
Multiple Instantiation
in a Dynamic Workflow Environment

Adnene Guabtni and François Charoy

LORIA - INRIA - CNRS (UMR 7503) BP 239
F-54506 Vandouvre-lès-Nancy Cedex, France

{guabtni,charoy}@loria.fr

Abstract. Business processes often requires to execute a task multiple
time in series or in parallel. In some workflow management systems this
possibility is already supported and called “multiple instantiation”. Usu-
ally the term “iteration” is used to define multiple executions in series.
Nevertheless, the existing solutions impose many constraints for workflow
designers and decrease flexibility. Almost all of them use new operators
to represent multiple instances that are integrated in the workflow as
any other workflow basic operators. This way of representation encum-
bers and complicates the workflow so that it’s unreadable for the end
user. In this article, we propose a new way of defining multiple instan-
tiations in a workflow without using exotic operators, nor complicating
the workflow itself. Our approach is based on defining sets of tasks in
a dynamic workflow process. Each set contains activities that must be
executed multiple times. Each set is governed by constraints making it
possible to supervise the multiple executions. These sets can be nested or
even overlap. We use two types of sets in this work: “parallel instance’s
set” for those activities that are executed multiple times in parallel. And
the second type is “iterative instance’s set” for those that are executed
multiple times in sequence. The number of instantiations to do and the
condition to iterate could be evaluated at run-time. In this paper, we
also show on a real process executed in an experience how this model
could have been used to ease its definition.

1 Introduction

A lot of work has been done recently on the definition of business process models
for different purposes. Most of these models provide the ability to define pro-
cesses using XML schemas and are based more or less on the same concepts of
nodes (activities), edges (dependencies between activities) and synchronization
condition. However, as it has been precisely described in [9], these models do not
support well multiple instantiation of group of activities or even of single activi-
ties. Multiple instantiation means the ability to repeat several time the execution
of a group of activities, either in sequence, or in parallel. Different patterns for
multiple instantiation have been identified in [9], [7] and [1] and these patterns
have been explicitly defined as petri net models in [10]. Workflow management
systems must provide practical possibilities to realize them. Current workflow

A. Persson and J. Stirna (Eds.): CAiSE 2004, LNCS 3084, pp. 175–188, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



176 Adnene Guabtni and François Charoy

management systems adopt very different strategies to model these patterns. It
can be by introducing new operators, using sub processes or defining complex
model structures. However, most of them are far from providing a simple solution
to apply multiple instantiation patterns.

Executing multiple times a set of activities, in parallel or in sequence is very
common. Review processes, development processes, quality assurance processes
are typical cases where the number of iterations or the number of execution
depends on the number of people involved, the number of object produced or
some other criteria defined on the state of the objects. A workflow management
system must be able to model such repetition and even to allow evolution of the
parts of the process that are executed multiple times.

In this paper we present an evolution that we can apply to any model because
of its generality. We choose the most basic model that gives us a simple workflow
with no added constructors than the edges of control.

The first part of the paper will describe the motivation for this work and recall
the multiple instantiation patterns that can be found in the process modelling
literature. The second part will describe how these patterns can be implemented
in current workflow management systems. The third part will describe our pro-
posal as an extension of a simple process model with a “set oriented” multiple
instantiation definition. We will then present briefly how it has been implemented
in the Bonita WFMS in order to support cooperative process management.

2 Motivation and Related Work

Multiple execution of group of activities is a pattern that can be found in a lot
of cooperative processes. These executions are common in such cases:

– a piece of work is split up and distributed between a group of people (writing
chapters of a book, coding modules)

– a piece of work has to be done by all the people with some role (review
chapters of a book, testing)

– a piece of work has to be repeated until it reaches a certain level of quality
(quality assurance, testing, review/editing process)

Different multiple instantiation patterns have been precisely analysed in
[9],[7] and [1]. Here, we will consider the one described in [9] because it is a
generalized description. These patterns are numbered from 10 to 15 in this pa-
per.

– 10 is arbitrary cycles or loops. Modelling loops directly in a workflow is still
considered as an issue even if some systems provide some way to do it.

– 11 is implicit termination. A sub process is terminated if nothing else is to
be done. Most workflow engines require a final node to specify termination
of a sub process.

