
Probabilistic Bisimulation and Equivalence for
Security Analysis of Network Protocols�

Ajith Ramanathan1, John Mitchell1, Andre Scedrov2��, and Vanessa Teague1

1 Stanford University
2 University of Pennsylvania

Abstract. Using a probabilistic polynomial-time process calculus de-
signed for specifying security properties as observational equivalences,
we develop a form of bisimulation that justifies an equational proof sys-
tem. This proof system is sufficiently powerful to derive the semantic se-
curity of El Gamal encryption from the Decision Diffie-Hellman (DDH)
assumption. The proof system can also derive the converse: if El Gamal
is secure, then DDH holds. While these are not new cryptographic re-
sults, these example proofs show the power of probabilistic bisimulation
and equational reasoning for protocol security.

1 Introduction

While so-called Dolev-Yao-style [9,23] models that use nondeterminism and ide-
alized cryptography have proven useful (e.g., [6,27,24,10]), combining nondeter-
minism with bit-level representation of encryption keys renders any encryption
function insecure [18]. We therefore explore a probabilistic polynomial-time pro-
cess calculus framework [18,22,19] for protocol analysis that is formal, yet close
to the mathematical setting of modern cryptography and other recent work on
compositional reasoning at a cryptographic level [7,25], In this approach, we may
reason about the security of protocols by quantifying over all “adversarial” pro-
cesses definable in the language. In addition, the probabilistic process language
lets us analyze probabilistic encryption functions, such as El Gamal [11], and
protocols, using security requirements that have become accepted in the field of
cryptography.

In the probabilistic polynomial-time calculus, security properties are speci-
fied as asymptotic observational equivalences. Specifically, P ∼= Q means that
for any context C[], the behavior of process C[P] is asymptotically computa-
tionally indistinguishable from the behavior of process C[Q]. If P is a protocol of
interest, and Q is an idealized form of the process that uses private channels to
guarantee authentication and secrecy, then P ∼= Q is a succinct way of asserting
that P is secure. We have found this approach, also used in [2,7,25], effective
not only for specifying security properties of common network protocols, but
� Partially supported by OSD/ONR CIP/SW URI “Software Quality and Infrastruc-

ture Protection for Diffuse Computing,” ONR Grant N00014-01-1-0795.
�� Additional support from NSF Grant CCR-0098096.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 468–483, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Probabilistic Bisimulation and Equivalence for Security Analysis 469

also for stating common cryptographic assumptions. For this reason, we believe
it is possible to prove protocol security from cryptographic assumptions using
equational reasoning. The possibility is realized in this paper by proving security
of El Gamal encryption from the standard Decision Diffie-Hellman assumption,
and conversely.

Several advances over our previous efforts [18,22,19] were needed to make
these formal equational proofs possible. First, we have refined the operational
semantics of our process calculus. Most importantly, we define protocol execu-
tion with respect to any probabilistic scheduler that runs in polynomial time and
operates uniformly over certain kinds of choices (to avoid unrealistic collusion
between the scheduler and a protocol attacker), and we give priority to private
(“silent”) actions by executing private actions simultaneously in parallel before
public communication. Second, we develop a form of probabilistic bisimulation
that, while not a complete characterization of asymptotic observational equiv-
alence, gives a tractable approximation. Third, we present an equational proof
system and prove its soundness using bisimulation. The power of this equational
proof system is shown by proving the semantic security of El Gamal encryption
from the Decision Diffie-Hellman assumption.

Previous literature on probabilistic process calculi includes, e.g., [20,28]. The
closest technical precursor of our process calculus is [2], which uses observational
equivalence and channel abstraction but does not involve probability or compu-
tational complexity bounds; subsequent related work is cited in [1], for example.
Prior work on CSP and security protocols, e.g., [27], also uses process calculus
and security specifications in the form of equivalence or related approximation
orderings on processes. An important parallel effort with goals similar to our
work, the paradigm of “universally composable security”, can be found in [7].
Some connections between the probabilistic polynomial-time process calculus
and universal composability are discussed in [19]. A full version of the present
condensed conference paper is in preparation and will be available on the web
[26].

2 The Probabilistic Process Calculus

We will write F : X × Y → [0, 1] for a probabilistic function from X to Y , and
say that F is stochastic if ∀x ∈ X the finite sum

∑
y∈Y F(x, y) equals 1. Given an

equivalence relation R over the set X, we will write [x]R for the equivalence class
of x in X and write (X/R) for the set of all equivalence classes of X. For a multiset
X, the equivalence class [x]R of x with respect to R is a multiset consisting of
all elements equivalent to x under R, each with the same multiplicity in [x]R as
in X. We refer to standard sources such as [3] for a discussion of probabilistic
poly-time Turing machines and functions.

2.1 Syntax

Our probabilistic process calculus consists of a set of terms that do not perform
any communications, expressions that can communicate with other expressions,

470 A. Ramanathan et al.

and, channels that are used for communication. Let V ar be a countable set of
variable names, Channel a countable set of channel names, and Poly = {q : N →
N| ∀a ∈ N : q(a) > 0} the set of positive polynomials in one variable. We note
that each channel name has a bandwidth polynomial associated with it by a
function we shall call σ. The security parameter used in cryptographic analysis
is represented by a distinguished constant n, discussed in more detail further on.
We use ≡ for syntactic identity.

