimental Results

	3 Optimizations for Area and Power
	3.1 On-chip RAM and ROM Utilization
	3.2 On-chip Dedicated Multiplier Utilization
	3.3 Experimental Results

	4 Related Work
	5 Conclusion
	References

