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Abstract. We wish to extend the effectiveness of loop-restructuring
compilers by improving the robustness of loop transformations and easing
their composition in long sequences. We propose a formal and practical
framework for program transformation. Our framework is well suited for
iterative optimization techniques searching not only for the appropriate
parameters of a given transformation, but for the program transforma-
tions themselves, and especially for compositions of program transforma-
tions. This framework is based on a unified polyhedral representation of
loops and statements, enabling the application of generalized control and
data transformations without reference to a syntactic program represen-
tation. The key to our framework is to clearly separate the impact of
each program transformation on three independent components: the it-
eration domain, the iteration schedule and the memory access functions.
The composition of generalized transformations builds on normalization
rules specific to each component of the representation. Our techniques
have been implemented on top of Open64/ORC.

1 Introduction

Todays compilers ability to apply and search for compositions of program trans-
formations is limited. Compilers can embed a large array of optimizations, but
they are often expressed as a collection of ad-hoc syntactic transformations based
on pattern-matching. In addition, control structures are regenerated after each
transformation, making it harder to apply the next transformations. Finally,
compilers follow a rigid ordering of phases, so that only short and fixed se-
quences of program transformations can be applied [26]. Current approaches
to iterative optimization [1, 11, 8] substitute empirical search strategies to the
usual model-driven heuristics, but to not improve the transformation framework
itself. Indeed, iterative/adaptive compilers usually choose a rather small set of
transformations, e.g., cache tiling, unrolling and array padding, and focus on
finding the best possible parameters, e.g., tile size, unroll factor and padding
size. O’Boyle et al. [11] and Cooper et al. [8] outlined that the ability to perform
long sequences of composed transformations is key to the emergence of practi-
cal iterative optimization frameworks. Another recent study [22] confirms that
complex compositions of many distinct transformations can bring significant
performance benefits.
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This article introduces a framework for easily expressing compositions of pro-
gram transformations, based on the polyhedral representation of programs [10]
and on a robust code generation technique [23, 3]. We distinguish three different
types of actions performed by program transformations: modification of the it-
eration domain (loop bounds and strides), modification of the iteration schedule
of each statement, and modification of the memory access functions (array sub-
scripts). Current program representations do not clearly reflect this separation,
making the implementation and composition of program transformations more
complicated. E.g., current implementations of loop fusion incur loop bounds and
array subscript modifications that are only byproducts of a schedule transforma-
tion (the fused loops are often peeled, increasing code size and making further
optimizations more complex). Within our representation, loop fusion is expressed
as a schedule transformation with no explicit impact on the iteration domain and
memory access. Similarly, a domain transformation like unrolling has no impact
on the schedule or memory access functions representations; or a memory access
transformation like privatization has no impact on the schedule or domain repre-
sentations, thus not conflicting with the later application of skewing or unrolling.
While our framework is geared toward iterative optimization techniques, it can
also facilitate the implementation of statically driven program transformations.

To date, the most thorough application of the polyhedral representation is
the Petit dependence analyzer and loop restructuring tool [15] within the Omega
project [16]. These tools show that most single loop transformations (both uni-
modular and non-unimodular) can be modeled as geometric transformations
of polyhedra. However, traditional polyhedral representations do not separate
the three above-mentioned actions induced by program transformations. Indeed,
space-time transformations in the polytope model [10, 25, 15, 18] were aimed at
model-based optimizations through operation research algorithms (e.g., linear
programming) with no real need for composition sequences. Some polyhedral
approaches [15, 9, 19, 12, 24] reproduce or extend classical loop transformations,
but ultimately rely on the program syntax for the identification of the loops to
operate on. These works require the explicit generation of source code and re-
construction of polyhedra at each transformation step, whether our framework
sticks to the polyhedral representation along the whole sequence of transfor-
mations. There is a large amount of related works and projects targeting loop-
restructuring compilers, see e.g., [7, 13, 5, 14, 16, 17, 15, 21] for representative ex-
amples. The associated research report outlines the main comparison points with
our approach [6].

