
Monotonic Abstraction-Refinement for CTL

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel,
{sharonsh,orna}@cs.technion.ac.il

Abstract. The goal of this work is to improve the efficiency and effectiveness of
the abstraction-refinement framework for CTL over the 3-valued semantics. We
start by proposing a symbolic (BDD-based) approach for this framework. Next,
we generalize the definition of abstract models in order to provide a monotonic
abstraction-refinement framework. To do so, we introduce the notion of hyper-
transitions. For a given set of abstract states, this results in a more precise abstract
model in which more CTL formulae can be proved or disproved.
We suggest an automatic construction of an initial abstract model and its suc-
cessive refined models. We complete the framework by adjusting the BDD-based
approach to the new monotonic framework. Thus, we obtain a monotonic, sym-
bolic framework that is suitable for both verification and falsification of full CTL.

1 Introduction

The goal of this work is to improve the efficiency and effectiveness of the abstraction-
refinement framework for CTL over the 3-valued semantics. We first suggest a symbolic
(BDD-based) approach for this framework. Next, we generalize the definition of abstract
models in order to provide a monotonic abstraction-refinement framework. The new
definition results in more precise abstract models in which more CTL formulae can be
proved or disproved. Finally, we adjust the BDD-based approach to the new monotonic
framework.

Abstraction is one of the most successful techniques for fighting the state explosion
problem in model checking [5]. Abstractions hide some of the details of the verified
system, thus result in a smaller model. Usually, they are designed to be conservative for
true, meaning that if a formula is true of the abstract model then it is also true of the
concrete (precise) model of the system.

The branching-time logic CTL [5] is widely used in model checking. In the context
of abstraction, often only the universal fragment of CTL, ACTL, is considered. Over-
approximated abstract models are used for verification of ACTL formulae while under-
approximated abstract models are used for their refutation.

Abstractions designed for full CTL have the advantage of handling both verification
and refutation on the same abstract model. A greater advantage is obtained if CTL is
interpreted w.r.t. the 3-valued semantics [11]. This semantics evaluates a formula to
either true, false or indefinite. Abstract models can then be designed to be conservative
for both true and false. Only if the value of a formula in the abstract model is indefinite,

K. Jensen and A. Podelski (Eds.): TACAS 2004, LNCS 2988, pp. 546–560, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Monotonic Abstraction-Refinement for CTL 547

its value in the concrete model is unknown. In this case, a refinement is needed in order
to make the abstract model more precise.

The first result of this paper is a BDD-based approach for this framework. We use a
symbolic model checking for CTL with the 3-valued semantics [3]. If the model checking
results in an indefinite value, we find a cause for this result and derive from it a criterion for
refinement. Previous works [15,18,19] suggested abstraction-refinement mechanisms for
various branching time logics over 2-valued semantics, for specific abstractions. In [20]
the 3-valued semantics is considered.Yet, their abstraction-refinement is based on games
and is not suitable for a symbolic evaluation.

In order to motivate our next result we need a more detailed description of abstract
models for CTL. Typically, each state of an abstract model represents a set of states of the
concrete model. In order to be conservative for CTL the abstract model should contain
both may transitions (

may−→) which over-approximate transitions of the concrete model,
and must transitions (

must−→), which under-approximate the concrete transitions [14,8].
In our work we use abstract models which are called Kripke Modal Transition Systems
(KMTS) [12,10]. In KMTSs, for every abstract states sa and s′

a, sa
may−→ s′

a iff there exists
a concrete state sc represented by sa and there exists a concrete state s′

c represented by
s′

a such that sc → s′
c (∃∃-condition). sa

must−→ s′
a iff for all sc represented by sa there

exists s′
c represented by s′

a such that sc → s′
c (∀∃-condition).

Refinements “split” abstract states so that the new, refined states represent smaller
subsets of concrete states. Several abstraction-refinement frameworks have been sug-
gested for ACTL and LTL with the 2-valued semantics, where abstractions are conserva-
tive for true [13,4,1,6,2]. There, the refined model obtained from splitting abstract states
has less (may) transitions and is therefore more precise in the sense that it satisfies more
properties of the concrete model. We call such a refinement monotonic.

For full CTL with the 3-valued semantics, an abstraction-refinement framework has
been suggested in [20]. For such a framework, one would expect that after splitting, the
number of must transitions will increase as the number of may transitions decreases.
Unfortunately, this is not the case. Once a state s′

a is split, the ∀∃-condition that allowed
sa

must−→ s′
a might not hold any more. As a result, the refinement is not monotonic since

CTL formulae that had a definite value in the unrefined model may become indefinite.
In [9] this problem has been addressed. They suggest to keep copies of the unrefined

states in the refined model together with the refined ones. This avoids the loss of must
transitions and guarantees monotonicity. Yet, this solution is not sufficient because the
old information is still expressed w.r.t. the “unrefined” states and the new information
(achieved by the refinement) is expressed w.r.t. the refined states.As a result the additional
precision that the refinement provides cannot be combined with the old information. This
is discussed extensively in Section 4.1.

In this work we suggest a different monotonic abstraction-refinement framework
which overcomes this problem. For a given set of abstract states, our approach results
in a more precise abstract model in which more CTL formulae have a definite value.
Moreover, our approach avoids the need to hold copies of the unrefined states.

Inspired by [17], we define a generalized KMTS (GKMTS) in which must transitions
are replaced by must hyper-transitions, which connect a single state sa to a set of statesA.
A GKMTS includes sa

must−→ A iff for all sc represented by sa there exists s′
c represented

548 S. Shoham and O. Grumberg

by some s′
a ∈ A such that sc → s′

c. This weakens the ∀∃-condition by allowing the
resulting states s′

c to be “scattered” in several abstract states.
In general, the number of must hyper-transitions might be exponential in the number

of states in the abstract model. In practice, optimizations can be applied in order to
reduce their number. We suggest an automatic construction of an initial GKMTS and its
successive refined models in a way that in many cases avoids the exponential blowup.

In order to complete our framework, we also adjust for GKMTSs the 3-valued sym-
bolic model checking and the refinement suggested above for KMTSs. Thus, we obtain
a monotonic, symbolic framework that is suitable for both verification and falsification
of full CTL.