– 12 is multiple instantiation without synchronization. Several instances of the
same activity are executed. They are not synchronized. This is supported by
most workflow systems



Multiple Instantiation in a Dynamic Workflow Environment 177

– 13 is multiple instantiation with a priori design time knowledge. An activity
has to be executed multiple times and the number of instances is known at
design time.

– 14 is multiple instances with a priori runtime knowledge. An activity has
to be executed multiple times and the number of instances is known at run
time before they are started.

– 15 is multiple instantiation without a priori runtime knowledge. The number
of instances to create depends on the execution of the instances themselves.
New instances have to be created while other are still executing.

3 Multiple Instantiation and Current Workflow Models

Many workflow management systems supports some of the patterns above. The
possibilities of each one of some known workflow management systems are pre-
sented in [9]. In these workflow management systems, many solutions are used.
The most prevalent of them is the use of the “merge” operator. Figure 1 illus-
trates the use of this operator to express multiple instantiation. The number
of instances can be computed before the instantiation or computed while the
instantiation is working as the pattern 15. The example concerns the multiple
instantiation of just one activity. When we want to use this kind of solutions to
express multiple instantiation of a set of activities, we have a constraint. This
constraint inflicts that the group of activities must be sequentially connected.
This is a hard constraint that decreases possibilities.

Fig. 1. Multiple instantiation using the “Merge” operator

Another kind of solution is the use of the “Bundle” operator. This solution is
implemented in the FlowMark 2.3 language. The “Bundle” operator receives the
number of instances of the activity it is related to and takes care of its instan-
tiation. After that, the “Bundle” operator waits the end of all these instances



178 Adnene Guabtni and François Charoy

to hands off the activities that follow. Figure 2 illustrate the typical use of the
“Bundle” operator in a workflow process. This solution has a disadvantage: the
operator involves only one activity so that we cannot express the multiple in-
stantiation of a group of activities.

Fig. 2. Multiple instantiation using
the “Bundle” operator

Fig. 3. Multiple instantiation using the XOR
SPLIT, AND JOIN and OR JOIN operators

The workflow management systems that don’t have direct support of multiple
instantiation are required to use a combination of XOR SPLIT, AND JOIN and
OR JOIN to do it. Figure 3 illustrates this case. We can see the complexity of the
workflow process after expressing multiple instantiation. This solution supposes
that the number of instances is limited to a maximum number. There is also no
support for pattern 15 with this solution.

Most of all the workflow management systems are based on new operators
introduction to do multiple instantiation. It can certainly offer some solutions
but increase workflow structure and design complexity. The majority of these
attempts cannot offer a support for all the multiple instantiation patterns.

4 Multiple Instantiation and Set Based Workflow Model

4.1 The Basic Workflow Model

Here we present an extension to workflow models. The extension firms up by
adding a new kind of construction: sets. Sets are used to contain activities that
have to be executed several times, either in sequence or in parallel. Set that
executes in parallel is called “parallel instance set”. Set that executes several
times in sequence is called “iterative instance set”. Both kinds of sets will have
different kind of constraints for their definition and different behaviours for their
execution. Sets can be nested or overlapped with certain conditions. This is what
we present in the following sections.

This approach can be applied to any workflow model provided that the model
allows dynamic creation of activities at runtime. Many works have been made
on dynamic changes on workflow in [5], [4], [6], [2] and [5]. The Bonita workflow
model offers these possibilities so that we chosen it to implement our set based
model. This model is based on the work published in [2] concerning flexibility



Multiple Instantiation in a Dynamic Workflow Environment 179

in workflow systems and implement the anticipation of execution of activities
described in [3]. Bonita model is based on a workflow model without separated
process schema and instances of the schema. Our model consists of just instances.
This simplifies the use of dynamic changes as the schema and the instance are
the same thing.

4.2 Multiple Instantiation Sets

A multiple instantiation set of activities has a state that can be INITIAL, AC-
TIVE or FINISHED.

– INITIAL: All the activities of the set are in initial state (not yet executed).
– ACTIVE: At least one of the activities of the set is started.
– FINISHED: All the activities of the set have finished their execution.

There is two types of multiple instantiation sets: parallel and iterative. Each
one of these two types has also some other properties and some constraints to
apply on their activities.

Parallel Instance Set. Parallel instantiation deals with patterns 12 to 15 in [8].
It is a solution to execute many times the same set of activities in parallel.