We assume the existence of a class of terms Θ such that:

1. If θ is a term with k variables, then there exists a probabilistic Turing ma-
chine Mθ with k inputs and a polynomial qθ(x1, . . . , xk) such that:
a) The term θ, with a1, . . . , ak substituted for its k variables, reduces to a

with probability p if and only if Mθ(a1, . . . , ak) returns a with probability
p; and,

b) For any choice of a1, . . . , ak we have that Mθ(a1, . . . , ak) halts in time at
most qθ(|a1|, . . . , |ak|).

2. For each probabilistic poly-time function f : N
m → N, there exists a term θ

such that Mθ computes f .

One example of such a set of terms is based on a term calculus called OSLR
studied in [21] (based in turn on [4,16]). Expressions of the probabilistic process
calculus (PPC) are given by the following grammar:

P ::= 0 (termination)
νc(P) (private channel)
in [c, x] .(P) (input)
out [c, T] .(P) (output)
[T1 = T2].(P) (match)
(P | P) (parallel composition)
!q(n).

(P)
(bounded replication)

Intuitively 0 is the zero expression having no transitions. An input operator
in [c, x] .P waits until it receives a value on the channel c and then substitutes
that value for the variable x ∈ V ar in P. Similarly, an output out [c, T] .P
evaluates the term T, transmits that value on the channel c, and then proceeds
with P. Channel names that appear in an input or an output operation can
be either public or private, with a channel being private if it is bound by a ν-
operator and public otherwise. For convenience we will α-rename channel names
so that they are all distinct. The match operator evaluates the expression bound
to it if and only if both the terms making up the match evaluate to the same
atom. Otherwise the entire match expression evaluates to the zero process. We
assume that the probabilistic parallel composition operator | associates to the
left. The bounded replication operator has bound determined by the polynomial
q ∈ Poly affixed as a subscript. The expression !q(n).

(P)
is expanded to the q(n)-

fold parallel composition P | · · · | P before evaluation. We will write out [c, T]
as an abbreviation for the expression out [c, T] .(0).

An expression P generated by this grammar may contain the distinguished
constant n. Substituting a value drawn from N for n gives rise to processes. In

Probabilistic Bisimulation and Equivalence for Security Analysis 471

particular if P is an expression, then the process obtained by substituting i for
all occurrences of n in P is denoted Pn←i i.e., Pn←i ≡ [i/n]P. An expression
P can be thought to define the set of processes {Pn←i| i ∈ N}. If we wish to
denote a process without making the value of the security parameter explicit,
we will just drop the superscript and write P (for a process obtained from the
expression P).

We use Expr for the set of expressions and Proc for the set of all processes.
We will denote the set of all variable-closed processes by CProc. Let P be an
open PPC expression and ξ a valuation of the free variables of P in N. Then
P(ξ) denotes the result of substituting, for each free variable x, the atom ξ(x)
for all occurrences of x in P.

A context is an expression with numbered “holes” (indicated by empty square
brackets []k). The numerical subscripts serve to uniquely identify the holes. If
we express protocols as expressions, then we can use contexts to express adver-
sarial environments in which the protocols execute. As for expressions, it follows
from the presence of the security parameter n in a context C that we can view
C[]k1 · · · []km

as defining the set {Cn←i[]k1 · · · []km
| i ∈ N}. We remind the

reader that the security parameter appears in the polynomial bounding repli-
cation operators, in terms, and in the bandwidth polynomials associated with
channels. We write Con for the set of all contexts.

2.2 Operational Semantics

The evaluation of a variable-closed process proceeds in three steps: reduction,
selection, and communication. In the reduction step, all unblocked terms and
matches are evaluated, where a term or match is unblocked if it appears in the
body P of a process in [c, x] .P requiring input.

In the selection step, we use a probabilistic scheduler to select an action to
perform. Actions include the silent action, τ ; the input action in〈c, a〉 that reads
the value a from the channel c into the variable x; the output action out〈c, a〉
that places the value a on the channel c; and the simultaneous action α · β
obtained by using the action product · on α and β. The observable of an action
is simply the pair of value and channel name associated with the action. We will
say that two actions are of the same type, written α ∼ β, when the observables
generated by them are the same. A scheduler is a stochastic probabilistic poly-
time function that probabilistically maps a set of actions to type of action and
always selects the silent (τ) type when the input set of actions contains a silent
action. Let S be the set of all schedulers.

In the communication step, we pick an action of the chosen type uniformly
at random from the set of actions of that type that the process can take. Having
picked the particular action, we then perform the associated substitution of
values for variables. In doing this, we take care to truncate the value according
to the bandwidth polynomials associated with the channel name. By truncating
the values substituted, we ensure that we never write down values that are
exponentially long.

472 A. Ramanathan et al.

We call this three-stage procedure an evaluation step; and evaluation pro-
ceeds in evaluation steps until the set of schedulable actions becomes empty.

Theorem 1. Let P be a process. Then the evaluation of P can be performed in
time polynomial in the security parameter.

The proof proceeds by constructing a machine that evaluates P. Obtaining the
required time-bound relies on terms and schedulers both being probabilistic poly-
time Turing machines. We can also prove the converse of this theorem, omitted
due to space constraints.

3 Probabilistic Bisimulation

In this section we develop a form of weak probabilistic bisimulation, or more
simply probabilistic bisimulation, adapted from [28], which studies various ap-
proaches to probabilistic bisimulation and provides an elegant treatment.