Organization. In Section 2 we give some background for abstractions and the 3-valued
semantics. We also present a symbolic 3-valued model checking algorithm. In Section 3
we suggest a refinement mechanism that fits the symbolic 3-valued model checker. In
Section 4 we present generalized KMTSs and their use as abstract models. Finally, we
present our monotonic abstraction-refinement framework in Section 5.

2 Preliminaries

Let AP be a finite set of atomic propositions. In this paper we consider the logic CTL,
defined as follows: ϕ ::= tt | p | ¬ϕ | ϕ ∧ ϕ | Aψ where p ∈ AP , and ψ is a path
formula defined by ψ ::= Xϕ | ϕUϕ | ϕV ϕ. Other operators can be expressed in the
usual manner [5]. Let Lit = AP ∪ {¬p : p ∈ AP}. The (concrete) semantics of CTL
formulae is defined w.r.t. a Kripke structure M = (S, S0,→, L), where S is a finite set
of states, S0 ⊆ S is a set of initial states, →⊆ S×S is a transition relation, which must
be total and L : S → 2Lit is a labeling function, such that for every state s and every
p ∈ AP , p ∈ L(s) iff ¬p �∈ L(s). A path in M from s is an infinite sequence of states,
π = s0, s1, . . . such that s = s0 and ∀i ≥ 0, si → si+1.

[(M, s) |= ϕ] = tt (= ff) means that the CTL formula ϕ is true (false) in the state
s of the Kripke structure M . [(M,π) |= ψ] = tt (= ff) has the same meaning for path
formulae over paths (see [5]). M satisfies ϕ, denoted [M |= ϕ] = tt, if ∀s0 ∈ S0 :
[(M, s0) |= ϕ] = tt. Otherwise, M refutes ϕ, denoted [M |= ϕ] = ff.

2.1 Abstraction

We use Kripke Modal Transition Systems [12,10] as abstract models that preserve CTL.

Definition 1. A Kripke Modal Transition System (KMTS) is a tuple M = (S, S0,
must−→

,
may−→, L), whereS,S0 are defined as before,

must−→⊆ S×S and
may−→⊆ S×S are transition

relations such that
may−→ is total and

must−→⊆ may−→1, and L : S → 2Lit is a labeling function
such that for every state s and p ∈ AP , at most one of p and ¬p is in L(s).
A finite or infinite sequence of states π = s0, s1, . . . is a path in M from s if s = s0 and
for every two consecutive states si, si+1 in the sequence, si

may−→ si+1. π is a must (may)
path if it is maximal and for every si, si+1 we have that si

must−→ si+1 (si
may−→ si+1). The

maximality is in the sense that π cannot be extended by any transition of the same type.

1 The requirement that
must−→⊆ may−→ is not essential for the purposes of this paper.

Monotonic Abstraction-Refinement for CTL 549

Note, that a Kripke structure can be viewed as a KMTS where → =
must−→= may−→, and

for each state s and p ∈ AP , we have that exactly one of p and ¬p is in L(s).

Construction of an Abstract KMTS. Let MC = (SC , S0C ,→, LC) be a (concrete)
Kripke structure. Let SA be a set of abstract states and γ : SA → 2SC a total concretiza-
tion function that maps each abstract state to the set of concrete states it represents.

An abstract model, in the form of a KMTSMA = (SA, S0A,
must−→,

may−→, LA), can then
be defined as follows. The set of initial abstract states S0A is built such that s0a ∈ S0A

iff ∃s0c ∈ S0C : sc ∈ γ(s0a). The “if” is needed in order to preserve truth from MA to
MC , while “only if” is needed to preserve falsity.

The labeling of an abstract state is defined in accord with the labeling of all the
concrete states it represents. For l ∈ Lit : l ∈ LA(sa) only if ∀sc ∈ γ(sa) : l ∈ LC(sc).
It is thus possible that neither p nor ¬p are in LA(sa). If the “only if" is replaced by
“iff", then we say that the abstract labeling function is exact.

The may-transitions in an abstract model are computed such that every concrete
transition between two states is represented by them: if ∃sc ∈ γ(sa) and ∃s′

c ∈ γ(s′
a)

such that sc → s′
c, then there exists a may transition sa

may−→ s′
a. Note that it is possible

that there are additional may transitions as well. The must-transitions, on the other
hand, represent concrete transitions that are common to all the concrete states that are
represented by the source abstract state: a must transition sa

must−→ s′
a exists only if

∀sc ∈ γ(sa) ∃s′
c ∈ γ(s′

a) such that sc → s′
c. Note that it is possible that there are less

must transitions than allowed by this rule. That is, the may and must transitions do not
have to be exact, as long as they maintain these conditions.

Other constructions of abstract models can be used as well. For example, if γ is a part
of a Galois Connection [7] (γ : SA → 2SC , α : 2SC → SA) from (2SC ,⊆) to (SA,
),
then an abstract model can be constructed as described in [8] within the framework of
Abstract Interpretation [7,16,8]. It is then not guaranteed that

must−→⊆ may−→.

3-Valued Semantics. [12] defines the 3-valued semantics [(M, s) |=3= ϕ] of CTL over
KMTSs, and similarly [(M,π) |=3= ψ] for path formulae, preserving both satisfaction
(tt) and refutation (ff) from the abstract to the concrete model. Yet, a new truth value, ⊥,
is introduced, meaning that the truth value over the concrete model is unknown and can
be either tt or ff. Intuitively, in order to preseve CTL, we examine truth of a formula of
the form Aψ along all the may paths. Its falsity is shown by a single must path.

Definition 2 (Precision Preorder). Let M1, M2 be two KMTSs over states S1, S2 and
let s1 ∈ S1 and s2 ∈ S2. We say that (M1, s1) is more precise than (M2, s2), denoted
(M1, s1) ≤CTL (M2, s2), if for every ϕ in CTL: [(M2, s2) |=3= ϕ] �=⊥ ⇒ [(M1, s1) |=

3= ϕ] = [(M2, s2) |=3= ϕ]. Similarly, we say that M1 is more precise than M2, denoted
M1 ≤CTL M2, if for every ϕ in CTL: [M2 |=3= ϕ] �=⊥ ⇒ [M1 |=3= ϕ] = [M2 |=3= ϕ].

The following definition formalizes the relation between two KMTSs that guarantees
preservation of CTL formulae w.r.t. the 3-valued semantics.