This paper does not present performance numbers. The goal is to revisit
some theoretical and engineering cornerstones of the design of loop-restructuring
compilers. We refer to classical techniques for validation and optimization heuris-
tics [26].
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2 Separate Polyhedra
for Unified Program Transformations

The polytope model is based on a semantics-based representation of loop nests.
This representation clearly identifies three separate components: array access
functions – affine functions describing the mapping of iterations to memory
locations – from the iteration domain – a geometrical abstraction of loop bounds
and strides shaping loop structures – and from the affine schedule – another
geometrical abstraction of the ordering of iterations and statements. In addition
to classical characterization of affine schedules, we also separate the description
of iteration ordering of a single statement from inter-statements scheduling.

We assume constant strides and affine bounds for loops; affine array sub-
scripts are hoped for but not mandatory. Within a function body, a Static Control
Part (SCoP) is a maximal set of consecutive statements without while loops,
where loop bounds and conditionals only depend on invariants (symbolic con-
stants and surrounding counters) within this set of statements. These invariants
are called the global parameters of the SCoP. We do not consider procedures,
pointers, and inter-SCoP transformations.

The following definitions assume some familiarity with the polytope model:
the unfamiliar reader may refer to an associated research report [6]; in addition,
Section 3 ends with a short example. Formally, a SCoP is a pair (S, igp), where
S is the set of consecutive statements and igp is the vector of global parameters
(known at run-time). dgp = dim(igp) denotes the number of global parameters
and dS the depth of statement S, i.e., the number of nested loops enclosing the
statement in the SCoP. A statement S ∈ S is a quadruple (DS ,LS ,RS , θS),
where DS is the dS-dimensional iteration domain of S, LS and RS denote ar-
ray references written by S (left-hand side) and read by S (right-hand side)
respectively, and θS is the affine schedule of S, defining the sequential execution
ordering of iterations of S. 1

Iteration domains. We denote matrices by capital letters. DS is a convex poly-
hedron defined by matrix ΛS ∈Mn, dS+dS

lv+dgp+1(Z) such that

i ∈ DS ⇐⇒ ∃ilv, ΛS · (i, ilv, igp, 1)t ≥ 0
where ΛS is the matrix defining the domain inequalities; n is the number of
inequalities necessary to define the domain (the number of matrix rows, a priori
not limited); 1 adds a matrix column to specify the affine component of each
domain inequality; and dS

lv is the number of local variables required to implement
integer division and modulo operations via affine projection.

Statements guarded by non-convex conditionals – such as 1 ≤ i ≤ 3 ∨ i ≥
8 – are split into separate statements with convex domains in the polyhedral
representation.

Memory access functions. LS and RS are sets of (A, f) pairs, where A is an array
variable and f is the access function mapping iterations in DS to locations in A.
1 The term polyhedron will be used in a broad sense to denote a linearly-bounded

lattice, i.e., a set of points in a Z vector space bounded by affine inequalities.
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The access function f is defined by a matrix F ∈Mdim(A), dS+dS
lv+dgp+1(Z) such

that
f(i) = F · (i, ilv, igp, 1)t.

Access functions only describe affine references; other references are allowed if
the dependence analysis framework can manage them [27, 2].

Affine schedules. θS is the affine schedule of S; it maps iterations in DS to
multidimensional time stamps, i.e., logical execution dates. Multidimensional
time stamps are compared through the lexicographic ordering over vectors, de-
noted by �: iteration i of S is executed before iteration i′ of S′ if and only if
θS(i)� θS′

(i′).
θS is defined by a matrix ΘS ∈M2dS+1, dS+dgp+1(Z) such that

θS(i) = ΘS · (i, igp, 1)t.
ΘS does not involve local variables, they would be redundant with the it-

erators they are related to. Notice the number of rows is 2dS + 1 and not dS :
to define the relative ordering of statements across iterations at depth k, we
need dS dimensions; to define the relative ordering of statements within each
iteration, we need an additional dimension for each depth plus depth 0, hence
the 2dS + 1 dimensions. This encoding was proposed before [10, 15], to model
classical transformations into the polytope model.