Our calculus and intended application to security protocols presents several
challenges that are absent from [28]. Silent actions are made simultaneous so
as to avoid the |-operator changing the probability of silent actions. Communi-
cations across public channels yield compound public (not silent) actions since
protocol communications are subject to interference by an adversary. As a result,
the semantics of our |-operator cannot be easily reduced to the semantics given
to standard nondeterministic composition, probabilistic summation, or proba-
bilistic product.

We refer to a sequence of actions as a path and a sequence of silent actions
terminated by an α-step as an α-path. If α is public, then an α-path must have
length ≥ 1; if α is a silent action, then an α-path can have length 0. A zero-length
path is called an empty path and a τ -path is called a silent path.

Definition 2. Let Paths(P, α,R) be the set of α-paths from P to some process
in R that are minimal with respect to R, i.e., the α-paths that are not proper
extensions of some other α-path into R. For π ∈ Paths(P, α,R), Prob

[
π, S

]

denotes the probability of the process P taking the path π under the scheduler S
and is formally defined in [26].

We will reason about processes using a cumulative probability distribution func-
tion (cPDF). Intuitively, given a scheduler S, the cPDF µ(P, α,R, S) measures
the total probability that the process P can take an α-path under the scheduler
S to reach a process in the set R. For details we refer the reader to [26].

Definition 3. The cPDF µ : CProc × Act × 2Proc × S → [0, 1] is defined by

µ(P, α,R, S) =
∑

π∈Paths(P,α,R)

Prob
[
π, S

]
(1)

Lemma 4. ∀P ∈ CProc.∀α ∈ Act.∀R ⊆ CProc.∀S ∈ S : µ(P, α,R, S) ≤ 1

Probabilistic Bisimulation and Equivalence for Security Analysis 473

The proof is by induction on the length of α-paths.

Definition 5. An equivalence relation R ⊆ Proc×Proc is a weak probabilistic
bisimulation, or bisimulation, if (P, Q) ∈ R implies that

∀U ∈ (Proc/R).∀S ∈ S.∀α ∈ Act : µ(P, α,U, S) = µ(Q, α,U, S) (2)

Two processes P and Q are bisimulation equivalent (denoted P � Q) if there
exists a bisimulation R such that (P, Q) ∈ R. It immediately follows that � =⋃{R|R is a bisimulation}. We extend bisimulation to all processes by stipulating
that P, Q ∈ Proc are bisimilar iff they are bisimilar after any substitution of
atoms for their free variables. We extend bisimulation equivalence to expressions
by stipulating that P,Q ∈ Expr are bisimilar iff ∀i ∈ N : Pn←i � Qn←i.

As a traditional sanity check, we can show that � is the largest bisimulation
over Proc using a fixed-point argument as in [20].

Theorem 6. ∀P, Q ∈ Proc.∀C[] ∈ Con : P � Q =⇒ C[P] � C[Q]

As in [28], the proof uses the cumulative probability distribution function µ in-
stead of reasoning directly about the underlying transitions. The proof is struc-
tured around two inductions: one on the maximum number of free variables in
C[P] and C[Q] and another on the structure of processes. For | we show that
µ(P | Q, α,R1 | R2, S) =

∑
β·γ∼α µ(P, β,R1, S) · µ(P, γ,R, S) by exploiting the

fact that P � Q implies that ∀R ∈ (Proc/�) : µ(P, τ,R, S) = µ(Q, τ,R, S). For
ν we exploit the fact that a silent action consists of simultaneously perform-
ing every concrete action (an action consisting of an input and output on the
same channel and transmitting the same value) on a private channel that can
go without interfering with the other private actions.

4 Asymptotic Observational Equivalence

4.1 Definition of Observational Equivalence

Intuitively, we wish to consider two closed expressions equivalent if they behave
indistinguishably in the presence of any adversary, where we represent an ad-
versary by a context and a scheduler. We are most interested in protocols that
use cryptographic primitives, and cryptographic primitives generally depend on
some security parameter, such as the length of the encryption key. The purpose
of the security parameter, as opposed to a fixed key length, is that it can be
made as large as needed for any desired degree of security. Therefore, while the
adversary has control over the context (surrounding environment) and scheduler,
representing a degree of “good luck”, we only consider the adversary successful
if it can measure an asymptotically significant difference between processes as
the security parameter increases.

Definition 7. An observable o is a pair 〈c, a〉 ∈ Channel × N. Let Obs be the
set of all observables.

474 A. Ramanathan et al.

If P ∈ Proc is a blocked process and o = 〈c, a〉 is an observable, then P
generates o under scheduler S, written P �S o, if an action equivalent to in〈c, a〉·
out〈c, a〉 is selected by S and performed during the course of the evaluation of
P. “Partial actions,” consisting of an input action without a matching output,
or an output without a matching input, appear in the structured operational
semantics and are used to prove compositionality of �. These partial actions are
not primitive observables, but can be observed in a parallel context that provides
the dual action. We only consider concrete actions (with an input matched by
an output) here and write Act× for the set of concrete actions.