Definition 3 (Mixed Simulation). [8,10] Let M1 = (S1, S01,
must−→1,

may−→1, L1) and
M2 = (S2, S02,

must−→2,
may−→2, L2) be two KMTSs. We say that H ⊆ S1 × S2 is a mixed

simulation from M1 to M2 if (s1, s2) ∈ H implies the following:

550 S. Shoham and O. Grumberg

1. L2(s2) ⊆ L1(s1).
2. if s1

may−→1 s
′
1, then there is some s′

2 ∈ S2 s.t. s2
may−→2 s

′
2 and (s′

1, s
′
2) ∈ H .

3. if s2
must−→2 s

′
2, then there is some s′

1 ∈ S1 s.t. s1
must−→1 s

′
1 and (s′

1, s
′
2) ∈ H .

If there is a mixed simulation H such that ∀s1 ∈ S01 ∃s2 ∈ S02 : (s1, s2) ∈ H , and
∀s2 ∈ S02 ∃s1 ∈ S01 : (s1, s2) ∈ H , then M2 is greater by the mixed simulation
relation than M1, denoted M1 � M2.

In particular, Definition 3 can be applied to a (concrete) Kripke structure MC and an
(abstract) KMTS MA constructed based on SA, γ as described above. By doing so, we
get thatMA is greater by the mixed simulation relation thanMC . The mixed simulation
H ⊆ SC ×SA can be induced by γ as follows: (sc, sa) ∈ H iff sc ∈ γ(sa). Preservation
of CTL formulae is then guaranteed by the following theorem.

Theorem 1. [10] Let H ⊆ S1 × S2 be the mixed simulation relation from a KMTS M1
to a KMTS M2. Then for every (s1, s2) ∈ H we have that (M1, s1) ≤CTL (M2, s2). We
conclude that M1 ≤CTL M2.

Note that if the KMTS M is in fact a Kripke structure, then for every CTL formula
we have that [(M, s) |=3= ϕ] = [(M, s) |= ϕ]. Therefore, Theorem 1 also describes
the relation between the 3-valued semantics over an abstract KMTS and the concrete
semantics over the corresponding concrete model.

Exact KMTS. If the labeling function and transitions of the constructed abstract model
MA are exact, then we get the exact abstract model. This model is most precise compared
to all the KMTSs that are constructed as described above w.r.t. the given SA, γ.

2.2 Symbolic 3-Valued Model Checking

[3] suggests a symbolic multi-valued model checking algorithm for CTL. We rephrase
their algorithm for the special case of the 3-valued semantics, discussed in our work.

LetM be a KMTS andϕ a CTL formula. For v ∈ {tt, ff,⊥} we denote by [|ϕ|]v the set
of states inM for which the truth value of ϕ is v. That is, s ∈ [|ϕ|]v iff [(M, s) |=3= ϕ] = v.
Model checking is done by computing these sets for the desired property ϕ. If all the
initial states of M are in [|ϕ|]tt, then [M |=3= ϕ] = tt. If at least one initial state is in [|ϕ|]ff,

then [M |=3= ϕ] = ff, and otherwise [M |=3= ϕ] =⊥.
The algorithm that computes the sets [|ϕ|]tt and [|ϕ|]ff uses the following notation. For

Z ⊆ S : ax(Z) = {s | ∀s′ : s may−→ s′ ⇒ Z(s′)} and ex(Z) = {s | ∃s′ : s must−→ s′∧Z(s′)}.
The algorithm is as follows.

[|tt|]tt = S [|tt|]ff = ∅
[|p|]tt = {s ∈ S : p ∈ L(s)} [|p|]ff = {s ∈ S : ¬p ∈ L(s)} for p ∈ AP
[|¬ϕ1|]tt = [|ϕ1|]ff [|¬ϕ1|]ff = [|ϕ1|]tt
[|ϕ1 ∧ ϕ2|]tt = [|ϕ1|]tt ∩ [|ϕ2|]tt [|ϕ1 ∧ ϕ2|]ff = [|ϕ1|]ff ∪ [|ϕ2|]ff
[|AXϕ1|]tt = ax([|ϕ1|]tt) [|AXϕ1|]ff = ex([|ϕ1|]ff)
[|A(ϕ1Uϕ2)|]tt = µZ.[|ϕ2|]tt ∪ ([|ϕ1|]tt ∩ ax(Z))
[|A(ϕ1Uϕ2)|]ff = νZ.[|ϕ2|]ff ∩ ([|ϕ1|]ff ∪ ex(Z))
[|A(ϕ1V ϕ2)|]tt = νZ.[|ϕ2|]tt ∩ ([|ϕ1|]tt ∪ ax(Z))
[|A(ϕ1V ϕ2)|]ff = µZ.[|ϕ2|]ff ∪ ([|ϕ1|]ff ∩ ex(Z))

Furthermore, for every CTL formula ϕ, [|ϕ|]⊥ is computed as S \ ([|ϕ|]tt ∪ [|ϕ|]ff).

Monotonic Abstraction-Refinement for CTL 551

The fixpoint operators µZ.τ(Z) and νZ.τ(Z) are computed as follows. For Z ⊆ S
we define τ i(Z) to be the ith application of τ to Z. Formally, τ0(Z) = Z and for every
i > 0: τ i+1(Z) = τ(τ i(Z)). Since the transformers (τ ’s) used in the fixpoint definitions
of AU and AV are monotonic and continuous (similarly to [5]), then they have a least
fixpoint (µ) and a greatest fixpoint (ν) [21]. Furthermore, µZ.τ(Z) can be computed
by

⋃
i τ

i(∅) and νZ.τ(Z) can be computed by
⋂

i τ
i(S).

3 3-Valued Refinement

Model checking of an abstract KMTS w.r.t. the 3-valued semantics may end with an
indefinite result, raising the need for a refinement of the abstract model. In this section
we suggest a refinement mechanism that fits the use of the symbolic 3-valued model
checking algorithm presented above. This results in a symbolic 3-valued abstraction-
refinement algorithm for CTL. The suggested refinement follows similar lines as the
refinement of [20], where a game-based model checking was used.

We start with some definitions and observations regarding the symbolic 3-valued
model checking algorithm. For ϕ ∈ {A(ϕ1Uϕ2), A(ϕ1V ϕ2)} and for v ∈ {tt, ff} we
denote by [|ϕ|]iv the set of states at the beginning of the ith iteration of the fixpoint
computation of [|ϕ|]v (i ≥ 0). Furthermore, for ⊥, we define [|ϕ|]i⊥ to be the set S \
([|ϕ|]itt ∪ [|ϕ|]iff). Note that the sets [|ϕ|]i⊥ are not necessarily monotonic and that [|ϕ|]⊥ is
not computed by a fixpoint computation.

