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Abstract. This paper introduces a compiler framework that optimizes embed-
ded applications written in C, and produces high-level hardware descriptions of 
the applications for customization on Field-Programmable Gate Arrays 
(FPGAs). Our compiler performs machine-specific and machine-independent 
optimizations in order to increase the performance of an embedded application 
and reduce area/power requirements without explicit programmer intervention. 
Our experimental results show that our compiler framework can increase per-
formance by 38% with loop and expression parallelism for eight embedded 
benchmarks. Also, area usage and power consumption are reduced by 69% and 
55%, respectively through the efficient utilization of on-chip FPGA resources 
for Xilinx Virtex-II FPGA chip. 

1   Introduction 

The attraction of using FPGAs is the ability to generate application specific logic 
where the balance and mix of functional units can be altered. This has the potential to 
generate orders of magnitude speedup for computationally intensive algorithms. 
However, the time taken to develop and optimize an application for execution on an 
FPGA using a traditional hardware description language (HDL) design flow may be 
prohibitive. 

Our goal is to develop a compilation framework (see Fig. 1) that takes an applica-
tion written in ANSI-C, translates it into an intermediate representation (IR) for per-
forming optimizations, and produces Handel-C code. Handel-C [12] is a high-level 
HDL language that can reduce both the time and the expertise required to develop 
embedded FPGA applications. However, the programmer must explicitly specify code 
parallelism, the storage type (memory or registers), operand bit-widths, resource shar-
ing or private resource allocation using special language constructs. The detection and 
exploitation of parallelism in an application and explicit specification of operand bit-
widths and decisions about how to allocate resources are tedious, error-prone tasks 
which can be largely automated.  

                                                           
* The research described in this paper is supported by an Enterprise Ireland Research Innova-

tion Fund Grant IF/2002/035. 
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Our compilation framework is built upon the Stanford SUIF1 compiler [8]. It per-
forms several architecture-independent optimizations as well as architecture-specific 
optimizations on the SUIF IR such as loop parallelization, expression scheduling, 
shared hardware structuring, operand bit-width specifications, the efficient utilization 
of on-chip RAM and ROM, multi-ported RAM and dedicated multipliers in the target 
FPGA chip. The final step of our compiler is to generate Handel-C code from the 
optimized IR. The Handel-C compiler reads the generated Handel-C code and pro-
duces EDIF netlists for Xilinx Virtex-II XC2V6000 FPGA chip [13]. 

 

Fig. 1. Our compilation framework 

The organization of the paper is as follows: Section 2 explains compiler optimiza-
tions for improving performance and analyzes performance results. Section 3 presents 
optimizations and experimental results of area and power consumption. Section 4 
discusses the related work in hardware compilation, and finally, Section 5 concludes 
the paper with a discussion of future work. 

2   Optimizations for Performance 

This section introduces compiler optimizations to increase the performance of em-
bedded applications by taking advantage of the Handel-C parallelism constructs. Each 
assignment statement in Handel-C takes exactly one clock-cycle to execute. The op-
erand reads of variables are initiated at the start of a clock cycle and a write to the 
destination variable is finalized by the end of the clock cycle. This means that it is 
permissible to have multiple reads and a single write to a variable occurring in the 
same clock cycle. 

2.1   Loop Iteration Parallelization 

Handel-C has three different loop constructs: for, par and seq. Each construct has the 
same syntax: 

for|par|seq(loop_index=LOWER_BOUND;loop_index<|>|=|!=UPPER_BOUND;step) 
{Statements} 

The way that the for loop in Handel-C works is the same as in C, i.e.  the loop is 
executed by the amount of the loop trip count. In a par loop, every iteration and every 
statement in the iteration is executed in parallel. On the other hand, the seq loop fully 
unrolls or replicates the loop and executes the iterations sequentially. Loop-carried 
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data dependency analysis can determine if loop iterations are independent and suitable 
for parallel execution. A for loop whose iterations are independent can be replaced by 
a Handel-C par construct. Note that the statements in the loop body are by default put 
into a seq construct in our system and will execute sequentially. For example, the C 
sample code on the left-hand side can be parallelized using Handel-C as shown on the 
right-hand side below. 

