
RoboCup Advanced 3D Monitor

Carla Penedo, João Pavão, Pedro Nunes, and Luis Custódio

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
{ccfp,jpp,pmgn}@rnl.ist.utl.pt, lmmc@isr.ist.utl.pt

Abstract. RoboCup Advanced 3D Monitor is a three-dimensional ap-
plication for visualizing and debugging games of the RoboCup Soccer
Simulation League. This paper discusses the issues pertaining the imple-
mentation of this monitor using OpenGL, a standard API for rendering
high-performance 3D graphics. Our application provides a true 3D soc-
cer game experience maintaining a healthy balance of realistic anima-
tion features and high-speed rendering achieved by the implementation
of specific computer graphics techniques. Besides its main usefulness as
a visualization tool, this monitor may be used as a supporting tool for
the development of other robotics techniques. To illustrate this, two of
such techniques are discussed here: sensor fusion and Markov localization
methods.

Keywords: three-dimensional monitor, simulation league, levels of de-
tail, markov localization, sensor fusion.

1 Introduction

The RoboCup soccer server simulates a 2D virtual field in which two agent teams
play a soccer match. Although the environment is two-dimensional, the soccer
server has proved to be an adequate platform for the development of realistic
3D visualization tools.

In this paper, the RoboCup Advanced 3D Monitor (RA3DM), a three-dimen-
sional monitor for the RoboCup Simulation League is introduced. RA3DM aims
to turn the visualization of simulated soccer games more realistic and entertain-
ing. As we were developing RA3DM we realized that the RoboCup soccer server
provides an interesting testbed for prototyping algorithms which could be used
afterwards on real robots. A Markov localization algorithm and a sensor fusion
method were successfully implemented in this environment and the latter has
already been adapted to real robots of the middle-size league. Our monitor was
extremely useful for developing/testing/debugging the implemented algorithms.

RA3DM is implemented on OpenGL, a low-level graphics library which is
designed to be used with C and C++ programming languages. One of the main
advantages that OpenGL presents is its independence from operating and win-
dowing systems. This feature enabled the development of versions for the Linux,
MacOS X and Windows platforms with only a little extra effort.

D. Polani et al. (Eds.): RoboCup 2003, LNAI 3020, pp. 637–644, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



638 Carla Penedo et al.

The remainder of this paper is organized as follows. In the next section the
global architecture of the distributed system is briefly described. In Section 3
we present the main features of the implementation of RA3DM. Section 4 ex-
plains how RA3DM was used for the application of sensor fusion and Markov
localization algorithms in the RoboCup Simulation League. Finally, in Section 5
conclusions are drawn and future work is discussed.

2 System Overview

The RoboCup simulation system is controlled by a central process — the soccer
server — that runs the whole simulation, sending and receiving all the relevant
information to and from all the client programs connected to it [1]. An extra
connection was added to enable us to visualize the internal state of a soccer
player. The RA3DM connects to a special port on the soccer player program to
be monitored via a dedicated UDP socket. The global architecture employed in
our implementation is illustrated in Fig. 1.

The soccer server program sends information to all its connected monitors
every 0.1 s. However, the majority of hardware available today (both graphic
cards and main processors) is capable of delivering full-screen image update
rates (or frame rates) well above 10 Hz (i.e., 10 frames per second). This fact
led us to an architecture that maximizes drawing performance by allocating the
maximum possible CPU time updating the scene. To accomplish this we use
two permanently running threads [2]. One of the threads is responsible for all
transactions with the soccer server such as sending commands issued by the user
and receiving data concerning the state of the simulation. The other thread will
update the displayed 3D scene as fast as the underlying hardware allows. This
thread is also responsible for managing all user interaction through the use of
menus, mouse and keyboard.

3 Implementation

3.1 Player

RA3DM uses a skeletal animation system which allows for three main animations
to be performed by the player: walk, run and kick (see Fig. 2). A skeleton is
defined by a hierarchy of bones connected by joints with a position and an
orientation, arranged in a tree structure. The model, usually a single mesh of

RA3DM

Soccer
Server

Soccer
Player

Display Data

Agent's Internal State

Perceptions

Actions

UDP Socket

Fig. 1. Global architecture of the distributed system.



RoboCup Advanced 3D Monitor 639

Edge Collapsev v
u

Fig. 2. Player model and its bone struc-
ture.

Fig. 3. Collapsing vertex u onto v.

vertices or polygons, is attached to the skeleton through a process known as
skinning. When the latter is animated, the mesh is deformed accordingly, and
therefore, the model is continually morphed to match the movements of the
skeleton.

The animation process is simplified by keyframe interpolation techniques.
A keyframe animation is created by interpolating frames (snapshots in time)
between several successive keyframes that define specific pivot points in the
action. Each keyframe contains the values of the rotations of each joint of the
skeleton. The mesh is stored only once, along with the skeleton and the keyframes
of the animation, resulting in a very compact representation. Each animation is
created according to an uniform and constant speed that can be modulated
directly in RA3DM to obtain different running or walking velocities.