For every state s ∈ [|ϕ|]⊥ we define en(s) to be the number of the iteration where s
was first added to [|ϕ|]i⊥. Note that [|ϕ|]0⊥ = ∅, therefore en(s) is always ≥ 1. Also note
that en(s) can be computed from the intermediate results of the fixpoint computation
when needed, without having to remember it for every state. We also have the following.
Lemma 1. If s ∈ [|ϕ|]⊥ then ∀i ≥ en(s): s ∈ [|ϕ|]i⊥. Furthermore, if ϕ = A(ϕ1Uϕ2)
then ∀i < en(s): s ∈ [|ϕ|]iff and if ϕ = A(ϕ1V ϕ2) then ∀i < en(s): s ∈ [|ϕ|]itt.

We now describe our refinement. As in most cases, our refinement consists of two
parts. First, we choose a criterion that tells us how to split the abstract states. We then
construct the refined abstract model, using the refined abstract state space.

Suppose the model checking result is ⊥ and refinement is needed. This means that
there exists at least one initial state s0 for which the truth value of ϕ is ⊥, i.e. s0 ∈ [|ϕ|]⊥.
Our goal is to find and eliminate at least one of the causes of the indefinite result. We
first search for a failure state. This is a state s such that (1) the truth value of some
subformula ϕ′ of ϕ in s is ⊥; (2) the indefinite truth value of ϕ′ in s affects the indefinite
value of ϕ in s0; and (3) the indefinite value of ϕ′ in s can be discarded by splitting s.
The latter requirement means that the state s itself is responsible for introducing (some)
uncertainty. The other requirements demand that this uncertainty is relevant to the model
checking result. A failure state is found by applying the following recursive algorithm
on s0 and ϕ (where s0 ∈ [|ϕ|]⊥).

Given a state s and a formula ϕ′ s.t. s ∈ [|ϕ′[|⊥, algorithm FindFailure returns a
failure state and either an atomic proposition or a may transition as the cause for failure.

Algorithm FindFailure (s, ϕ′)

– If ϕ′ = p ∈ AP : return s and p as the cause.
– If ϕ′ = ¬ϕ1: call FindFailure on s and ϕ1 (we know that s ∈ [|ϕ1|]⊥).

552 S. Shoham and O. Grumberg

– Ifϕ′ = ϕ1∧ϕ2: call FindFailure on s andϕi for some i ∈ {1, 2} such that s ∈ [|ϕi|]⊥
(such i must exist).

– If ϕ′ = AXϕ1:
• If there exists s1 ∈ S such that s

may−→ s1 and s1 ∈ [|ϕ1|]ff then return s and
s

may−→ s1 as the cause.
• Otherwise, call FindFailure on s1 and ϕ1 such that s

may−→ s1 and s1 ∈ [|ϕ1|]⊥
(such s1 must exist).

– If ϕ′ = A(ϕ1Uϕ2) or A(ϕ1V ϕ2):
• If s ∈ [|ϕ2|]⊥ then call FindFailure on s and ϕ2.
• Otherwise, if s ∈ [|ϕ1|]⊥ then call FindFailure on s and ϕ1.
• Otherwise, if there exists s1 ∈ S such that s

may−→ s1 and s1 ∈ [|ϕ′|]ff then return
s and s

may−→ s1 as the cause.
• Otherwise, if there exists s1 ∈ S such that s

may−→ s1 and s1 ∈ [|ϕ′|]⊥ and
en(s1) < en(s) then call FindFailure on s1 and ϕ.

• Otherwise, choose s1 ∈ S such that s
may−→ s1 and s1 ∈ [|ϕ′|]⊥ (and en(s1) ≥

en(s)) and return s and s
may−→ s1 as the cause (such s1 must exist).

Note that the order of the “if” statements in the algorithm determines the failure state
returned by the algorithm. Different heuristics can be applied regarding their order.

Theorem 2. The algorithm is well defined, meaning that all the possible cases are
handled and the algorithm can always proceed. Furthermore, it always terminates.

Intuitively, at every moment FindFailure looks for a reason for the indefinite value of
the current formula ϕ′ in the current state s. If s itself is not responsible for introducing
the indefinite value, then the algorithm greedily continues with a state and formula that
affect the indefinite value of ϕ′ in s. This continues until a failure state is reached.

Theorem 3. Let sbe the failure state returned byFindFailure. Then the cause returned
by the algorithm is either (1) p ∈ AP such that neither p nor ¬p label s; or (2) an
outgoing may transition of s which is not a must transition.

In the first possibility described by Theorem 3, the labeling of s causes it to be in [|p|]⊥,
thus it introduces an uncertainty and is considered the cause for failure. To demonstrate
why the second case is viewed as a cause for failure, consider a formula Aϕ1 which is
indefinite in a state s. If s has an outgoing may transition to a state s1 where the value of
ϕ1 is ff, then s is considered a failure state with the may transition (which is not a must
transition, by Theorem 3) being the cause. This is because changing the may transition
to a must transition will make the value of AXϕ1 in s definite (ff). Alternatively, if all
such transitions are eliminated, it will also make the value of AXϕ1 in s definite (tt).

A more complicated example of a may transition being the cause for the failure is
when ϕ′ is either A(ϕ1Uϕ2) or A(ϕ1V ϕ2) and (1) s �∈ [|ϕ2|]⊥, (2) s �∈ [|ϕ1|]⊥, (3) there
is no s1 ∈ S such that s

may−→ s1 and s1 ∈ [|ϕ′|]ff and (4) there is no s1 ∈ S such that
s

may−→ s1 and s1 ∈ [|ϕ′|]⊥ and en(s1) < en(s). In this case the algorithm considers s
to be a failure state and the cause is a may transition (which is not a must transition, by
Theorem 3) to a state s1 such that s1 ∈ [|ϕ′|]⊥ and en(s1) ≥ en(s). To understand why
this is a failure state, we focus on the case where ϕ′ = A(ϕ1Uϕ2). By Lemma 1, at
iteration en(s) (≥ 1), s moved from [|ϕ′|]en(s)−1

ff to [|ϕ′|]en(s)
⊥ . By the description of the

fixpoint computation of [|ϕ′|]ff we conclude that s �∈ [|ϕ2|]ff∩([|ϕ1|]ff∪ex([|ϕ′|]en(s)−1
ff)).