The probability that P generates an observable o under the scheduler S is the
probability that P can take a (in〈c, a〉 · out〈c, a〉)-path, under S, plus the prob-
ability that P can, under S, take an α-path (with α concrete but not equivalent
to in〈c, a〉·out〈c, a〉) to some process R times the probability that R generates o
under S. If a path produces the observable o multiple times, then its contribution
to Prob

[
P �S o

]
only extends to the first occurrence of that observable along

that path. Since we only care about whether a path produces an observable,
not the number of times that it does so, we only count to the first observable
generated by that path. An easy induction shows that Prob

[
P �S o

] ≤ 1.
We envision process evaluation as a proceeding in stages where each stage

is determined by an input communicating with an output. While probabilistic
bisimulation allowed partial actions (inputs and outputs communicating with
the environment), actual evaluation proceeds via concrete actions (input-output
pairs). Hence, we define observable behavior with respect to just those schedulers
that always select concrete actions.

Definition 8. A perceptible scheduler is a scheduler that only schedules private
actions and concrete actions. We write SP for the set of perceptible schedulers.

Let Q be the set of positive polynomials. Let Σ be the set of valuations of
free variables. If σ ∈ Σ is a valuation, then we denote the result of performing
the valuation σ on P by σ(P).
Definition 9 (observational equivalence). Let P and Q be two expressions.
We will say that P ∼= Q, or that they are observationally equivalent, if:

∀q(y) ∈ Q.∀σ ∈ Σ.∀C[] ∈ Con.∀o ∈ Obs.∀S ∈ SP.∃io ∈ N.∀i > io :
∣
∣Prob

[
σ(Cn←i[Pn←i]) �S o

] − Prob
[
σ(Cn←i[Qn←i]) �S o

]∣
∣ ≤ 1

q(i)
(3)

Theorem 10. ∼= is a congruence.

Using Theorem 6 and the definition of �, we can prove
Theorem 11. P � Q =⇒ P ∼= Q.

4.2 A Proof System

A proof system for proving asymptotic observational equivalence is given in
Figure 1. The soundness of this proof system is established in three ways. Axioms

Probabilistic Bisimulation and Equivalence for Security Analysis 475

P | Q ∼= Q | P (P1)

0 | P ∼= P (P2)

(P | Q) | R ∼= P | (Q | R) (P3)
P1 ∼= P2, Q1 ∼= Q2

P1 | Q1 ∼= P2 | Q2
(P4)

c �∈ Channel(P), x �∈ FreeV ars(P)
P ∼= νc(out [c, T] | in [c, x] .P)

(NU1)

C[out [c, T]] is scheduler-insensitive,
c �∈ Channel(C[0]), Public(C[out [c, T]]) = {c}

∃TC : out [c, TC] ∼= C[out [c, T]]
(NU2)

P has no public channels
P ∼= 0

(ZER)

P ∼= Q, C[] ∈ Con1

C[P] ∼= C[Q]
(CON)

P ∼= Q, Q ∼= R
P ∼= R (TRN)

P ∼= Q
Q ∼= P (SYM)

σ(c) = σ(d)

νc(P) ∼= νd(P [d/c])
(R1)

σ(c) = σ(d),
d �∈ Channel(P,Q), P ∼= Q

P [d/c] ∼= Q[d/c] (R2)

fT and fU are computationally indistinguishable
out [c, T] ∼= out [c, U]

(EQ1)

∀i ∈ [1, k] : out [ci, Ti] ∼= out [ci, Ui]
out [d, V(T1, . . . , Tk)] ∼= out [d, V(U1, . . . , Uk)]

(EQ2)

∀a1, . . . , ak : out [ci, Ui(a1, . . . , ak)] ∼= out [ci, Vi(a1, . . . , ak)] , i ∈ {1, m}
FV (C[out [c1, U1(x1, . . . , xk])] · · · [out [cm, Um(x1, . . . , xk])]) =

FV (C[out [c1, V1(x1, . . . , xk])] · · · [out [cm, Vm(x1, . . . , xk])]) =
{xi}

in [d, xi] .C[out [c1, U1(x1, . . . , xk)]] · · · [out [cm, Um(x1, . . . , xk)]] ∼=
in [d, xi] .C[out [c1, V1(x1, . . . , xk)]] · · · [out [cm, Vm(x1, . . . , xk)]]

(PUL)

Fig. 1. A Reasoning System for PPC

476 A. Ramanathan et al.

such as P1, NU2, etc., and certain structural inference rules like P4 are justified by
an application of Theorem 11. The soundness of rules CON, TRN, and, SYM follow
from the congruence properties of ∼=. The three rules EQ1, EQ2, and PUL are
justified by reasoning directly about asymptotic equivalences. Detailed soundness
arguments are given in [26]. We now continue with comments on selected rules.

A scheduler-insensitive process family is one in which the choice of scheduler
does not matter i.e., a process family for which at any evaluation-step only
one kind of action can possibly be taken. Rule NU2 states that if you have a
scheduler-insensitive process family with only one output on a public channel,
then the entire process family can be written as a single term placed in an
output on the same channel. Essentially, this rule states the silent transitions are
probabilistically invisible, a property that we were not able to achieve in earlier
semantics for our calculus. The first of the two rules dealing with renaming
channels, R1 states that one can arbitrarily rename private channels (as long
as bandwidths are respected). In this rule, P [d/c] is taken to mean the closed
expression obtained by replacing the channel name c with the channel name d
(we define a similar notation for processes).

The second rule regarding renaming, R2, allows us to rename public channels
to a name that is not currently in use by the expression. There is an additional
technical restriction that ensures that the bandwidth associated with the new
name is as big as the bandwidth associated with the old name.