The goal of parallel instance sets is to provide an answer to the problem of
activities that have to be executed several times. This execution can be made in
parallel. The number of times they have to be executed is not necessarily known
at the beginning of the process. This is described in [8] as patterns 14 and 15.

Parallel instance set has a special property defined as:

– A function to compute the number of times it has to be executed. This
function will return the number of people belonging to a role or the value of
some data produced by a preceding activity.

There is no constraints on the parallel instance set of activities. Any activity
that has not been yet started can be selected to participate in a parallel instance
set. This allows a very simple definition of this kind of sets.

Iterative Instance Set. The goal of iterative instance sets is to allow the
repetition of a their activities until some condition is evaluated to true. This is
the way to model iterations in Bonita, as cycles are not allowed.

Iterative instance set matches Pattern 10 and 11 in [8]. Iteration means that
we want to specify that the given set of activities must be repeated a number
of times until a given condition is true. Cycles are an issue in WFMS because
of race condition. In our proposal, we overcome this issue by re-instantiating
activities as long as it is needed. Thus iteration is not the re-execution of a set
of activities but the successive execution of copies of these activities. This has
an impact on the way data are managed and imply specific constraints that will
be described here.

Iterative instance set has two special properties defined as:



180 Adnene Guabtni and François Charoy

– A function to evaluate if a new iteration is needed or not. This function will
be called each time an iteration is finished.

– A subset of break activities belonging to the iterative instance set. A break
activity incarnates a new iteration’s control type. Without break activities,
the termination condition is checked when all the activities of the set are ter-
minated (implicit termination). When a break activity is finished it forces
the checking of the iteration condition even when other activities are ex-
ecuting or still not started. if the condition allows a new iteration, a new
instance of each activity of the set is created and the new iterative instance
set of activities can start. The new set of activities and the old one continue
their executions independently of each other. Break activities allow a kind
of overlapping in iteration levels.

The only structural constraints for such a set is that there should not be a
path starting from an activity of the set, going to an activity out of the set and
going back to an activity of the set.

Life Cycle of Multiple Instance Sets. The life cycle of multiple instance
sets is illustrated in figure 4. The state diagram depends on two conditions:

Fig. 4. State diagram of a set

– Activating condition: The state of the set is turned on ACTIVE when at
least one of its activities is ready to start.

– Finishing condition for parallel instance sets: The parallel instance
set state is turned on FINISHED when all of its activities are finished or
cancelled.

– Finishing condition for iterative instance sets: There is two ways for
an iterative instance set to become in FINISHED state:

• The first is when all of its activities are finished or cancelled.
• The second is when there is at least one activity in the set that is a break

activity that becomes FINISHED.

Execution of a Parallel Instance Set. As soon as an activity of the parallel
instance set is ready to execute, the set is activated. This means that the number
of instances is computed and that activities of the set are copied to get as many
instance as needed by this result. Thus the process evolves dynamically. New
activities are created, new edge are created between activities. Activities created
when activating a parallel instance set are exactly the same as the activities
belonging to the set except that they are marked as being clones and that they
don’t belong to their original set.

Edges going out of the set are also replicated. They have different origin and
leads to the destination node of the original edge. This node will be a merge



Multiple Instantiation in a Dynamic Workflow Environment 181

Fig. 5. A parallel instance set execution

Fig. 6. Iterative instance set activation

point for the copies of the set so that the job of merging data (the different
versions of the same work) is processed by this node. Figure 5 illustrates an
example of activation of a parallel instance set.

Execution of an Iterative Instance Set. The iterative instance set is acti-
vated when one of the activities of the set is activated. All edges going outside
the set are turned standby as described in figure 6. The standby state of an edge
makes this one blocked to that state while it is not unblocked by turning it to
standard state. While an edge is in standby state, activities following it cannot
start.

Then, activities of the set are executed following the usual execution strategy.
Once, the last activity of the set or a break activity is terminated, the iteration
condition of the set is evaluated. If true, the set is re-instantiated as described
in figure 7. The new copy of the set is declared as iterative instance set with
the same iteration condition. The edges going outside the original set are turned
to standard state so that they don’t block the execution of following activities.
But new copies of these edges are turned to standby state accordingly to the
activation of the new iterative instance set. These new edges follow the blocking
of execution of following activities.

At the final iteration, the outgoing edges are turned to standard state and
there is no new instances of these edges. All the outgoing edges of all the instances
of the set are in standard state and the activities that follow the set can start
their execution.