Monotonic Abstraction-Refinement for CTL 553

Yet, by (1), s �∈ [|ϕ2|]⊥ and thus s ∈ [|ϕ2|]ff (otherwise it would be in [|ϕ2|]tt and thus

also in [|ϕ′|]tt, in contradiction). Moreover, since s1 is not yet in [|ϕ′|]en(s)−1
⊥ , then by

Lemma 1 it must be at [|ϕ′|]en(s)−1
ff at that time. We consider s

may−→ s1 to be the cause
for failure because if it was a must transition rather than a may transition then s would
be in the set ex([|ϕ′|]en(s)−1

ff) and therefore would remain in the set [|ϕ′|]en(s)
ff for at least

one more iteration. Thus it would have a better chance to remain in the set [|ϕ′|]ff until
fixpoint is reached, changing the indefinite value of ϕ′ in s to a definite one.

Once we are given a failure state s and a corresponding cause for failure, we guide the
refinement to discard the cause for failure in the hope for changing the model checking
result to a definite one. This is done as in [20], where the failure information is analyzed
and used to determine how the set of concrete states represented by s should be split.
A criterion for splitting all abstract states can then be found by known techniques,
depending on the abstraction used (e.g. [6,4]).

Having defined the refinement, we now have a symbolic abstraction-refinement al-
gorithm for CTL that uses the 3-valued semantics. In the next sections we will show
how this algorithm can be improved, by using a new notion of abstract models.

4 Generalized Abstract Models

In this section we suggest the notion of a generalized KMTS and its use as an abstract
model which preserves CTL. This notion allows better precision of the abstraction.

4.1 Motivation

The main flaw of using KMTSs as abstract models is in the must transitions, which make
the refinement not necessarily monotonic w.r.t. the precision preorder. The following
example demonstrates the problem. We consider the traditional refinement that is based
on splitting the states of the (abstract) model.

Example 1. Consider the following program P .
P :: input: x > 0

pc=1: if x > 5 then x := x+ 1 else x := x+ 2 fi
pc=2: while true do if odd(x) then x := −1 else x := x+ 1 fi od

Suppose we are interested in checking the property ϕ = EF (x ≤ 0), which is
clearly satisfied by this program. The concrete model of the program is an infinite state
model. Suppose we start with an abstract model where concrete states that “agree" on the
predicate (x ≤ 0) (taken form the checked propertyϕ) are collapsed into a single abstract
state. Then we get the abstract model M described in Fig. 1(a), where the truth value of
ϕ is indefinite. Now, suppose we refine the model by adding the predicate odd(x). Then
we get the model M ′ described in Fig. 1(b), where we still cannot verify ϕ. Moreover,
we “lose" the must transition s0

must−→ s1 ofM . This transition has no corresponding must
transition in the refined model M ′. This loss causes the formula EX(x > 0) which is
true in M to become indefinite in M ′. Thus M ′ �≤CTL M .

The source of the problem is that when dealing with KMTSs as abstract models,
we are not guaranteed to have a mixed simulation between the refined abstract model

554 S. Shoham and O. Grumberg

M::

s�

s�

s�

pc � �

x � �x � �

pc � �

x � �

pc � �

M’::
s��

s��s��

s��

s��s��

x � �
odd�x�
x � �
pc � �

�odd�x�
x � �
pc � �

�odd�x�
x � �
pc � �

pc � �

odd�x�
x � �
pc � �

odd�x�

x � �

pc � �

�odd�x�

(a) (b)

Fig. 1. (a) An abstract model M describing the program P ; (b) The abstract model M ′ resulting
from its refinement. Outgoing transitions of s21 are omitted since they are irrelevant.

and the unrefined one, even if both are exact. This means that the refined abstract model
is not necessarily more precise than the unrefined one, even though each of its states
represents less concrete states. This is again demonstrated by Example 1. There, both
the initial states of M ′ cannot be matched with the (only) initial state s0 of M in a way
that fulfills the requirements of mixed simulation. This is because s0 has an outgoing
must transition whereas the initial states of M ′ have none. Consequently, M ′ �� M .

[9] suggests a refinement where the refined model is smaller by the mixed simulation
than the unrefined one. The solution there is basically to use both the new refined abstract
states and the old (unrefined) abstract states. This is a way of overcoming the problem that
the destination states of must transitions are being split, causing an undesired removal
of such transitions. This indeed prevents the loss of precision. Yet, this solution is not
sufficient, as demonstrated by the following example.

M" ::

s�
s��s�

s��

s� s�� s��

s��s��

�odd�x�

pc � �
x � �
odd�x�

pc � �
x � �
odd�x�

pc � �pc � �
x � �x � �

odd�x�

x � �
pc � �

�odd�x�
x � �
pc � �

�odd�x�
x � �

pc � �

x � �
pc � �

pc � �
x � �

Fig. 2. The model M ′′ achieved by applying refinement as suggested in [9] on M from Fig. 1(a).
Outgoing transitions of s21 are omitted since they are irrelevant, and so are additional outgoing
may transitions of the unrefined states (there are no additional outgoing must transitions for the
unrefined states).

Example 2. Fig. 2 presents the refined model M ′′ achieved by applying refinement as
suggested in [9] on the modelM from Fig. 1(a). Indeed, we now have a mixed simulation
relation from the refined modelM ′′ to the unrefined modelM , by simply matching each
state with itself or with its super-state, and the loss of precision is prevented. In particular,
the truth value of EX(x > 0) in M ′′ (unlike M ′ from Fig. 1(b)) is tt, since there are
must transitions from the initial states of M ′′ to the old unrefined state s1. Yet, in order

Monotonic Abstraction-Refinement for CTL 555

to verify the desired propertyϕ = EF (x ≤ 0), we need a must transition to (at least one
of) the new refined states s10 and s11 from which a state satisfying x ≤ 0 is definitely
reachable (this information was added by the refinement). However, the ∀∃ condition is
still not fulfilled between these states. As a result we cannot benefit from the additional
precision that the refinement provides and ϕ is still indefinite.

This example demonstrates that even when using the refinement suggested in [9],
must transitions may still be removed in the “refined" part of the model, containing
the new refined states. As a result the additional precision that the refinement provides
cannot necessarily be combined with the old information.