/* C sample for loop */        /* Handel-C par loop */ 
for (i = 0; i<10; i++) {    par (i = 0; i<10; i++){ 

   seq { 
  a[i] = b[i] + c[i];             a[i] = b[i] + c[i]; 
  d[i] = e[i] * f[i];             d[i] = e[i] * f[i]; 

                         } 
}                     } 

The sample loop has independent iterations since there are no data-carried depend-
ences between iterations. The loop can be transformed into a par loop, and the loop 
body is conservatively contained in a seq statement that guarantees that the two 
statements execute sequentially. In this example, the two statements have no data 
dependency and can run simultaneously. However, our parallel expression scheduling 
algorithm described in the next section can detect this case and replace the seq with a 
par construct. 

The loops that cannot be parallelized can be fully unrolled by using a seq loop al-
though this may be of little benefit. The Handel-C compiler places each iteration 
sequentially, and separate hardware is synthesized for each iteration in the final 
FPGA. The advantage of fully unrolling is that there is no need for a loop increment 
and comparison operations. The disadvantage is the amount of FPGA area consumed 
by unrolled iterations. If area is of concern, then the for statement should not be re-
placed by a seq statement. The logic created by a for statement consists of the loop 
body and the loop test. It is important to note that the loop bounds must be known in 
order to translate a for into a par or a seq. Other loops such as do..while and while are 
translated into par and seq loops if they can be transformed into a canonical loop 
form.  

2.2   Parallel Expression Scheduling 

Expressions having no true data dependencies amongst them can be executed in the 
same cycle by enclosing them in a par block. A variable can be read multiple times 
and assigned to at most once in a par block. For instance, the three statements on the 
left-hand side of the following code are data-independent and can execute in parallel 
using a Handel-C par statement as shown on the right-hand side. All three statements 
in this par block will execute in a single cycle, whereas it takes three cycles to exe-
cute the code if no par is used since a statement in Handel-C takes a cycle to execute. 

                                              par {  
        A = B * C;       A = B * C; 
        D = E + F * G;  D = E + F * G; 
        H = M;   H = M; 

          } 
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Fig. 2. Pseudo-code for expression scheduling 

Data dependency analysis is performed to find data-independent expressions and 
put them in par blocks. A directed acyclic graph (DAG) scheduling technique is used 
to schedule independent expressions into several parallel expression groups as shown 
in Fig. 2. Each node in the DAG represents an expression and an edge represents true, 
output or anti-dependency between two nodes. Anti and output dependencies are false 
data dependencies that can be eliminated by variable renaming. However, renaming 
uses temporary variables that demand more FPGA resources.  

True and output dependencies restrict expressions to be grouped in the same par 
block. On the other hand, anti-dependencies may or may not restrict the scheduling of 
expressions. The expression that writes the anti-dependent operand (i.e. the sink ex-
pression) may be scheduled in an earlier cycle than the expression that reads the anti-
dependent operand (i.e. the source expression). The depth of the sink expression must 
be made equal to the depth of the source one to guarantee that they will be at least in 
the same par block.  

After the computation of all depths in the DAG, the DAG is converted into a flat 
list of nodes sorted in ascending order of their depths. The expressions with the same 
depth are put into the same par block. If there is only one expression associated with a 
depth, then a par block is not necessary.  