4.3 Relationships between Sets

Sets can be nested or even overlap. The activation and replication process is
straightforward. The rules for activation of the set remain unchanged. This is
due to the dynamism of the model when any activity or set exists by itself.



182 Adnene Guabtni and François Charoy

Fig. 7. Iterative instance set finishing

When activating a parallel instance set that contains other sets (parallel or
iterative), these ones are also duplicated following the same scheme of cloning.
A copy of a set contains the copy of activities of the original set.

When activating a parallel instance set that overlaps other sets (parallel or
iterative), for each activity of the set that is also part of another overlapped set,
the copies of this activity are also part of the same overlapped set (no need to
copy the overlapped sets).

Figure 8 illustrate the case where a parallel instance set containing other sets
and also overlapping other sets is activated.

The same approach is considered when finishing an iterative instance set that
nest or overlap other sets.

Priority in Case of Concurrent Activations. Suppose the case of figure 9
where a parallel instance set and an iterative one overlap. If activity 1 is ready
to start, we must decide which set will be activated first. If the parallel one is
activated first, the iterative set will grow by adding the new instances of activity
1. After that the iterations will concern 4 activities. On another side, if the
iterative set is activated first, there will exist an edge between the instances of
activity 1 and activity 2 that is in standby state. This will paralyse the parallel
instance set that will not be able to finish while iterations are not finished.

These two possibilities define an ambiguity that must be resolved by a rule:
When there is two possible set activations at the same time concerning parallel
and iterative instance sets, we assume that the parallel one is activated first. In
the case of sets that are just parallel there is no problem of priority because the
final effect is the same while activating at any arrangement.



Multiple Instantiation in a Dynamic Workflow Environment 183

Fig. 8. Activation of a parallel instance set with nested and overlapped sets

Fig. 9. Ambiguity in concurrent overlapped heterogeneous sets activations

5 Multiple Instance Sets and Workflow Patterns

The entire workflow patterns that we have presented in the introduction of this
paper can be easily described as multiple instance sets like following:

– Pattern 10: The arbitrary cycles or loops pattern is simply mapped to
iterative instance sets. The benefit is the simple definition of the set of ac-
tivities and the iteration condition. This condition can be a logical formula
concerning process objects states.

– Pattern 11: Implicit termination is implicitly used in the changing state
system of sets. When all activities of a set are terminated or cancelled this
set is finished.

– Pattern 12: Multiple instantiation without synchronization is the simple
case of a parallel instance set. If there is an edge going out of the set, the



184 Adnene Guabtni and François Charoy

activity that this edge is going to is considered as a synchronization activity.
To do a multiple instantiation without synchronization we simply don’t add
outgoing edges to the set.

– Pattern 13: Multiple instantiation with a priori design time knowledge can
be simply mapped to parallel instance sets. We have there a generalized
solution. Any set of activities can be instantiated multiple times. The only
information to provide is a function able to calculate the number of instances
that have to be created. In the case of design time knowledge, the function
is simply a constant corresponding to the known number of instances.

– Pattern 14: Multiple instantiation with a priori runtime knowledge is also
mapped to parallel instance sets. The function calculating the number of
instances can calculate this number at activation time. This number can de-
pends on any variable or property of the process. Another way is to authorize
other activities to modify this function at runtime.

– Pattern 15: Multiple instantiation without a priori runtime knowledge is
a special pattern that is generally not supported by classical workflow man-
agement systems. Multiple instance sets can offer a new solution. Oddly we
don’t use parallel instance sets but we use iterative instance set containing
break activities. Figure 10 illustrates an example of using iterative instance
sets to implement pattern 15. In this example, activity A calculates if the

Fig. 10. The implementation of the pattern 15 based on iterative instance sets

already made instantiations (iterations) of that set are sufficient or not (in-
stantiation time calculation). If other instantiations are needed activity B is
activated. Activity B is a break activity so that when finished a new instance
of the set is created. At the same time, activity 1 (the real first activity of the
multiple instantiation set) is activated and the execution of the set continues
normally. The next iteration that runs in parallel to the previous one applies
the same mechanism until the evaluation of need of other instances is false.
At the end of the execution of each copy of the set, the state of this one is



Multiple Instantiation in a Dynamic Workflow Environment 185

tuned on finished and the condition evaluating the need of other iterations
is always null so that the finish of a set doesn’t engender other iterations.
This special use of iterative instance sets proves that parallel and iterative
instance sets are complementary.