4.2 Generalized KMTSs

Having understood the problems that result from the use of must transitions in their
current form, our goal here is to suggest an alternative that will allow to weaken the
∀∃ condition. Following the idea presented in [17] (in a slightly different context), we
suggest the use of hyper-transitions to describe must transitions.

Definition 4 (Hyper-Transition). Given a set of states S, a hyper-transition is a pair
(s,A) where s ∈ S and A ⊆ S is a nonempty set of states. Alternatively, a hyper-
transition from a state s is a nonempty set of (regular) transitions from s.

A (regular) transition (s, s′) can be viewed as a hyper-transition (s,A) whereA = {s′}.
Recall that a (regular) must transition exists from sa to s′

a in an abstract model only
if every state represented by sa has a (concrete) transition to some state represented by
s′

a. The purpose of the generalization is to allow such a concrete transition to exist to
some state represented by some (abstract) state in a set Aa (which plays the role of s′

a).
This can be achieved by using a hyper-transition. The hyper-transition will still perform
as a must transition in the sense that it will represent at least one concrete transition of
each concrete state represented by sa (maintaining the ∀∃ meaning).

Definition 5. A Generalized Kripke Modal Transition System (GKMTS) M = (S, S0,
must−→,

may−→, L) is a KMTS except that
must−→⊆ S×2S and for every (s,A) ∈ must−→ and s′ ∈ A,

we have that (s, s′) ∈ may−→ holds. Alternatively, viewing a hyper-transition (s,A) as a
set of (regular) transitions {(s, s′) : s′ ∈ A}, we require that (s,A) ⊆ may−→.

The latter requirement replaces the requirement that
must−→⊆ may−→ in a KMTS. A KMTS

can be viewed as a GKMTS where every must hyper-transition is a regular transition.
As before, a may path inM is an infinite path inM . However, instead of a must path

we now have a must hyper-path. To formally define it we use the following notation.

Definition 6. Let Π be a set of paths, then prefi(Π) denotes the set of all the prefixes
of length i of the paths in Π .

Definition 7 (Must Hyper-Path). A must hyper-path from a state s is a nonempty set
Π of paths from s, such that for every i ≥ 0:

prefi+1(Π) =
⋃

πi∈prefi(Π)

{πi · s : s ∈ Aπi
}

where for πi = s0, s1, . . . , si ∈ prefi(Π), the set Aπi
∈ 2S is either (1) the target

set of some must hyper-transition (si, Aπi), or (2) the empty set, ∅, if there is no must
hyper-transition exiting si.

556 S. Shoham and O. Grumberg

Recall that our intention is to use GKMTSs as abstract models. Considering this goal,
Definition 7 is aimed at maintaining the desired property that if there is a must hyper-
path Π from the abstract state sa then every concrete state represented by sa has a
corresponding concrete path, i.e. a path that is represented by some path in Π .

Note that a must hyper-path can include finite paths since Aπi
can be empty.

3-Valued Semantics. We generalize the 3-valued semantics of CTL for GKMTSs. The
semantics is defined similarly to the (regular) 3-valued semantics, except that the use of
must paths is replaced by must hyper-paths. In addition, for a (path) formula ψ of the
form Xϕ, ϕ1Uϕ2, or ϕ1V ϕ2 and a must hyper-path Π , we define

– [(M,Π) |=3= ψ] = tt (ff), iff for every π ∈ Π we have that [(M,π) |=3= ψ] = tt (ff)
– Otherwise, [(M,Π) |=3= ψ] =⊥.

Note that the (regular) 3-valued semantics handles finite must paths as well.
The notion of a mixed simulation relation, that guaranteed preservation of CTL

formulae between two KMTSs, is generalized as well when dealing with GKMTSs.

Definition 8 (Generalized Mixed Simulation). Let M1 = (S1, S01,
must−→1,

may−→1, L1)
and M2 = (S2, S02,

must−→2,
may−→2, L2), be two GKMTSs. We say that H ⊆ S1 × S2 is a

generalized mixed simulation from M1 to M2 if (s1, s2) ∈ H implies the following:

1. L2(s2) ⊆ L1(s1).
2. if s1

may−→1 s
′
1, then there is some s′

2 ∈ S2 s.t. s2
may−→2 s

′
2 and (s′

1, s
′
2) ∈ H .

3. if s2
must−→2 A2, then there is some A1 ⊆ S1 s.t. s1

must−→1 A1 and (A1, A2) ∈ H̃ ,
where (A1, A2) ∈ H̃ ⇔ ∀s′

1 ∈ A1 ∃s′
2 ∈ A2 : (s′

1, s
′
2) ∈ H .

If there is a generalized mixed simulationH such that ∀s1 ∈ S01 ∃s2 ∈ S02 : (s1, s2) ∈
H , and ∀s2 ∈ S02 ∃s1 ∈ S01 : (s1, s2) ∈ H , then M2 is greater by the generalized
mixed simulation relation than M1, denoted M1 � M2.

Theorem 4. LetH ⊆ S1×S2 be a generalized mixed simulation relation from a GKMTS
M1 to a GKMTSM2. Then for every (s1, s2) ∈ H we have that (M1, s1) ≤CTL (M2, s2).
We conclude that M1 ≤CTL M2.

Construction of an Abstract GKMTS. Given a concrete Kripke structureMC , a setSA

of abstract states and a concretization function γ, an abstract GKMTSMA is constructed
similarly to an abstract KMTS with the following difference: a must hyper-transition

sa
must−→ Aa exists only if ∀sc ∈ γ(sa) ∃s′

c ∈
(⋃

s′
a∈Aa

γ(s′
a)

)
: sc → s′

c.

This construction assures us thatMC � MA w.r.t. the generalized mixed simulation.
Therefore, Theorem 4 guarantees preservation of CTL from MA to MC .

The use of GKMTSs allows construction of abstract models that are more precise
than abstract models described as KMTSs, when using the same abstract state space and
the same concretization function. This is demonstrated by the following example.
Example 3. Consider the exact KMTSM described in Fig. 1(a) for the program P from
Example 1. The state s1 has no outgoing must transition. Therefore, even verification of
the simple formula EXEX(true) fails, although this formula holds in every concrete
model where the transition relation is total. Using a GKMTS (rather than a KMTS) as
an abstract model allows us to have a must hyper-transition from s1 to the set {s1, s2}.
Therefore we are now able to verify the tautological formula EXEX(true).