The rule PUL asserts that if two functions fV : N
k × N → [0, 1] and gU : N

k ×
N → [0, 1] induce almost the same distribution on outputs, then we can “pull
out” one of the arguments into an output.

5 Cryptographic Applications

Our asymptotic notion of observational equivalence between probabilistic poly-
time processes allows us to express indistinguishability by polynomial-time sta-
tistical tests, a standard way of characterizing cryptographically strong pseudo-
random number generators [29,12]. In what follows, we will denote an element
x chosen uniformly at random from the set X by x ∈R X.

Throughout this section we adopt a uniform-complexity model of the adver-
sary, see [13] Ch. 5.

5.1 Computational Indistinguishability

Definition 12 (function ensemble [29,12]). A function ensemble f is an
indexed family of functions {fi : Ai → Bi}i∈N. A function ensemble f : Ai → Bi

is uniform if there exists a single Turing machine M that computes f for all
values of i i.e., M(i, x) = fi(x). A uniform function ensemble f : Ai → Bi is
poly-time if there exists a polynomial q and a single Turing machine M such that
M(i, x) computes fi(x) in time at most q(|i|, |x|). A uniform function ensemble
f : Ai → Bi is probabilistic poly-time if fi is a probabilistic poly-time function.
A poly-time statistical test A is the {0, 1}-valued probabilistic poly-time function
ensemble {Ai : {0, 1}m(i) → {0, 1}}.

Probabilistic Bisimulation and Equivalence for Security Analysis 477

The notion of computational indistinguishability is central to cryptography;
[12], in particular, has an insightful discussion.

Definition 13 (computational indistinguishability [29,12]). Let q(x) be a
positive polynomial. A uniform probabilistic poly-time function ensemble f : {} →
{0, 1}l(x) is computationally indistinguishable from a uniform probabilistic poly-
time function ensemble g : {} → {0, 1}l(x) just when for all poly-time statistical
tests A we have:

∀q(x).∃io.∀i > io :
∣
∣Prob

[Ai(fi()) = “1”
] − Prob

[Ai(gi()) = “1”
]∣
∣ ≤ 1

q(i)
(4)

Theorem 14. Let f : {} → {0, 1}l(x) (∀x ∈ N : l(x) > k(x)) be a uniform prob-
abilistic poly-time function ensemble. Let g : {} → {0, 1}l(x) be another uniform
probabilistic poly-time function ensemble. Let F ≡ out [c, f] and G ≡ out [c, g].
Then, f is computationally indistinguishable from g if and only if F ∼= G.

Assume that f is not computationally indistinguishable from g but that F ∼=
G. Then there exists a test A distinguishing f and g. But then the context
[] | in [c, x] .out [d, A(x)] will distinguish F from G. Similarly, assume that f
is computationally indistinguishable from g but that F � G. Then there exists
a context C[] distinguishing F � G on the basis of the observable o under
scheduler S. We construct a test A as follows. To evaluate A on the value a we
evaluate,under S, the expression, C[out [c, a]] and return “1” if o is generated
and “0” otherwise. Clearly, A will distinguish f from g.

We can immediately obtain, as a corollary to Theorem 14, the result from
[22] showing that pseudorandom number generators can be represented in PPC.

5.2 Semantic Security

Semantic security is an important cryptographic property due to [15]. We use a
definition for uniform complexity based on [13,14]. We begin by summarizing
the definition of a cryptosystem that can be found in full in [13] or [14], for
example.

Definition 15. [8,13,14] A public-key encryption scheme or, more simply, an
encryption scheme is a triple 〈G, E, D〉 comprising a probabilistic poly-time key-
generation algorithm G that produces a key pair from input 1k (the security
parameter written in unary), probabilistic poly-time encryption algorithm E, and
a probabilistic poly-time decryption algorithm D.

Intuitively, an encryption scheme is semantically secure if, given a ciphertext,
no polynomially-bounded adversary can reliably compute information about the
associated plaintext. Semantic security can also be stated using indistinguisha-
bility: intuitively, it is infeasible for any adversary to distinguish between the
encryptions of any two messages, even when it chooses the messages. For our
purposes it is convenient to work with security in the sense of indistinguishabil-
ity; we follow [14].

478 A. Ramanathan et al.

Definition 16. An encryption scheme 〈G, E, D〉 is indistinguishably secure if
for all probabilistic poly-time Turing machines F, A, for every polynomial q, for
sufficiently large k, and for all m:

∣
∣Prob

[
A(1k, e, 〈m0, m1〉, c) = m| c ∈ E(e, m0)

] −
Prob

[
A(1k, e, 〈m0, m1〉, c) = m| c ∈ E(e, m1)

]∣
∣ ≤ 1

q(k)
(5)

with 〈m0, m1〉 chosen probabilistically by running F (1k, e).

In words, it is impossible to efficiently generate two messages (using F) such
that an attack A can reliably distinguish between their encryptions. This defini-
tion reflects adaptive chosen plaintext semantic security since the adversary, in
possession of the encryption key, can generate and encrypt a polynomial number
of messages. The equivalence of security in the sense of indistinguishability and
semantic security is well known in cryptographic circles; [13] Ch. 5 has a detailed
treatment of both directions.

Encoding the statement of indistinguishable encryptions as an observational
equivalence in PPC is straightforward. In what follows, we will use the nota-
tion in [c, 〈x1, . . . , xk〉] to mean that the input obtained on channel c should be
treated as a k-tuple whose ith element is named xi.