The schedule matrix is decomposed in a form amenable to transformation
composition and scalable code generation; it consists of three sub-matrices: a
square iteration ordering matrix AS ∈ MdS, dS (Z) operating on iteration vec-
tors, a statement ordering vector βS ∈ N

dS+1, and Γ S ∈ MdS, dgp+1(Z) called
a parameterization matrix. The structure of the schedule matrix ΘS is shown
below. AS

i,j capture the iteration order of S with respect to surrounding loop
counters. βS

i specify the ordering of S among all other statements executed at
the same iteration; the first row of ΘS corresponds to depth 0, the outermost
level2. Γ S

i,j extend the nature of possible transformations, allowing iteration ad-
vances and delays by constant or parametric amounts.

ΘS =




0 · · · 0 0 · · · 0 βS
0

AS
1,1 · · · AS

1,dS Γ S
1,1 · · · Γ S

1,dgp
Γ S

1,dgp+1

0 · · · 0 0 · · · 0 βS
1

AS
2,1 · · · AS

2,dS Γ S
2,1 · · · Γ S

2,dgp
Γ S

2,dgp+1

...
. . .

... 0
. . . 0

...
AS

dS,1 · · · AS
dS,dS Γ S

dS ,1 · · · Γ S
dS ,dgp

Γ S
dS ,dgp+1

0 · · · 0 0 · · · 0 βS
dS



.

Towards a normalized representation. A given program can have multiple rep-
resentations, and that, in turn, can limit the application of transformations.
E.g., a condition for fusion is that statements must be consecutive; otherwise,
if there is a statement in between, one must first decide where to move it (and
check dependences). Normalization conditions avoiding these pitfalls are called
2 Notice the first component of β is numbered β0.
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invariants. Besides avoiding useless composition prohibitions, these invariants
also serve to avoid matrix parameters overflow.

The schedule density invariant is to ensure that all statements at an identical
depth have a consecutive β ordering (no gap). As a side-effect, this invariant also
avoids integer overflows on the β parameters, βS

k > 0 ⇒ ∃S′ ∈ S, pfx(βS , k) =
pfx(βS′

, k) ∧ βS′
k = βS

k − 1, where pfx(βS , k) denotes the k first dimensions of
vector βS . The condition states that, for any non-null β parameter at dimension
k, there necessarily exists another statement S′ with the same k-prefix and the
preceding value at dimension k.

The domain parameter invariant avoids redundant inequalities and integer
overflows in the domain matrix ΛS parameters. For that purpose, we impose
that the coefficients in a row of ΛS are always relatively prime.

The sequentiality invariant states that two distinct statements, or two iden-
tical statements in distinct iterations, cannot have the same time stamp: S 
=
S′ ∨ i 
= i′ ⇒ θS(i) 
= θS′

(i′). A sufficient (though not necessary) condition
to enforce that property is the following: | det(AS)| = 1 (unimodular) and
S 
= S′ ⇒ βS 
= βS′

.

3 Polyhedral Program Transformations

In our framework, program transformations take the form of a set of elementary
operations on matrices and vectors describing a SCoP.

