
E. Duesterwald (Ed.): CC 2004, LNCS 2985, pp. 1-4, 2004. 
© Springer-Verlag Berlin Heidelberg 2004 

Developing a Foundation for Code Optimization 

Mary Lou Soffa 

Department of Computer Science 
University of Pittsburgh, 

Pittsburgh, PA 
soffa@cs.pitt.edu 

www.cs.pitt.edu/~soffa 

Abstract. Although optimization technology has been successful over the past 
40 years, recent trends are emerging that demand we reconsider the paradigm 
that we are using for code optimization. In particular, the trends toward dy-
namic optimization, writing embedded system software in high level languages 
and the lack of significant performance improvement from current optimization 
research are forcing us to rethink what we know and do not know about opti-
mization. A number of problems dealing with both semantic and application 
properties of optimizations have always existed but have been mostly ignored. 
The challenge in optimization today is to explore properties of optimizations 
and develop a framework for better understanding and use of optimizations. 
Fortunately, research is starting to explore properties, including proving the 
soundness of optimizations, proving the correctness of optimizations, specifica-
tions of optimizations, and the predictability of profits of optimizations. Not 
only must we understand the properties, but we also need to integrate the prop-
erties into a framework. Only then can we address the problems of the develop-
ing trends. 

1   Introduction 

The field of optimization has been extremely successful over the past 40+ years. As 
new languages and new architectures have been introduced, new and effective op-
timizations have been developed to target and exploit both the software and hardware 
innovations. Various reports from both research and commercial projects have indi-
cated that the performance of software can be improved by 20% to 40% by applying 
levels of aggressive optimizations. 

Most of the success in the field has come from the development of particular op-
timizations, such as partial redundancy elimination, speculation, and path sensitive 
optimization. Although we knew that there were various problems with optimization 
that were not well understood, they were mostly ignored. Thus instead of trying to 
understand and solve the problems, we avoided them for the most part because we 
were getting performance improvements. These problems included knowing when, 
where and what optimizations to apply for the best improvement. Other problems 



2         M.L. Soffa 

include showing the soundness of optimizations (an optimization does not change the 
semantics of a program) and the correctness of the optimizer that implements the 
optimizations. When optimizations are introduced, seldom is their soundness proved, 
and likewise optimizers are notorious for being buggy. 

2   Technical Challenges 

A number of recent events are forcing us to finally take up the challenge of the opti-
mization problems. Because of the continued growth of embedded systems and the 
competitive market, where time-to-market is critical, there is a movement to write 
software for embedded system in high level languages. This movement requires an 
optimizing compiler to generate code that is near the quality of the manually pro-
duced code. Today’s optimization technology is not able to adequately handle some 
of the challenges offered by embedded systems. For example, the resource constraints 
are more severe than in desktop computers and thus optimizations must be able to 
satisfy the constraints. Furthermore, embedded systems have multiple constraints, 
including execution time, memory and energy. Most of the prior work in optimization 
has really focused on a single constraint, namely time. The optimization technology 
has not been developed to handle the multiple constraints and the trade-offs. Another 
activity that has brought optimization problems to the forefront is the trend toward 
dynamic optimization. Dynamic optimization requires that we understand certain 
properties of optimizations in order in order for them to be effective. Currently, it is 
unclear when and where to apply optimizations dynamically and how aggressive the 
optimizations can be and still be profitable after factoring in the cost of applying the 
optimization. The third challenge is the lack of performance improvement that we are 
currently experiencing with optimization research. Although new optimizations con-
tinue to be developed, the performance improvement is shrinking. The question then 
is whether the field has reached its limit or is the problems that we have ignored sim-
ply limiting our progress. Lastly, the robustness of software has become a major con-
cern, mandating that we ensure that the optimizing compilers are correct and optimi-
zations sound. 

To tackle these problems, we need to better understand the properties of optimiza-
tion. We categorize optimization properties as either (1) semantic or (2) operational. 
Semantic properties deal with the semantics of the optimization and include 

• correctness – the correctness of the implementation of optimizations, 

• soundness – the semantics of a program do not change after applying an op-
timization, and 

• specification – being able to specify conditions both the conditions needed 
and the semantics of applying the optimization. 

Operational properties target the application of optimizations and their perform-
ance and include 



Developing a Foundation for Code Optimization         3 

• interaction – the conditions under which optimizations enable and/or disable 
other optimizations, 

• profitability – the profit of applying an optimization at a particular point in 
the code given the resources of the targeted platform, 

• order – the order that optimizations should be applied, based on the interac-
tion property,  

• configuration - the best optimization configuration, including tile size of loop 
tiling and the unroll factor, considering the resources. 