Monotonic Abstraction-Refinement for CTL 557

Exact GKMTS. As with KMTSs, the must hyper-transitions of a GKMTS do not have
to be exact, as long as they maintain the new ∀∃ condition. That is, it is possible to have
less must hyper-transitions than allowed by the ∀∃ rule. If all the components of the
GKMTS are exact, then we get the exact GKMTS, which is most precise compared to
all the GKMTSs that are constructed by the same rules based on the given SA, γ.

Any abstract GKMTS and in particular the exact GKMTS can be reduced without
damaging its precision, based on the following observation. Given two must hyper-
transitions sa

must−→ Aa and sa
must−→ A′

a, where Aa ⊂ A′
a, the transition sa

must−→ A′
a

can be discarded without sacrificing the precision of the GKMTS. Therefore, a possible
optimization would be to use only minimal must hyper-transitions whereAa is minimal.
This is similar to the approach of [8], where the destination state of a (regular) must
transition is chosen to be the smallest state w.r.t. a given partial order on SA.

In general, even when applying the suggested optimization, the number of must
hyper-transitions in the exact GKMTS might be exponential in the number of states. In
practice, computing all of them is computationally expensive and unreasonable. Later
on, we will suggest how to choose an initial set of must hyper-transitions and increase
it gradually in a way that in many cases avoids the exponential blowup.

5 Monotonic Abstraction-Refinement Framework

In this section our goal is to show how GKMTSs can be used in practice within an
abstraction-refinement framework designed for full CTL. We also show that using the
suggested framework allows us to achieve the important advantage of a monotonic
refinement when dealing with full CTL and not just a universal fragment of it.

We start by pointing out that using exact GKMTSs as abstract models solves the
problem of the non-monotonic refinement, described in Section 4.1.
Definition 9 (Split). Let SC be a set of concrete states, let SA and S′

A be two sets
of abstract states and let γ : SA → 2SC , γ′ : S′

A → 2SC be the corresponding
concretization functions. We say that (S′

A, γ
′) is a split of (SA, γ) iff there exists a (total)

function ρ : S′
A → SA such that for every sa ∈ SA:

(⋃
ρ(s′

a)=sa
γ′(s′

a)
)

= γ(sa).
Theorem 5. Let MC be a (concrete) Kripke structure and let MA, M ′

A be two exact
GKMTSs defined based on (SA, γ), (S′

A, γ
′) respectively, such that MC � MA and

MC � M ′
A. If (S′

A, γ
′) is a split of (SA, γ), then M ′

A � MA.
Theorem 5 claims that for exact GKMTSs, refinement that is based on splitting ab-

stract states is monotonic. This is true without the need to hold “copies" of the unrefined
abstract states. Yet, as claimed before, constructing the exact GKMTS is not practical.
Therefore, we suggest a compromise that fits well into the framework of abstraction-
refinement. We show how to construct an initial abstract GKMTS and how to construct a
refined abstract GKMTS (based on splitting abstract states). The construction is done in
a way that is on the one hand computationally efficient and on the other hand maintains a
monotonic refinement. The basic idea is as follows. In each iteration of the abstraction-
refinement we first construct an abstract KMTS, including its may transitions and its
(regular) must transitions. We then compute additional must hyper-transitions as de-
scribed below.

Construction of an Initial Abstract Model M0:
Given an initial set of abstract states S0 and a concretization function γ0:

558 S. Shoham and O. Grumberg

1. construct an abstract KMTS based on (S0, γ0).
2. for every abstract state, add a must hyper-transition which is the set of all its outgoing

may transitions.

Note that the set of all the outgoing may transitions of a state indeed fulfills the ∀∃
condition and thus can be added as a must hyper-transition. This results from the totality
of the concrete transition relation along with the property that every concrete transition
is represented by some may transition. We call such must hyper-transitions trivial.

Construction of a Refined Model Mi+1:
Suppose that model checking of the abstract model Mi resulted in an indefinite result
and refinement is needed. Let (Si+1, γi+1) be the split of (Si, γi), computed by some
kind of a refinement mechanism. Construct Mi+1 as follows.

1. construct an abstract KMTS based on (Si+1, γi+1).
2. for every must hyper-transition (including regular must transitions) si

must−→ Ai in
Mi and for every state si+1 ∈ Si+1 that is a sub-state of si ∈ Si, add to Mi+1 the
must hyper-transition

⋃
s′

i
∈Ai

{si+1
may−→ s′

i+1 : s′
i+1 is a sub-state of s′

i}.

3. [optional] discard from Mi+1 any must hyper-transition si+1
must−→ Ai+1 that is not

minimal, which means that there is si+1
must−→ A′

i+1 in Mi+1 where A′
i+1 ⊂ Ai+1.

The purpose of step 2 above is to avoid the loss of information from the previous
iteration, without paying an additional cost. To do so, we derive must hyper-transitions
inMi+1 from must hyper-transitions inMi, while avoiding the recomputation of the ∀∃
rule. Namely, if there is a must hyper-transition from si toAi inMi, then for every state
si+1 in Mi+1 that is a sub-state of si we add an outgoing must hyper-transition to the
set of all sub-states of states in Ai, excluding states to which si+1 does not have a may
transition. Clearly, given that si

must−→ Ai, we are guaranteed that the ∀∃ condition holds
for the corresponding hyper-transitions in Mi+1 as well. Note that this is not damaged
by excluding from the destination set states to which si+1 does not have a may transition.
This is because the lack of a may transition shows that the ∃∃ condition does not hold
between si+1 and the relevant states. Therefore they cannot contribute to the satisfaction
of the ∀∃ condition anyway and can be removed. By using this scheme, the construction
of the GKMTS requires no additional computational cost, compared to the construction
of a (regular) KMTS.

The purpose of step 3 is to reduce the GKMTS without sacrificing its precision. Note
that the reduction done in this step can be performed during step 2.

Theorem 6. Let MC be a concrete Kripke structure and let M0,M1, . . .Mi, . . . be the
abstract GKMTSs constructed as described above. Then
(1) for every i ≥ 0: MC � Mi; and (2) for every i ≥ 0: Mi+1 � Mi.