We first define elementary operations called constructors. Given a vector v
and matrix M with dim(v) columns and at least i rows, AddRow(M, i, v) inserts
a new row at position i in M and fills it with the value of vector v, RemRow(M, i)
does the opposite transformation. AddCol(M, j, v) and RemCol(M, j) play similar
roles for columns. Moving a statement S forward or backward is a common
operation: the constructor Move(P, Q, o) leaves all statements unchanged except
those satisfying

∀S ∈ S, P � βS ∧ (Q� βS ∨Q � βS) : βS
dim(P ) ← βS

dim(P ) + o,
where u � w denotes that u is a prefix of v, where P and Q are statement ordering
prefixes s.t. P � Q defining respectively the context of the move and marking the
initial time-stamp of statements to be moved, and where offset o is the value to be
added/subtracted to the component at depth dim(P ) of any statement ordering
vector βS prefixed by P and following Q. If o is positive, Move(P, Q, o) inserts
o free slots before all statements S preceded by the statement ordering prefix Q
at the depth of P ; respectively, if o is negative, Move(P, Q, o) deletes −o slots.
These constructors make no assumption about the representation invariants and
may violate them.

3.1 Composition of Primitives

From the earlier constructors, we define invariant-enforcing transformation prim-
itives to serve as building blocks for transformation sequences. Figure 1 lists
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typical primitives affecting the polyhedral representation of a statement. 1k de-
notes the vector filled with zeros but element k set to 1, i.e., (0, . . . , 0, 1, 0, . . . , 0);
likewise, 1i,j denotes the matrix filled with zeros but element (i, j) set to 1.

Like the Move constructor, primitives do not directly operate on loops or
statements, but target a collection of statements and polyhedra whose statement-
ordering vectors share a common prefix P . There are no prerequisites on the
program representation to the application and composition of primitives.

We also specified a number of optional validity prerequisites that conserva-
tively check for the semantical soundness of the transformation, e.g., there are
validity prerequisites to check that no dependence is violated by a unimodu-
lar or array contraction transformation. When exploring the space of possible
transformation sequences, validity prerequisites avoid wasting time on corrupt
transformations.

Fusion and Fission best illustrate the benefit of designing loop transforma-
tions at the abstract semantical level of our unified polyhedral representation.
First of all, loop bounds are not an issue since the code generator will handle any
overlapping of iteration domains. For the fission primitive, vector (P, o) prefixes
all statements concerned by the fission; and parameter b indicates the position
where statement delaying should occur. For the fusion primitive, vector (P, o+1)
prefixes all statements that should be interleaved with statements prefixed by
(P, o). Eventually, notice that fusion followed by fission (with the appropriate
value of b) leaves the SCoP unchanged.

Unimodular implements any unimodular transformation, extended to arbi-
trary iteration domains and loop nesting. U and V denote unimodular matrices.

Shift is a kind of source-level hierarchical software pipeline, extended with
parametric forward/backward iteration shifts, e.g., to delay a statement by N
iterations of one surrounding loop. Matrix M implements the parameterized shift
of the affine schedule of a statement. M must have the same dimension as Γ .

Restrict constrains the domain with an additional inequality, given in the
form of a vector c with the same dimension as a row of matrix Γ .

Extend inserts a new intermediate loop level at depth �, initially restricted
to a single iteration. This new iterator will be used in following code transfor-
mations.

AddLVDom and AddLVAcc insert a fresh local variable in the domain
and and access functions, respectively. This local variable is typically used by
Restrict.

Privatize and Contract implement basic forms of array privatization
and contraction, respectively, considering dimension � of the array. Privatiza-
tion needs an additional parameter s, the size of the additional dimension; s is
required to update the array declaration (it cannot be inferred in general, some
references may not be affine). These primitives are simple examples updating
the data layout and array access functions.

Although this table is not complete, it demonstrates the expressiveness of
the unified representation through classical control and data transformations.
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Syntax Effect

Unimodular(P, U, V) ∀S ∈ S | P � βS, AS ← U.AS.V

Shift(P, M) ∀S ∈ S | P � βS, Γ S ← Γ S + M

Restrict(P, c) ∀S ∈ S | P � βS, ΛS ← AddRow
(
ΛS , 0, c/ gcd(c1, . . . , c

dS+dS
lv+dgp+1)

)

Extend(P, �, c) ∀S ∈ S | P � βS,




dS ← dS + 1; ΛS ← AddCol(ΛS , c, 0); βS ← AddRow(βS , �, 0);