3.2 Levels of Detail

The computation and storage requirements for complex scenes, typical in some
computer graphics applications, far exceeds the capacity of modern hardware.
In order to accelerate the rendering of such scenes, approximations of decreasing
complexity (levels of detail) are produced similarly to the initial model. The
simpler versions contain fewer details that can not be noticed when the object
is farther away [3]. Most of the best techniques of polygonal simplification are
based on Hughes Hoppe’s progressive mesh work [4]. One possible simplification
is achieved by continuously applying an edge collapse operator that merges two
edge vertices into one, thus removing that edge.

Vertex Remove. This operation takes two vertices u and v (the edge uv)
and “moves” or “collapses” one of them onto the other [5]. Figure 3 illustrates
a polygon before and after the application of the edge collapse operator. The
following steps explain how this operation is implemented:

1. Remove any triangles that have both u and v as vertices (i.e., remove trian-
gles on the edge uv).

2. Update the remaining triangles that use u as a vertex to use v instead.
3. Remove vertex u.

The removal process is repeated until the target polygon count is reached.



640 Carla Penedo et al.

Selection of the Next Vertex to Collapse. When selecting a vertex to col-
lapse, the basic idea is to preserve (as far as possible) the global appearance of an
object, trying to cause the smallest visual change to it. Despite the considerable
number of algorithms that determine the “minimal cost” vertex to collapse at
each step, they are, in general, too elaborate to implement. A simple approach
for this selection process may be to just consider the cost of collapsing an edge
defined as its length multiplied by a curvature term (the latter having half the
weight of the former in this calculation). The curvature term for collapsing an
edge uv is therefore determined by comparing dot products of face normals in
order to find the triangle adjacent to u that faces furthest away from the other
triangles that are along uv. Equation (1) expresses this idea, where Tu is the set
of triangles that contain u, Tuv refers the set of triangles that contain both u
and v, and fN and nN are the face normals of triangles f and n.

cost(u, v) = ‖u − v‖ × max
f∈Tu

{
min

n∈Tuv

{
1 − fN · nN

2

}}
(1)

The algorithm described throughout this section can be summed up as fol-
lows: while the current polygon count is greater than the desired target number,
select a candidate edge to collapse (according to its associated cost) and apply
the edge collapse operator to it.

Player Simplification. In practice, the polygon simplification algorithm pro-
duces very reasonable results. Our soccer player originally contained 347 vertices
and 639 triangles which, after the application of this algorithm, were reduced to
68 vertices and 130 triangles. These two versions correspond to the highest and
the lowest level of detail used in RA3DM. The former is used when the camera
is closer to the player while the other is selected if it is far away. In between
we consider intermediate levels obtained by the continuous variation of the total
number of vertices used to draw the player. In this way, it is possible to avoid
an undesired effect, named popping, that can be seen as an abrupt change in the
detail present in the object’s shape caused by the considerable difference in the
number of vertices.

3.3 Cameras

There are three distinct types of views into the field available to the end user:
static, user controlled and automatic cameras. A view similar to the display of
the official 2D soccer monitor (i.e., aerial view, pointing towards the center of
the soccer field) is available, as well as a completely custom camera that the user
controls using the mouse and the keyboard. Next we describe two of the most
interesting automatic cameras:

TV camera has a fixed position slightly raised on one side of the field and
constantly follows the ball with a small delay delivering image sequences
similar to those captured by a human camera operator. This camera zooms



RoboCup Advanced 3D Monitor 641

in and out as the subject being shot approaches and moves away from the
camera;

Event-driven cinematic camera consists of a series of cameras placed in
some strategic points of the 3D scene. Some of these cameras have a fixed
position whereas others are capable of some dynamic motion. At any given
point in time during the simulation of a soccer match, each one of these pre-
defined cameras will be assigned a subjective value representing the quality
and usefulness of the image sequence provided by it. The measurement of
this value and its assignment to the cameras is taken care of by a director
agent through the use of some heuristics. This agent also decides how to
point the cameras to the scene and how much zoom to use. After this eval-
uation, an editor agent in charge of producing the sequence of images seen
on screen will decide (based on the values produced by the director) which
camera to choose and for how long. Different director and editor agents can
be defined. By changing the way the director rates the footage and the way
the editor chooses among them will effectively change the resulting cine-
matic style, thus giving a totally different experience to the user [6]. For
example, if two players are fighting for the ball in the midfield, the director
may choose to zoom in one of the closest cameras to make a close-up and
give that camera a high priority value. The editor will then be able to use
that footage, always taking into account the minimum and maximum time
intervals allowed between cuts.

4 Applications

In this section we describe the implementation of sensor fusion and Markov
localization algorithms in the framework of the RoboCup Simulation League.
Our 3D monitor was a valuable resource allowing the visualization of the player’s
internal state and the gathering of experimental results. RA3DM includes a low
quality viewing mode that was extensively used in order to facilitate the data
observations.