Theorem 6 first ensures that the construction of the initial and the refined GKMTSs
described above yields abstract models which are greater by the generalized mixed
simulation relation than the concrete model. Moreover, it ensures that although we do
not use the exact GKMTSs, we still have a generalized mixed simulation relation between
GKMTSs from different iterations in a monotonic fashion. This means that we do not
lose information during the refinement and we get “closer" to the concrete model.

Monotonic Abstraction-Refinement for CTL 559

Example 4. To demonstrate these ideas we return to the program P from Example 1
and see how the use of GKMTSs as described above affects it. The initial GKMTS
M0 is similar to the KMTS M from Fig. 1(a), with two additional trivial must hyper-
transitions from s1 and from s2 to {s1, s2}. Yet, the truth value of ϕ = EF (x ≤ 0)
remains indefinite in this model. When we construct the refined model M1 (based on
the addition of the predicate odd(x)), we get a GKMTS that is similar to the KMTS
M ′ from Fig. 1(b), but M1 also has additional must hyper-transitions. In particular, it
has two trivial must hyper-transitions from both of its initial states to the set {s10, s11}.
These must hyper-transitions are the refined version of the (regular) must transition from
s0 to s1 in M0: They exist because the initial states of M1 are sub-states of the initial
state s0 of M0 and the set {s10, s11} consists of all the sub-states of s1. Their existence
inM1 allows to verify ϕ, since due to them each of the initial states now has an outgoing
must hyper-path in which all the paths reach s20 where x ≤ 0.

Example 4 also demonstrates our advantage over [9] which stems from the fact that
our refinement does not use “copies" of the unrefined abstract states, unlike [9]. This
example shows that in our approach the old information (from the unrefined model) is
expressed with respect to the new refined states. Consequently, the old information and
the new information, for which refinement was needed, can be combined, resulting in a
better precision.

To conclude this section and make the suggested ideas complete, it remains to provide
(1) a model checking algorithm that evaluates CTL formulae over GKMTSs, using the
generalized 3-valued semantics; and (2) a suitable refinement mechanism to be applied
when the model checking result is indefinite. Using these two components within the
general framework suggested above, results in an actual abstraction-refinement frame-
work where the refinement is monotonic.

Model Checking. As a model checking algorithm we suggest a simple generalization
of the symbolic 3-valued algorithm presented in Section 2.2. The only change is in the
definition of the operator ex(Z), which is now defined to be

ex(Z) = {s | ∃s′
1, . . . s

′
n : s must−→ {s′

1, . . . , s
′
n} ∧

n∧

i=1

Z(s′
i)}

Refinement. As for the refinement mechanism, we can use the algorithm suggested in
Section 3 in order to find a failure state, analyze the failure and decide how to split the
abstract states. To be convinced of that, one needs to notice that the refinement is based
on may transitions only. Therefore no change is needed.

Moreover, the construction of a refined model Mi+1 can be improved when this
refinement mechanism is used. Namely, during the failure analysis it is possible to learn
about additional must hyper-transitions that can be added toMi+1. This is because if the
cause for failure is a may transition si

may−→ s′
i (inMi) then the split is done by separating

the set S′
C of all the concrete states represented by si that have a corresponding outgoing

transition, from the rest (see [20]). In this case, we are guaranteed that after the split, the
∀∃ condition holds between the sub-state of si representing the concrete set S′

C and the
set containing all the sub-states of s′

i. Therefore, we can add such a must hyper-transition
to Mi+1 without additional computational cost.

Other extensions of the refinement mechanism, which are more GKMTS-oriented
and further exploit the use of must hyper-transitions, are omitted due to space limitations.

560 S. Shoham and O. Grumberg

Theorem 7. For finite concrete models, iterating the suggested abstraction-refinement
process is guaranteed to terminate with a definite answer.

References

1. S. Barner, D. Geist, and A. Gringauze. Symbolic localization reduction with reconstruction
layering and backtracking. In Computer-Aided Verification (CAV), Denmark, July 2002.

2. P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated abstraction
refinement for model checking large state spaces using sat based conflict analysis. In Formal
Methods in Computer Aided Design (FMCAD), November 2002.

3. M. Chechik, B. Devereux, A. Gurfinkel, and S. Easterbrook. Multi-valued symbolic model-
checking. Technical Report CSRG-448, University of Toronto, April 2002.

4. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification (CAV), LNCS, Chicago, USA, July 2000.

5. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December 1999.
6. E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement using

ILP and machine leraning techniques. In Computer Aided Verification (CAV), 2002.
7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In popl4, pages 238–252, 1977.
8. D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems. ACM

Transactions on Programming Languages and Systems (TOPLAS), 19(2), March 1997.
9. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based model checking using modal

transition systems. In CONCUR, 2001.
10. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In Computer Aided Verification (CAV), LNCS, Copenhagen, Denmark, July 2002.
11. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In Verification,

Model Checking and Abstract Interpretation (VMCAI), LNCS, January 2003.
12. M. Huth, R. Jagadeesan, and D. Schmidt. Modal transition systems: A foundation for three-

valued program analysis. LNCS, 2028:155–169, 2001.
13. R.P. Kurshan. Computer-Aided-Verification of Coordinating Processes. Princeton University

Press, 1994.
14. K.G. Larsen and B. Thomsen. A modal process logic. In LICS, July 1988.
15. W. Lee, A. Pardo, J. Jang, G. D. Hachtel, and F. Somenzi. Tearing based automatic abstraction

for CTL model checking. In ICCAD, pages 76–81, 1996.
16. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving ab-

stractions for the verification of concurrent systems. Formal Methods in System Design,
1995.

17. K. S. Namjoshi. Abstraction for branching time properties. In CAV, Boulder, CO, July 2003.
18. A. Pardo and G. D. Hachtel. Automatic abstraction techniques for propositional mu-calculus

model checking. In Computer Aided Verification (CAV), pages 12–23, 1997.
19. A. Pardo and G. D. Hachtel. Incremental CTL model checking using BDD subsetting. In

Design Automation Conference, pages 457–462, 1998.
20. S. Shoham and O. Grumberg. A game-based framework for CTL counterexamples and 3-

valued abstraction-refinement. In Computer Aided Verification, Boulder, CO, July 2003.
21. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math, 1955.

	Introduction
	Preliminaries
	Abstraction
	Symbolic 3-Valued Model Checking

	3-Valued Refinement
	Generalized Abstract Models
	Motivation
	Generalized KMTSs

	Monotonic Abstraction-Refinement Framework