Table 1. Benchmarks 

Benchmark Description 
adpcm encoder 16-bit PCM to ADPCM speech encoder 
matrix multiplication 8-by-8 matrix multiplication 
shellsort Shell Sort algorithm of 32 integer numbers 
2D convolution 8-by-8 2D convolution algorithm with 3-by-3 kernel matrix 
FIR 32-tap Finite Impulse Response filtering 
IDFT 32-point Integer Inverse Discrete Fourier Transform 
huffman encoder 32-character Huffman Encoding algorithm 
g721decoder CCITT G.721 ADPCM decoding 

foreach Procedure begin
build_DAGs( );
foreach DAG in Procedure begin

topological_sort(DAG);
foreach Node in DAG begin

compute_depth(Node);                   
foreach Predecessor of Node begin                                                           

if (Is Edge(Node, Predecessor) anti-dependency?) then begin
if (depth(Node) < depth(Predecessor)) then depth(Node) = depth(Predecessor);

end
end

end
sort_by_depth(DAG);
schedule(DAG);

end
end
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2.3   Experimental Results 

The benchmark programs used in this study are shown in Table 1. They represent 
various embedded computing fields such as DSP, image processing, telecommunica-
tions and scientific computing. All benchmarks perform integer arithmetic because 
Handel-C supports only integer arithmetic. For each benchmark, our compiler carries 
out loop parallelism and expression scheduling and finally generates the Handel-C 
code. The Handel-C code is then passed to the Handel-C compiler, which in turn 
generates an EDIF netlist for the Xilinx Virtex-II XC2V6000 FPGA device. Xilinx 
Virtex-II XC2V6000 is a 6M-gate chip with 8448 Configurable Logic Blocks 
(CLBs). Each CLB is made of four slices, each of which has two 4-input look-up 
tables (LUTs), two 16-bit D-type registers, dedicated multiplexers and fast carry look-
ahead chain. In addition to an array of CLBs, the Xilinx Virtex-II XC2V6000 FPGA 
chip has also 324KByte block RAM/ROM and 144 18x18-bit multipliers. We used 
Xilinx ISE 6.2 tool set with standard placement/route effort levels.  

In order to form a baseline model for performance comparison, each benchmark is 
also transformed into Handel-C without performing any of the aforementioned op-
timizations. Our metric for performance comparison is the total execution time for 
each benchmark. The total execution time is determined by multiplying the total cy-
cles required to execute the benchmark by the minimum clock period. The total cycles 
is computed as the sum of every individual or parallel statement. The minimum clock 
period is the clock period required to operate the FPGA after each benchmark is 
mapped and implemented onto the FPGA.  

Fig. 3. Speedup results in the total execution time 

Fig. 3 presents the speedups in terms of percentage reduction in the total execution 
time for each benchmark using two parallelization techniques. The highest speedups 
come from matrix multiplication, huffman encoder and FIR by 78%, 70% and 59%, 
respectively. matrix multiplication has three nested loops from which the outermost 
two loops can be translated into par loops because there are no loop-carried data de-
pendencies across their iterations. For huffman encoder and FIR, the loops that are 
converted into par loops have a great amount of expression parallelism. The speedups 
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of the other benchmarks vary between 7% and 18%. Smaller performance improve-
ments in these benchmarks are caused by the fact that none of the loops can be paral-
lelized. Only parallel expressions contribute to the speedups. In summary, an average 
of 38% improvement in performance can be obtained over eight benchmarks. 

3   Optimizations for Area and Power 

This section discusses machine-specific optimizations to reduce area and power con-
sumption in the Xilinx Virtex-II XC2V6000 FPGA chip. Such optimizations typi-
cally attempt to utilize on-chip resources of block RAM/ROM and multipliers present 
on the FPGA chip so that precious FPGA area can be allocated to more compute-
intensive operations or tasks. 

3.1   On-chip RAM and ROM Utilization 

Arrays are implemented using look-up tables and flip-flops in the FPGA slices. For 
FPGA devices that support on-chip block RAM and ROM such as in the Xilinx 
Virtex-II architecture, these arrays can be declared as ram, rom and mpram (multi-
ported ram) in Handel-C to use on-chip RAM/ROM hardware resources so that the 
FPGA slices can be allocated for other uses. The difference between an array and a 
ram variable declaration is that any number of array elements can be read or written 
in a single clock cycle in an array, whereas only a single location in a single ported, 
single bank RAM array can be read or written in a single clock cycle. Similarly, ROM 
can be read only once in a clock cycle. If an array is to be used more than once in the 
same cycle, it can be declared as mpram to allow simultaneous read/writes through 
multiple ports in the same cycle. mpram supports only dual-port memory accesses. 