Definition 17. Let 〈G, E, D〉 be an encryption scheme. Then 〈G, E, D〉 is an
observationally indistinguishable encryption scheme iff

νc(out [c, pkey(G(1n))] | in [c, key] .out [pub, 〈key, 1n〉] .in [msg, 〈m0, m1〉] .
out [challenge, 〈key, 〈m0, m1〉, E(key, m0)〉]) (L-SS)

is observationally indistinguishable from

νc(out [c, pkey(G(1n))] | in [c, key] .out [pub, 〈key, 1n〉] .in [msg, 〈m0, m1〉] .
out [challenge, 〈key, 〈m0, m1〉, E(key, m1)〉]) (R-SS)

where pkey takes a private-public key-pair and returns only the public key.

An examination of the expression L-SS shows that it

1. Generates an encryption-decryption key-pair,
2. Publishes the security parameter and the public key,
3. Obtains a message pair (that could be a function of the security parameter

and the public key),
4. Publishes the encryption of the first message, along with the message pair

and the encryption key.

Expression R-SS is similar, but encrypts the second message.

Theorem 18. Let 〈G, E, D〉 be an encryption scheme. Then, 〈G, E, D〉 is se-
mantically secure iff L-SS ∼= R-SS .

Probabilistic Bisimulation and Equivalence for Security Analysis 479

5.3 The Decision Diffie-Hellman Assumption

The Decision Diffie-Hellman assumption [8] is an assumption about modular
exponentiation. Our development draws from [5,13].

A group family G is a set of finite cyclic groups {Gp} where the index p ranges
over an infinite set. An instance generator IG(n) takes security parameter n, runs
in time polynomial in n and returns a random index p as well as a generator g
of the group Gp.

Definition 19. A Decision Diffie-Hellman algorithm A for G is a probabilistic
polynomial time algorithm such that:

1. Given 〈p, g, ga, gb, gc〉 the algorithm A reliably decides if c = ab; and,
2. There exists a non-constant positive polynomial q(·) such that IG(n) = 〈p, g〉

implies that |〈p, g〉| = Ω(q(n)).

The probability is taken over the probability that the instance generator IG(1n)
returns 〈p, g〉 given n, random choice of a, b, c in [1, ordGp] and random bits
used by A. The Decision Diffie-Hellman assumption (DDHA) for G is that no
Decision Diffie-Hellman algorithm exists.

This assumption is believed for some group families G, but known to be false
for others; see [5].

Definition 20. The group family G is observationally DDHA-secure if

out
[
ch, 〈p, g, ga, gb, gab〉| a, b ∈R [1, ordGp]

] ∼=
out

[
ch, 〈p, g, ga, gb, gc〉| a, b, c ∈R [1, ordGp]

]
(DDHA)

where the term 〈p, g, ga, gb, gab〉| a, b ∈R [1, ordGp] denotes the term that com-
putes this tuple with a, b chosen uniformly at random from [1, ordGp].

The following theorem shows that we can express the DDHA in PPC by an
observational equivalence.

Theorem 21. The DDHA holds for the group family G iff G is observationally
DDHA-secure.

5.4 The Semantic Security of El Gamal Encryption

In this section, we use PPC to show semantic security of El Gamal encryption.

Definition 22. Let · denote group multiplication and = denote group equality.
An El Gamal encryption scheme is a triple 〈G, E, D〉 of probabilistic poly-time
algorithms such that:

1. The key generating algorithm G, on input 1k outputs a public key e =
〈p, g, ga〉 and a private key d = a where 〈g, p〉 ∈ IG(1k) and a ∈R [1, ordGp].

480 A. Ramanathan et al.

2. An encryption algorithm E that, on input, e = 〈p, g, ga〉 and m outputs
〈gb, m · gab mod p〉 as the ciphertext (where b ∈R [1, ordGp]).

3. A decryption algorithm D that, given ciphertext c = 〈k, c′〉 and decryption
key d computes c′/kd. To see why this works, we note that k = ga, c′ =
m · gab mod p, and d = b for some a, b, m. Then

c′

kd
=

m · gab

(gb)a =
m · gab

gab
= m (6)

Let L-EG and R-EG be the result of instantiating expressions L-SS and
R-SS to El Gamal encryption.

Theorem 23. If the Decision Diffie-Hellman assumption holds for a group fam-
ily G, then El Gamal encryption using G is semantically secure. Furthermore,
there is a formal equational proof of the equivalence L-EG ∼= R-EG stating that
El Gamal encryption is semantically secure from the equivalence DDHA stating
that the DDHA holds for G.

A detailed proof is given in [26]. It starts with the equivalence DDHA and
build up the equivalence L-EG ∼= R-EG by systematically transforming the term
that outputs a challenge instance of the DDHA. The proof can be split into
two distinct parts. In the first part, we use mathematical facts about the group
operation · in the group Gp to transform the DDHA challenge 〈p, g, ga, gb, gc〉 into
a tuple 〈p, g, ga, m0, m1, g

b, mi · gab〉 that almost looks like a semantic security
of El Gamal encryption challenge tuple. The remainder of the proof consists
of purely structural transformations on the expressions in order to arrive at
an equivalence between two expressions of the right form. We suggest that,
in general, proofs in PPC can be separated into a large sequence of structural
transformations required to achieve the right shape of the protocol, couple with a
few transformations whose soundness are grounded in mathematical facts about
the special nature of the problem. These special facts can be represented with
special hypotheses (like DDHA) and special inference rules. Taken with the
structural rules of Figure 1 this would allow us to derive El Gamal’s semantic
security from the DDHA in an entirely mechanical manner.