6 The Operette Process:
Application of Set Based Multiple Instantiation

The operette process is an experimental process that has been executed between
three classes in a school. Its goal was to produce a web site about the Opera
of Nancy. This process was followed by the classes but without coordination
support. This was a problem since it was difficult for each class to know what
has currently been done in the other classes and what remained to be done.
Adding process support to these kinds of experiments appeared as a strong
requirement.

A simple process was defined at the beginning of the project, to coordinate
the different classes. It describes the different steps that have to be accomplished
in order to complete the project. The teachers at the very beginning of the
experiment defined this process. Some of these steps had to be executed by
teachers themselves, by the classes as a group or by selected group of children.
This first process was designed without worry about multiple executions and is
illustrated in figure 11.

Fig. 11. The Operette process

6.1 Definition of the Operette Process
Based on Multiple Instantiation Sets

The operette process can be defined using different kinds of sets, with different
kinds of criteria for multiple instantiation (parallel or iterative). Some groups of
activities have to be executed by a class, by a group of children, by teachers, for
each question or each category. This information is not known at the beginning.
Some activities have to be iterated until an acceptable state has been reached.
This is the case before publishing the web site. Pages are corrected and reviewed
until they are correct. Figure 12 describes the different sets that could have
been defined for the process and the criteria used for multiple instantiation.



186 Adnene Guabtni and François Charoy

Fig. 12. The operette process with sets

Upon execution, the new activities are created and synchronized as defined by
the model. We can see clearly the use of parallel instance sets with execution
time knowledge of iteration number. That’s the case of the set III where the
number of questions is unknown at design time. Moreover, this set contains an
iterative instance set. Across this example, specifying the sets is quite simple
and specifying the original workflow is clearer.

7 Implementation over the BONITA Model

The implementation of our set based model has been made on the Bonita WFMS
as an update to support sets. Bonita is a Dynamic Cooperative Workflow Man-
agement System implemented on a J2EE platform and is an ObjectWeb project.
The Bonita workflow model is dynamic and flexible. Processes are not instanti-
ated from a process definition but directly created by users and executed. Users
can create a new process from scratch by adding activities and edges between
activities. They can specify properties of activities. An activity can become ex-
ecutable as soon as it has been created. Process creation can also be done by
reusing other existing processes. A process can be imported into a running pro-
cess. In this case a copy of all the activities edges and properties is done in the
target process. The user can then make the modifications he needs to adapt it.
Starting a new process can be done by cloning an existing process to avoid start-
ing the definition from scratch. As we don’t expect that cooperative processes
are executed so many time and that they often require adaptation to meet each
project needed, we think that this way to define process avoid the complicated
programming stage of process definition. Moreover, the definition of a coopera-
tive process is often done by analogy to processes that have been executed in the
past with some adaptation. This provides a very flexible way to create processes,
to adapt them, to change them or combine them on the fly.



Multiple Instantiation in a Dynamic Workflow Environment 187

The current definition of the Bonita model provides flexible definition and
flexible execution of processes. The flexible definition is achieved by allowing
changes to occur at any time during execution of the process. The only and
main constraint is that an activity definition cannot change once it has been
started. Other constraints are structural. For instance a cycle cannot exists be-
tween activities. Flexible execution is achieved by a dynamic management of the
activity state and by allowing anticipation of execution of activities. An activity
may be started even if all the conditions for its execution are not fulfilled.

Scripts can be associated to activity state changes in order to automate
certain parts of the process and these scripts are called Hooks. The execution
of a hook can interact with the workflow process and can for example create,
modify or remove other entities in the workflow. A hook can be assigned to be
executed before or after the start or the end of an activity. Bonita workflow
model has been implemented and integrated with different kinds of extended
transaction models to allow object sharing between activities and to support
concurrent long running activities.

All these properties allow the possibility to extend the bonita model to sup-
port multiple instantiation sets. The internal work of sets in Bonita is defined
as EJB. The update of Bonita has been simple because the use of sets is inde-
pendent of the workflow engine behaviour. The most important update to do is
located on the activity state manager because the set activation is the result of
an activity activation. There is two possibilities to do this change. The first is
an update of the internal engine that controls activity states so that each time
an activity starts, all the sets containing this activity are activated as needed in
the model. The second possibility is the use of Hooks. A hook can be associated
to all the activities of the process with a “before start” activation. This hook
activates all the sets containing the activity as needed in the model.