A compiler algorithm is written to analyze the global and local array declarations 
and to find out whether they can be declared as ram, rom or mpram. An array variable 
can be declared as rom if it is not accessed more than once in a statement or a par 
block and all accesses are reads. The array variable can be declared as ram if it is not 
accessed more than once in a statement or a par block and not all accesses are reads. 
If it is accessed at most twice in a statement or a par block, then it can be declared as 
dual-port mpram. Array variable names can also be passed as arguments in procedure 
calls, and alias names can be used at the call sites. Thus, argument-parameter alias 
analysis is also performed for the whole program to determine the set of alias names 
for each array name passed as an argument to procedures. The array variable has to be 
kept as an array declaration if it is accessed more than twice in a statement or a par 
block. 

3.2   On-chip Dedicated Multiplier Utilization 

Customized multiplication units can take up a vast amount of slices in the FPGA. If 
the widths of multiplicands are wider, the multiplication operation takes longer and 
this can cause a drop in the overall clock frequency of the FPGA since every instruc-
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tion in Handel-C takes exactly one cycle. Hence, it is requisite that the compiler must 
assign some of multiplication operations to the dedicated fast on-chip 18x18-bit mul-
tipliers in the FPGA chip. If the widths of the multiplicands are larger than 18 bits, 
several multipliers can be tied together to form wider multipliers. A multiplier can be 
assigned to more than one operation but only one of them can access it at any cycle. 
This will create a multiplexer logic in front of the multiplier to route only one set of 
multiplicands to the multiplier. As more sets of multiplicands share a multiplier, the 
multiplier becomes slower due to its wide multiplexer. The compiler must intelli-
gently distribute multiplication operations among the dedicated multipliers so that 
none of the multipliers has prohibitively wide multiplexers. Fig. 4 shows the on-chip 
18 by 18 bit multiplier assignment algorithm. 
 

Fig. 4. The pseudo-code for the dedicated multiplier assignment algorithm 

The algorithm puts each multiplication operation into a list by traversing each pro-
cedure. Then, the list is sorted by the sum of bit-widths of multiplicands of each op-
eration in descending order.  Each multiplier is assigned a weight that shows the esti-
mated length of its multiplexer if more than one set of multiplicands share the multi-
plier. After all the weights are initialized to zero, an operation is popped off the list. If 
the bit-width of any of its multiplicands is less than or equal to 18, then only one 
multiplier is needed. Otherwise, more than one multiplier is needed to implement the 
current multiplication. The number of the required multipliers is computed by divid-
ing the maximum bit-width by 18. After determining the exact number of multipliers, 
the multiplier list is searched to select the multipliers with the lowest weights. Then, 
the multiplication operation is assigned to these selected multiplier(s) and their 
weight(s) are incremented by the sum of the bit-widths of the two multiplicands. The 
same steps are applied to all operations in the multiplication operation list until all of 
them are assigned to the dedicated multipliers. The objective of the algorithm is to 
ensure that the multipliers to which long multiplications (i.e. the ones with wider 
operand bit-widths) are assigned are not multiplexed with many different sets of mul-
tiplicands of other multiplications. 

foreach Procedure
begin

MULOP_LIST = find_multiplication_operations();
sort_by_bitwidth(MULOP_LIST);
initialize_multiplier_weights(MULTIPLIER_LIST);
while (not end of MULOP_LIST)

begin
OP = pick_operation(MULOP_LIST);
n = bitwidth(OPoperand1);
m = bitwidth(OPoperand2);
if (max(n,m) > 18) then number_of_required_multipliers = 
else number_of_required_multipliers = 1;
MUL_SET = find_smallest_weighted_multipliers(MULTIPLIER_LIST,number_of_required_multipliers);
assign(OP, MUL_SET);
increment_multiplier_weights(MUL_SET,(n+m));

end
end

;
18

),max(




 mn
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3.3   Experimental Results 