AS ← AddRow(AddCol(AS, c, 0), �, 1�); Γ S ← AddRow(Γ S , �, 0);

∀(A, F) ∈ LS ∪ RS , F ← AddRow(F, �, 0)

AddLVDom(P ) ∀S ∈ S | P � βS, dS
lv ← dS

lv + 1; ΛS ← AddCol(ΛS , dS + 1, 0)

AddLVAcc(P, A) ∀S ∈ S | P � βS, ∀(A, F) ∈ LS ∪ RS, F ← AddCol(F, dS + 1, 0)

Privatize(A, �) dim(A) ← dim(A) + 1, ∀S ∈ S, ∀(A, F) ∈ LS ∪ RS , F ← AddRow(F, �, 1�)

Contract(A, �) dim(A) ← dim(A) − 1; ∀S ∈ S, ∀(A, F) ∈ LS ∪ RS , F ← RemRow(F, �)

Fusion(P, o) b = max{βS
dim(P )+1 | (P, o) � βS} + 1

Move((P, o + 1), (P, o + 1), b); Move(P, (P, o + 1),−1)
Fission(P, o, b) Move(P, (P, o, b), 1); Move((P, o + 1), (P, o + 1),−b)

Fig. 1. Some classical transformation primitives

This table is not complete (e.g., it lacks index-set splitting and data-layout
transformations), but it demonstrates the expressiveness of the unified represen-
tation.

Primitives operate on program representation while maintaining the struc-
ture of the polyhedral components (the invariants).

Despite their familiar names, the primitives’ practical outcome on the pro-
gram representation is widely extended compared to their syntactic counter-
parts. Indeed, transformation primitives like fusion or interchange apply to sets
of statements that may be scattered and duplicated at many different locations
in the generated code. In addition, these transformations are not proper loop
transformations anymore, since they apply to sets of statement iterations that
may have completely different domains and relative iteration schedules. For ex-
ample, one may interchange the loops surrounding one statement in a loop body
without modifying the schedule of other statements, and without distributing
the loop first. Another example is the fusion of two loops with different domains
without peeling any iteration.

Previous encodings of classical transformations in a polyhedral setting – most
significantly [25] and [15] – use Presburger arithmetic as an expressive operating
tool for implementing and validating transformations. In addition to operat-
ing on polytopes, our work generalizes loop transformations to more abstract
polyhedral domain transformations, without explicitly relying on a nested loop
structure with known bounds and array subscripts to define the transformation.

Instead of anchoring loop transformations on a syntactic program form, limit-
ting ourselves to what can be expressed with an imperative semantics, we define
higher level transformations on the polyhedral representation itself, abstracting
away the overhead (versioning, duplication) and constraints of the code genera-
tion process (translation to an imperative semantics).

Naturally, this higher-level framework is beneficial for transformation compo-
sition. Figure 2 composes primitives into typical transformations. Interchange

swaps the roles of io and io+1 in the schedule of the matching statements; it is
a fine-grain extension of the classical interchange making no assumption about
the shape of the iteration domain. Skew and Reverse define two well known
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Syntax Effect Comments

Interchange(P, o) ∀S ∈ S | P � βS ,

{
V = I

dS −1o,o−1o+1,o+1+1o,o+1+1o+1,o;

Unimodular(βS, I
dS , V)

swap rows
o and o + 1

Skew(P, �, c, s) ∀S ∈ S | P � βS , V = IdS + s · 1�,c; Unimodular(βS, IdS , V)
add the skew factor

Reverse(P, o) ∀S ∈ S | P � βS , V = I
dS − 2 · 1o,o; Unimodular(βS , I

dS , V)
put a -1 in (o,o)

StripMine(P, k) ∀S ∈ S | P � βS ,




� = dim(P ); c = dim(P );

Extend(βS, �, c);