4.1 Sensor Fusion

Sharing information among robots increases the effective instantaneous percep-
tion of the environment, allowing accurate modeling. Two known sensor fusion
approaches were tested in the RoboCup Simulation League: the Stroupe and the
Durrant-Whyte methods [7].

To perform sensor fusion the soccer server’s noise model is approximated by
a two-dimensional Gaussian distribution N(µ, CL), where µ is a vector repre-
senting the calculated position of the object and CL is a diagonal matrix that
denotes the variance along both axis (see Fig. 4). The variance along the axis
that points from the robot towards the observed object (σmaj) is calculated
based on the quantization made by the soccer server. Thus, σmin represents the
variance along the perpendicular axis and is based on the maximum error in
angle that an observation can have.



642 Carla Penedo et al.

θ

σ



RoboCup Advanced 3D Monitor 643

An implementation of the Markov localization method was applied to self-localize
a player in the RoboCup Simulation League [8].

At any point in time, Markov localization maintains a position probabil-
ity density (belief) over the entire configuration space of the robot based on
an incoming stream of sensor data (observations) and an outcome of actions.
This probability framework employs multi-modal distributions for the robot be-
lief enabling the representation of ambiguous situations by considering multiple
hypotheses in parallel.

This particular implementation of Markov localization uses a fine-grained
geometric discretization to represent the position of the robot. A position prob-
ability grid is three-dimensional, as each possible location l is defined by a tuple
〈x, y, θ〉 representing the robot position and orientation. The principle of the
position probability grid approach ascribes to each cell of the grid the proba-
bility of the robot being located in that cell, denoted by Bel(Lt = l). Figure 6
illustrates the structure of a position probability grid and the correspondence
between grid and field positions in the RoboCup simulation system. Each layer
of the grid assigns all possible poses of the robot with the same orientation.

Fig. 6. Transformation of grid coordinates into field coordinates.

When used as a debugger, RA3DM enables us to inspect the internal state of
a player (more precisely, its position probability grid) in real time. Figure 7 (b)
shows a screen capture of RA3DM while it was monitoring the goalkeeper player.
The cells with a belief value above a certain threshold are drawn in a shade of
blue and the one with the highest belief at each time step is distinguished with
a red color.

Experimental results show that, generally, the Markov localization method
keeps the robot position error bound within very reasonable limits. For example,
we obtained a medium error of 2.44 m for a grid of cells of 2.63 × 1.70 meters.

5 Conclusions and Future Work

Watching simulated soccer games on a realistic 3D monitor such as RA3DM is
far more motivating than on the traditional 2D monitor. We showed that the
RA3DM is a powerful tool that can be used as an aid for testing and debugging
of prototype applications that may later be employed on real robots. Another
possible application that we are considering consists of using RA3DM to simulate

Grid Environment

θ

Bel(Lt = l)



644 Carla Penedo et al.

(a) (b)

Fig. 7. (a) Ball localization using Stroupe’s sensor fusion method. (b) Goalkeeper self
localization using Markov estimation.

humanoid stereo vision. This way, the soccer playing agents could receive images
supplied by RA3DM instead of the visual perceptions in the form of strings
provided by the soccer server.

There are some features we would like to add in the future, such as sound
effects, the recording of parts of a game to instant replay them later on and the
addition of a commentary system.

References

1. Noda, I., et al.: RoboCup Soccer Server: Users Manual for Soccer Server Version
7.07 and later. (2001)

2. Barney, B.M.: POSIX threads programming (2001) Lawrence Livermore National
Laboratory.

3. Krus, M., Bourdot, P., Guisnel, F., Thibault, G.: Levels of detail & polygonal
simplification. ACM Crossroads 3.4 (1997) 13–19

4. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimiza-
tion. Computer Graphics 27 (1993) 19–26

5. Melax, S.: A simple, fast, and effective polygon reduction algorithm. Game Devel-
oper Magazine (1998) 44–49

6. Hawkins, B.: Creating an event-driven cinematic camera. Game Developer (2002)
7. Nunes, P., Marcelino, P., Lima, P., Ribeiro, M.I.: Improving object localization

through sensor fusion applied to soccer robots. In: Proc. of the Robótica 2003
Portuguese Scientific Meeting, Lisbon (2003) 51–58

8. Penedo, C., Pavão, J., Lima, P., Ribeiro, M.I.: Markov localization in the RoboCup
Simulation League. In: Proc. of the Robótica 2003 Portuguese Scientific Meeting,
Lisbon (2003) 13–20


	1 Introduction
	2 SystemOverview
	3 Implementation
	3.1 Player
	3.2 Levels of Detail
	3.3 Cameras

	4 Applications
	4.1 Sensor Fusion
	4.2 Markov Localization

	5 Conclusions and Future Work
	References