Area usage and power consumption are measured for each benchmark. Similar to 
Section 2.3, our base model for comparison are the same benchmarks with no on-chip 
RAM/ROM and multiplier utilization optimizations. For the area usage, we measure 
the percentage reduction in the number of FPGA slices on the chip. The dynamic 
logic power consumption consumed by the logic implemented on the FPGA chip is 
measured after a complete placement and routing of the design on the FPGA using 
Xilinx�s XPower estimation tool. We set the FPGA�s clock frequency and source 
voltage to 100MHz and 1.5V, respectively. Also, circuit switching activity rate is set 
to 100% or ½ the clock frequency, which is the rate at which a logic gate switches. 

 
Fig. 5. The percentage reduction in the number of FPGA slices using on-chip RAM/ROMs and 
multipliers 

Fig. 5 shows the percentage reduction in the number of FPGA slices on the chip. 
The black bar denotes the reduction contributed by only on-chip RAM/ROM and the 
grey bar represents the reduction contributed by only on-chip multiplier utilizations. It 
is possible to save an average of 69% of FPGA slices for all benchmarks as shown in 
the last column. Of this average, 64% comes from the on-chip RAM/ROM utilization 
and only 5% savings from the slices are due to the on-chip multiplier utilization. The 
arrays in all benchmarks can fit into the on-chip RAM/ROM structures. Although the 
majority of FPGA slice savings is caused by efficient utilization of on-chip 
RAM/ROMs, a reasonable amount of reduction has been made using on-chip multi-
plier optimizations such as in FIR, 2D convolution and g721decoder. These three 
benchmarks have several multiplication operations that are allocated to on-chip mul-
tipliers. On the other hand, adpcm, shellsort. huffman, matrix multiplication and IDFT 
have either no multiplication or only one multiplication operation. Thus, the contribu-
tion of on-chip multiplier utilization to the area reduction for these benchmarks re-
mains less than 1%.  

Fig. 6 presents the percentage reduction in dynamic logic power consumption of 
on-chip RAM/ROM and multiplier utilizations for eight benchmarks. The large num-
ber of FPGA slice savings allows energy-efficient designs by reducing the logic 
power consumption proportional to the number of slices. Over eight benchmarks, an 
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average of 55% (i.e. 51% due to on-chip RAM/ROMs and 4% due to on-chip multi-
pliers) reduction in dynamic logic power consumption is possible by utilizing on-chip 
FPGA resources.  

Fig. 6. The percentage reduction in the dynamic logic power consumption using on-chip 
RAM/ROMs and multipliers 

4   Related Work 

There have been several projects [1] [2] [3] [4] [5] [6] [7] [9] [10] [11] that attempt to 
transform modified C programs to custom hardware by way of producing low-level 
HDL languages such as Verilog or VHDL. In spite of their portable nature, these 
languages are not suitable to explore instruction-level and loop-level parallelism. 
Hence, we use Handel-C as our backend language whose high-level constructs allow 
us to exploit both instruction and loop-level parallelism with explicit control. 

5   Conclusion 

We have introduced a compilation framework that optimizes embedded applications 
written in C to improve performance, and reduce area/power requirements. Loop 
parallelism and expression scheduling are applied to decrease the total execution time 
of the programs. We have shown that an average of 38% improvement in perform-
ance is possible with these parallelizations for all benchmarks. We have also pre-
sented the experimental results of machine-specific optimizations for utilizing on-chip 
block ROM/RAMs, and dedicated multipliers to reduce area and power consumption 
of the Xilinx Virtex-II XC2V6000 FPGA chip. Our results have showed that an 
average of 69% reduction in area and an average of 55% reduction in logic power 
consumption over eight benchmarks can be attained through the efficient utilization of 
on-chip resources. 
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We are exploring various compiler optimizations such as shared expressions, stor-
age reuse, expression splitting and combining, and software pipelining. Our ultimate 
aim is to develop an iterative hardware compilation environment that can apply com-
piler transformations using feedback-directed data from timing, resource mapping and 
power estimation tools to optimize for combinations of performance, power consump-
tion and area.  
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