AddLVDom(βS);

p = dS + 1; u = dS + dS
lv + dgp + 1;

Restrict(βS, AS
�+1 − 1c);

Restrict(βS,−AS
�+1 + 1c + (k − 1)1u);

Restrict(βS, 1c − k · 1p);

Restrict(βS, k · 1p − 1c)

insert interm. loop
insert local var.
local var. and const.
ic ≤ ic+1
io+1 ≤ io + k − 1
k × p ≤ ii
ii ≤ k × p

Tile(P, o, k) ∀S ∈ S | (P, o) � βS,




StripMine(P, k);
StripMine((P, o), k);
Interchange((P, 0), dim(P ))

strip outer loop
strip inner loop
interchange

Fig. 2. Composition of transformation primitives

unimodular transformations, with respectively the skew factor s with it’s coor-
dinates (�, c), and the depth o of the iterator to be reversed. StripMine in-
troduces a new iterator to unroll k times the schedule and iteration domain of
all statements at the depth of P (where k is a statically known integer). This
transformation is a complex sequence of primitives, see Figure 2. Tile extends
the classical loop tiling at of the two nested loops at the depth of P , using k× k
blocks, with arbitrary nesting and iteration domains. Tiling and strip-mining
always operate on time dimensions; it is possible to tile the surrounding time
dimensions of any collection of statements with unrelated iteration domains and
schedules.

Other properties of our framework include confluence and commutativity,
when operating on distinct components of the representation. Further explo-
ration of these properties is under way, in an attempt to improve the structure
of the transformation space for iterative optimization purposes.

3.2 Composition Example

Code complexity after loop transformations is mainly due to control optimiza-
tions (hoisting of conditionals, unrolling) which do not affect the complexity of
our representation. The main asset of our framework is to hide the code com-
plexity along the sequence. At intermediate steps, the complexity of the code
representation within our framework remains fairly low, i.e., it only depends
linearly on the number of original statements and statement-insertions. Using
syntactic program transformations, the code complexity may increase at each
intermediate step, sometimes even preventing further optimizations [6]. Notice
that transformation with an intrinsic syntactical behavior like loop unrolling
may also benefit from a polyhedral representation: one may strip-mine the loop
instead, delaying the proper unrolling to the code generation step, and separate
transformations may still be applied to each virtually unrolled iteration.
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Let us compare our framework with syntactic transformations, studying the
evolution of the representation along a sequence of transformations. The example
in Figure 3 performs two matrix-vector multiplications, yielding D =t BEC
(typical of quadratic form computations), where arrays B and E store M × N
rectangular matrices.

We apply a sequence of three transformations to this program. In Figure 4,
we interchange the loops in the first nest to optimize spatial locality on B. In
Figure 5, we fuse the outer loops to improve temporal locality on A. Figure 6
shows part of the resulting code after advancing assignments to A by 4 iterations,
in order to cover the latency of floating-point multiplications. This sequence
corresponds to the following composition of primitives:

Interchange

(
βS1 , 1

)
; Fusion

(
(), 0

)
; Shift

(
βS1 ,

[
0 0 0
0 0 −4

])
.

Based on the final polyhedral representation, the code generation phase will
generate control-optimized code quite similar to the hand-optimized fragment in
Figure 6, without redundant guards or dead iterations.

do i = 1, M
do j = 1, N

(S1) A(i) += B(i,j)*C(j)
do k = 1, M

do l = 1, N
(S2) D(k) += E(l,k)*A(l)

DS1 = {i, j | 1 ≤ i ≤ M ; 1 ≤ j ≤ N}, AS1 =
[
1 0
0 1

]
, Γ S1 =[

0 0 0
0 0 0

]
, βS1 =

[
0
0
0

]

DS2 = {k, l | 1 ≤ k ≤ M ; 1 ≤ l ≤ N}, AS2 =
[
1 0
0 1

]
, Γ S2 =[

0 0 0
0 0 0

]
, βS2 =

[
1
0
0

]