• automatic generation – the conditions under which we can specify optimiza-
tions and have a tool that automatically implements the optimizations, and 

• portability – the conditions to develop plug-in optimization components.  

Research on these properties has been limited. However, more recently there has 
been a flurry of research activity focusing on optimization properties. There are two 
approaches to exploring the properties. One approach is through formal techniques. 
These include developing formal specifications of optimizations, analytical models, 
and proofs through model checking and theorem provers. Another approach is ex-
perimental. That is, the properties are explored by actually implementing optimiza-
tions and executing the optimized code, using the information gained to determine 
properties. The experimental approach can be performed prior to or in conjunction 
with actual program executions. 

3   Related Research 

Semantic properties have been formally tackled by proving the soundness of the op-
timizations [1] [2], and the correctness of the optimizers [3]. Formal specifications of 
optimizations were introduced a number of years ago by Whitfield and Soffa [4] for 
automatic implementation of optimizations. Recently, specification techniques have 
been developed to prove the soundness of optimizations [1] [2]. An experimental 
approach to the correctness of an optimizer involved checking both unoptimized and 
optimized code [5]. 
 

For operational properties, determining the order or the configuration to apply op-
timizations has recently been experimentally explored by Triantafyllis et al. [6], Coo-
per et al. [7], and Kisuki et al. [8]. The interaction and ordering property was formally 
explored by Whitfield and Soffa [9]. The profitability and predictability of optimiza-
tions is also being explored [10] [11]. 

4   Summary 

The important challenge of optimization research today is to better understand 
properties of optimizations and use these properties when decisions about what 
optimization to apply, when to apply it and under what conditions to apply it. Also, it 



4         M.L. Soffa 

tion to apply, when to apply it and under what conditions to apply it. Also, it is im-
perative that we know optimizations are sound and that the implementation of optimi-
zations is robust. We need to develop a foundation that can be used to help us deter-
mine the properties both for existing optimizations and for future ones, and to inte-
grate the properties. Such a foundation would enable us to better understand 
optimizations and help us meet the challenges of emerging technologies.  

References 

[1] Lacey, E., Jones, N.D., Eric Van Wyk, E., Christian Frederiksen, C., Proving Correct-
ness of Compiler Optimizations by Temporal Logic, Proceedings of the ACM 
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland, 
Oregon, (2002) 283-294. 

[2] Lerner, S., Millstein, T., and Chambers, C., Automatically Proving the Correctness of 
Compiler Optimizations, Proceedings of ACM SIGPLAN Conference on Programming 
Language Design and Implementation, (2003) 1-19. 

[3] Necula, G.C., Translation Validation for an Optimizing Compiler, Proceedings of the 
ACM SIGPLAN Conference on Programming Language Design and Implementation, 
Vancouver, British Columbia, Canada (2000) 83-94. 

[4]  Whitfield D., Soffa, M.L., An Approach for Exploring Code Improving Transforma-
tions. ACM Transactions on Programming Languages, 19(6) (1997) 1053-1084. 

[5] Jaramillo, C., Gupta, R., Soffa, M.L., Comparison Checking: An approach to avoid 
debugging of optimized code, ACM SIGSOFT Proceedings of Foundation of Software 
Engineering, (1999) 268-284. 

[6] Triantafyllis, S., Vachharajani, M., Vachharajani, N., August, D., Compiler Optimiza-
tion-space Exploration. 1st International Symposium on Code Generation and Optimiza-
tion (2003) 204-215. 

[7] K. Cooper, K., D. Subramanian, D., Torczon, L., Adaptive Optimizing Compilers for the 
21st Century, Proceedings of the 2001 LACSI Symposium, Santa Fe, NM, USA, Octo-
ber (2001). 

[8]  Kisuki, T., Knijnenburg, P.M.W., O’Boyle, M.F.P., Combined Selection of Tile Size and 
Unroll Factors Using Iterative Compilation, International Conference on Parallel Archi-
tectures and Compilation Techniques (2000) 237-246. 

[9] Whitfield, D., Soffa, M.L. An Approach to Ordering Optimizing Transformations, Pro-
ceedings ACM SIGPLAN Symposium on Principles & Practice of Parallel Program-
ming, (1990) 137-146. 

[10] Zhao, M., Childers, B., Soffa, M.L., Predicting the Impact of Optimizations for Embed-
ded Systems, 2003 ACM SIGPLAN Conference on Languages, Compilers, and Tools 
for Embedded Systems, San Diego, CA. (2003) 1-11. 

[11] Zhao, M., Childers, B., Soffa, M.L., Profit Driven Optimizations, Technical Report, 
University of Pittsburgh, Jan. (2004). 


	1 Introduction
	2 Technical Challenges
	3 Related Research
	4 Summary