Although we give a direct equational proof, we could also have used a back-
ward proof search (exploiting the mechanizable nature of proofs in PPC) to work
backward from the protocol to the conditions that the cryptographic primitives
must satisfy.

Theorem 24. If El Gamal encryption using the group family G is semanti-
cally secure, then the Decision Diffie-Hellman assumption holds for G. Further-
more, there is an equational proof of the equivalence DDHA from the equivalence
L-EG ∼= R-EG asserting El Gamal semantic security.

Probabilistic Bisimulation and Equivalence for Security Analysis 481

Assuming L-EG ∼= R-EG , we use the rule CON to obtain

νpub(νmsg(νchallenge(L-EG | in [pub, 〈p, g, ga〉] .out [msg, 〈1, gr〉| r ∈R [1, ordGp]] .

in
[
challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, gc〉〉] .out

[
ddh, 〈p, g, ga, gb, gc〉])))

∼=
νpub(νmsg(νchallenge(R-EG | in [pub, 〈p, g, ga〉] .out [msg, 〈1, gr〉| r ∈R [1, ordGp]] .

in
[
challenge, 〈〈p, g, ga〉, 〈m0, m1〉, 〈gb, gc〉〉] .out

[
ddh, 〈p, g, ga, gb, gc〉])))

Since both the right-hand side and the left-hand side are scheduler-insensitive
processes, we can use the proof rule NU2 to obtain the equivalence DDHA. In
general, this technique is useful in going from long expressions to shorter ones.

6 Conclusion and Future Directions

In this paper, we present a set of proof rules for asymptotic observational equiv-
alence, prove them sound using a form of bisimulation, and apply the proof
system to simple cryptographic protocols. We show, using only our proof rules,
that the semantic security of El Gamal encryption may be derived from the De-
cision Diffie-Hellman (DDH) assumption, and vice versa. Although the definition
of asymptotic observational equivalence is stated in essentially the same way as
our first paper on this approach [18], the semantic relation is actually different
here because we have refined the operational semantics. In particular, our oper-
ational semantics now allows a broader class of probabilistic schedulers (needed
to choose between concurrent actions) and we execute private (“silent”) actions
simultaneously in parallel before public communication. These changes give us
more equivalences between processes. In comparison with a recent preliminary
report [22], here we have introduced a completely new probabilistic bisimulation
and the congruence proof to work with the new semantics and to take advantage
of some attractive ideas advanced in [28]. Other prior papers on our process
calculus [21,19] do not discuss probabilistic bisimulation or the proof rules for
our calculus.

The equational proof system presented in Section 4.2 combines relatively
straightforward congruence and probabilistic parallel composition rules with sev-
eral rules that equate processes with different syntactic forms. Some rules that
will seem completely obvious to those familiar with nondeterministic process
calculus are actually the result of careful work on the operational semantics. For
example, the associativity of probabilistic parallel composition failed in several
semantics that initially seemed plausible, and unobservability of communication
on private channels, which is essential for reasoning about idealized security
protocols, motivated the current semantics in which private communications are
scheduled together in parallel in advance of public communication.

We now appear to have an adequate basis to proceed in two important direc-
tions. The first is to apply equational specification and reasoning to a number of
interesting examples, such as commitment and agreement protocols. The other

482 A. Ramanathan et al.

is to develop additional proof rules as needed to carry out these examples. It
is naturally expected that we will extend the reach of the proof system and
simplify some of the rules in the process. Although we do not yet know when
this will arise, we expect that in order to handle some examples of interest, it
will be necessary to refine the form of bisimulation to support additional equa-
tional reasoning. It may also be possible to develop model-checking procedures
along the lines of these already explored for probabilistic temporal logics e.g.,
[17]. In fact, we hope to be able to develop automated reasoning procedures for
use in a network security setting using techniques developed in our study of the
properties of our process calculus.

Acknowledgements. Thanks to M. Abadi, R. Amadio, D. Boneh, R. Canetti,
A. Datta, C. Dwork, R. van Glabbeek, M. Goldsmith, M. Hofmann, R. Ja-
gadeesan, A. Jeffrey, S. Kannan, B. Kapron, P. Lincoln, A. Martin, R. Milner,
I. Mironov, M. Mitchell, M. Naor, P. Panangaden, D. Sarenac, and P. Selinger
for helpful discussions and advice on relevant literature.

References

1. Abadi, M., and Fournet, C. Mobile values, new names, and secure communica-
tion. In 28th ACM Symposium on Principles of Programming Languages (2001),
pp. 104–115.

2. Abadi, M., and Gordon, A. D. A calculus for cryptographic protocols: the
spi calculus. Information and Computation 143 (1999), 1–70. Expanded version
available as SRC Research Report 149 (January 1998).

3. Atallah, M. J., Ed. Algorithms and Theory of Computation Handbook. CRC
Press LLC, 1999, ch. 24, pp. 19–28.

4. Bellantoni, S. Predicative Recursion and Computational Complexity. PhD thesis,
University of Toronto, 1992.

5. Boneh, D. The decision Diffie-Hellman problem. Proceedings of the Third Algo-
rithmic Number Theory Symposium 1423 (1998), 48–63.