LS1 =
(
A,

[
1 0 0 0 0

])
,LS2 =

(
B,

[
1 0 0 0 0

])

Fig. 3. Original code and its representation

do j = 1, N
do i = 1, M

A(i) += B(i,j)*C(j)
do k = 1, M
do l = 1, N

D(k) += E(l,k)*A(l)

Changes to the
polyhedral
representation:

AS1 =
[
0 1
1 0

]

Fig. 4. After interchange

MN = min(M,N)
do x = 1, MN
do y = 1, MN

A(y) += B(y,x)*C(x)
D(x) += E(y,x)*A(y)

do y = MN+1, M
A(y) += B(y,x)*C(x)
D(y) += E(y,x)*A(y)

do x = MN+1, N
do y = 1, MN

A(y) += B(y,x)*C(x)
D(y) += E(y,x)*A(y)

Changes to the
polyhedral
representation:

βS2 =

[
0
0
1

]

Fig. 5. After fusion

MN = min(M-4,N)
do x = 1, MN

A(1) += B(1,x)*C(x)
A(2) += B(2,x)*C(x)
A(3) += B(3,x)*C(x)
A(4) += B(4,x)*C(x)
do y = 1, MN

A(y+4) += B(y+4,x)*C(x)
D(x) += E(y,x)*A(y)

D(x) += E(MN-3,x)*A(MN-3)
D(x) += E(MN-2,x)*A(MN-2)
D(x) += E(MN-1,x)*A(MN-1)
D(x) += E(MN,x)*A(MN)
do y = MN+1, M-4

A(y+4) += B(y+4,x)*C(x)
D(y) += E(y,x)*A(y)

D(M-3) += E(MN-3,x)*A(MN-3)
D(M-2) += E(MN-2,x)*A(MN-2)
D(M-1) += E(MN-1,x)*A(MN-1)
D(M) += E(MN,x)*A(MN)

do x = MN+1, N
do y = 1, M-4

. . .

Changes to
the polyhedral
representa-
tion:

Γ S1 =[
0 0 0
0 0 −4

]

Fig. 6. After four shifts (partial code frag-
ment)
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4 Implementation

This framework uses the PolyLib [20] and CLooG – a robust new code generator
[3]. It is implemented as a plug-in for Open64/ORC3. The availability of CLooG
is a major reason for making polyhedral approaches applicable to real codes.
Our tool converts the WHIRL, the intermediate representation of Open64, to an
augmented polyhedral representation with maps to the symbol table and syntax
tree, and regenerates WHIRL from this representation [4]. 12 SpecFP 2000 and
PerfectClub benchmarks were run through the whole source-to-polyhedra-to-
source conversion cycle (without loop transformations); it takes from one second
to two minutes on a typical Pentium III, see [4] and [3] for details. The software
component in charge of the polyhedral transformations is driven through a script
language, with a specific syntax to define primitives and to compose new trans-
formations. The syntax is based on C++ with overloaded operators for vector
and matrices. From the script, the tool generates the actual source code of the
related transformations: it effectively generates a class for each transformation
with its own methods for prerequisite checking and application.

5 Conclusion

We presented a polyhedral framework that enables the composition of long se-
quences of program transformations. Coupled with a robust code generator,
this method avoids the typical code complexity explosion of long compositions
of program transformations; these techniques have been implemented in the
Open64/ORC compiler. While revisiting the design of a polyhedral program
representation and the definition of transformation primitives, we have shown
the advantages of using such advanced techniques in the software engineering
of a loop-restructuring compiler. In particular, we have decoupled the polyhe-
dral representation, transformation and code generation techniques from their
historical applications to automatic affine scheduling and mapping (automatic
parallelization and model-based optimization). More practically, the ability to
perform numerous compositions of program transformations is key to the exten-
sion of iterative optimizations to finding the appropriate program transforma-
tions instead of just the appropriate program transformation parameters.
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