We have chosen temporarily the engine update to implement that and to
make tests on the sets uses but we are now integrating the solution based on
hooks. The current solution uses the Jboss web application server but a newer
implementation based on hooks and using the Jonas web application server is
currently developed. All the files of the Bonita project are located on the Ob-
jectWeb consortium web page (http://objectweb.org).

8 Conclusion and Perspectives

Specifying set of activities that have to be executed an unknown number of times,
in sequence or in parallel is a challenge in process models. The use of control
structures from traditional or parallel programming language is not adapted
to the specific needs and usages of business or cooperative processes. Additional
operators that have been added in other workflow models are difficult to manage
and lead to complex structure to express simple things. In the Bonita model,
creating an iterative or parallel instance set does not change the general intuitive
structure of the process. Process execution is at the same time a mean of control,
of automation and of awareness. Changing properties directly on objects or set
of objects affects the behaviour of the whole system. The interface provided with
the implementation allows monitoring dynamically the evolution of the process.



188 Adnene Guabtni and François Charoy

The solution based on sets provides a simple way to define parallel or iterative
multiple instantiations. Sets of activities can be selected with practically no
constraints so that we can choose dispersed activities in the workflow. In other
workflow models, group of activities to multi-instantiate must be sequentially
connected or simply just one activity can be instantiated multiple times. The
set based workflow structure is easier to understand by the end user. The main
strength of sets model is that it allows the implementation of the entire multiple
instantiation patterns defined in [9]. Moreover, set based multiple instantiation
allows nested and overlapped sets that is a very useful new possibility in some
cases.

Now we are planning to integrate this work in a software development plat-
form that involves data synchronization services. This platform is the Libre-
Source platform and our next challenge is to integrate the control flow functions
of bonita and data flow facilities of the platform. At the same time we are plan-
ning to develop an advanced transaction manager probably based on the same
approach.

References

1. M. Dumas and A. ter Hofstede. Uml activity diagrams as a workflow specifica-
tion language. In Proc. of the International Conference on the Unified Modeling
Language (UML). Toronto, Canada, October 2001. Springer Verlag., 2001.

2. D. Grigori. Eléments de flexibilité des systèmes de workflow pour la définition
et l’exécution de procédés coopératifs. PhD thesis, Université Henri Poincaré -
Nancy1, Ecole doctorale IAEM Lorraine, Paris, novembre 2001.

3. Daniela Grigori, François Charoy, and Claude Godart. Anticipation to enhance
flexibility of workflow execution. In DEXA 2001, number 2113, pages 264–273.
LNCS, 2001.

4. Manfred Reichert and Peter Dadam. A framework for dynamic changes in workflow
management systems. In DEXA Workshop, pages 42–48, 1997.

5. W.M.P. van der Aalst. How to handle dynamic change and capture management
information, 1999.

6. W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1–2):125–
203, 2002.

7. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Advanced workflow patterns. In O. Etzion en P. Scheuermann, editor, 7th Inter-
national Conference on Cooperative Information Systems (CoopIS 2000), volume
1901 of Lecture Notes in Computer Science, pages 18–29. Springer-Verlag, Berlin,
2000.

8. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. BETA Working Paper Series, WP 47, Eindhoven University
of Technology, Eindhoven, 2000.

9. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(3):pages 5–51, 2003.

10. Jiantao Zhou, Meilin Shi, and Xinming Ye. On pattern-based modeling for mul-
tiple instances of activities in workflows. In International Workshop on Grid and
Cooperative Computing, Hainan, pages pages 723–736, December 2002.


	1 Introduction
	2 Motivation and Related Work
	3 Multiple Instantiation and Current Workflow Models
	4 Multiple Instantiation and Set Based Work.ow Model
	4.1 The Basic Workflow Model
	4.2 Multiple Instantiation Sets
	4.3 Relationships between Sets

	5 Multiple Instance Sets and Workflow Patterns
	6 The Operette Process: Application of Set Based Multiple Instantiation
	6.1 Definition of the Operette Process Based on Multiple Instantiation Sets

	7 Implementation over the BONITA Model
	8 Conclusion and Perspectives
	References