6. Burrows, M., Abadi, M., and Needham, R. A logic of authentication. Pro-
ceedings of the Royal Society, Series A 426, 1871 (1989), 233–271. Also appeared
as SRC Research Report 39 and, in a shortened form, in ACM Transactions on
Computer Systems 8, 1 (February 1990), 18-36.

7. Canetti, R. Universally composable security: A new paradigm for cryptographic
protocols. In Proc. 42nd IEEE Symp. on the Foundations of Computer Science
(2001), IEEE. Full version available at http://eprint.iacr.org/2000/067/.

8. Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE Trans-
actions on Information Theory 22 (November 1976), 644–654.

9. Dolev, D., and Yao, A. C.-C. On the security of public-key protocols. In
Proc. 22nd Annual IEEE Symp. Foundations of Computer Science (1981), pp. 350–
357.

10. Durgin, N. A., Mitchell, J. C., and Pavlovic, D. A compositional logic
for protocol correctness. In 14th IEEE Computer Security Foundations Workshop
(Cape Breton, Nova Scotia, Canada, June 2001).

11. El Gamal, T. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31 (1985), 469–472.

Probabilistic Bisimulation and Equivalence for Security Analysis 483

12. Goldreich, O. The Foundations of Cryptography, vol. 1. Cambridge University
Press, June 2001.

13. Goldreich, O. The Foundations of Cryptography, vol. 2. June 2003. Manuscript
under preparation; latest version available at
http://www.wisdom.weizmann.ac.il/˜oded/foc-vol2.html.

14. Goldwasser, S., and Bellare, M. Lecture Notes on Cryptography. 2003. Lecture
notes for a class taught by the authors at MIT (1996–2001); available online at
http://www.cs.nyu.edu/courses/fall01/G22.3033-003/.

15. Goldwasser, S., and Micali, S. Probabilistic encryption. Journal of Computer
and System Sciences 28, 2 (1984), 270–299. Previous version in STOC 1982.

16. Hofmann, M. Type Systems for Polynomial-Time Computation. Habilitation
Thesis, Darmstadt; see www.dcs.ed.ac.uk/home/mxh/papers.html, 1999.

17. Huth, M., and Kwiatkowska, M. Z. Quantitative analysis and model checking.
In LICS ’97 (1997), pp. 111–122.

18. Lincoln, P. D., Mitchell, J. C., Mitchell, M., and Scedrov, A. A proba-
bilistic poly-time framework for protocol analysis. In Proc. 5th ACM Conference on
Computer and Communications Security (San Francisco, California, 1998), M. K.
Reiter, Ed., ACM Press, pp. 112–121.

19. Mateus, P., Mitchell, J. C., and Scedrov, A. Composition of cryptographic
protocols in a probabilistic polynomial-time process calculus. In 14th International
Conference on Concurrency Theory (Marseille, France, 2003), R. M. Amadio and
D. Lugiez, Eds., vol. 2761 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 327–349.

20. Milner, R. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

21. Mitchell, J. C., Mitchell, M., and Scedrov, A. A linguistic characterization
of bounded oracle computation and probabilistic polynomial time. In Proc. 39th
Annual IEEE Symposium on the Foundations of Computer Science (Palo Alto,
California, 1998), IEEE, pp. 725–733.

22. Mitchell, J. C., Ramanathan, A., Scedrov, A., and Teague, V. A proba-
bilistic polynomial-time calculus for the analysis of cryptographic protocols (pre-
liminary report). In 17th Annual Conference on the Mathematical Foundations
of Programming Semantics, Arhus, Denmark, May, 2001 (2001), S. Brookes and
M. Mislove, Eds., vol. 45, Electronic notes in Theoretical Computer Science.

23. Needham, R., and Schroeder, M. Using encryption for authentication in large
networks of computers. Communications of the ACM 21, 12 (1978), 993–999.

24. Paulson, L. C. Mechanized proofs for a recursive authentication protocol. In
10th IEEE Computer Security Foundations Workshop (1997), pp. 84–95.

25. Pfitzmann, B., and Waidner, M. A model for asynchronous reactive systems
and its application to secure message transmission. In IEEE Symposium on Secu-
rity and Privacy (Washington, 2001), pp. 184–200.

26. Ramanathan, A., Mitchell, J. C., Scedrov, A., and Teague, V. A prob-
abilistic polynomial-time calculus for the analysis of cryptographic protocols.
ftp://ftp.cis.upenn.edu/pub/papers/scedrov/ppc-2004-long.{ps,pdf}, 2004.

27. Schneider, S. Security properties and CSP. In IEEE Symposium on Security and
Privacy (Oakland, California, 1996).

28. van Glabbeek, R. J., Smolka, S. A., and Steffen, B. Reactive, generative,
and stratified models of probabilistic processes. International Journal on Informa-
tion and Computation 121, 1 (August 1995).

29. Yao, A. C.-C. Theory and applications of trapdoor functions. In IEEE Founda-
tions of Computer Science (1982), pp. 80–91.

	Introduction
	The Probabilistic Process Calculus
	Syntax
	Operational Semantics

	Probabilistic Bisimulation
	Asymptotic Observational Equivalence
	Definition of Observational Equivalence
	A Proof System

	Cryptographic Applications
	Computational Indistinguishability
	Semantic Security
	The Decision Diffie-Hellman Assumption
	The Semantic Security of {El Gamal} Encryption

	Conclusion and Future Directions

