
Actor-Centric Modeling of User Rights

Ruth Breu1 and Gerhard Popp2

1 Research Group “Quality Engineering”, Universität Innsbruck
Institut für Informatik, A-6020 Innsbruck, Austria

Ruth.Breu@uibk.ac.at
2 Software & Systems Engineering, Technische Universität München

Institut für Informatik, D-85748 Garching b. München, Germany
Gerhard.Popp@in.tum.de

Abstract. In this paper we present a novel approach for the predica-
tive specification of user rights in the context of an object oriented use
case driven development process. We extend the specification of meth-
ods by a permission section describing the right of some actor to call the
method of an object. Moreover, we introduce a representation function
that describes how actors are represented internally in the system. As
syntactic and semantic framework we use a first-order logic with a built-
in notion of objects and classes provided with an algebraic semantics.
We demonstrate that our approach can be realised in OCL.

1 Introduction

The requirement of protecting data from unauthorised user access is as old as
multi-user computing. Applications such as ERP systems or health information
systems with hundreds or thousands of users handling sensible data offer so-
phisticated mechanisms for rights modeling. With the new web technologies the
importance of data protection mechanisms will even grow. The more companies
will open their core business processes to external partners the more important
the enforcement of access rights will become.

Data protection is intimately connected with two aspects – authentication
on the one hand side and access control on the other side. Authentication aims
at identifying actors (persons or external systems) interacting with the system.
Access control is concerned with the protection of information resources.

With the prominent RBAC model an adequate paradigm for implementing
access rights has been developed [1,2,3]. Access rights in this model do not adhere
to single users but are associated with roles. Basically each user may have one
or several roles and each role is associated with a set of permissions, where each
permission defines the kind of access (the operation, e.g. read, update) to some
object. Today the RBAC model is one of the most established access models.
This model is supported by many systems like operation systems, data bases
and middleware platforms.

Despite of the role paradigm, data access control remains a complex task in
real applications. In particular, data access control in most cases concerns dif-
ferent layers ranging from the user interface and the application layer to the

M. Wermelinger and T. Margaria-Steffen (Eds.): FASE 2004, LNCS 2984, pp. 165–179, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

166 Ruth Breu and Gerhard Popp

database. Moreover, upcoming inter-organisational applications require novel
(credential-based) techniques for enforcing user rights [4].

Despite the complexity of the task, an aspect neglected so far in the litera-
ture has been the analysis and design phase of user access models. Developing
user right concepts for applications in areas like health care, e-government or
knowledge management requires both an implementation-independent analysis
framework and a step-by-step approach. Moreover, since user access models have
to be developed in close cooperation of system designers and clients user rights
modeling has to be integrated into the requirements engineering process.

In this paper we present an approach to the specification of user access rights
satisfying these needs. In particular, our approach is based on the following three
basic ideas.

First, we conceive user rights modeling as a task within the context of an ob-
ject oriented development method such as the Unified Process [5] or the V-Model
[6]. This means that our method is entirely integrated within the context of busi-
ness process modeling, use case modeling and systems analysis. More generally,
the approach we present in this paper is part of a process model for security
engineering [7]. This process model extends an object oriented kernel model by
techniques, artifacts and activities supporting the systematic construction of
security-critical systems.

Second, our method supports the stepwise development of user right models.
This ranges from informal textual statements to a complete predicative specifi-
cation. The implementation independent specification of user rights has several
advantages. The most important one is that the model developed is a compact
and concise representation of knowledge involving many parts of the implemen-
tation. Moreover, complete user right models have the potential to be automat-
ically transformed into code.

Third, our approach is provided with a formal semantics in an algebraic
setting. On the syntactic side we extend the specification of each method by
a permission section describing for each actor (or role) if this actor has the
right to call this method on an object of the given class. Since actors play a
central role for the specification of access permissions we call our method actor-
centric. The permission is described by a first-order predicate over a structure
with a built-in notion of objects or, in the context of UML, by an OCL state-
ment [8,9].

Additionally, we introduce a representation function to describe how actors
are represented internally in the system. This representation function is an ab-
straction of the authentication procedure in the implementation and allows spec-
ifications of the kind “the user has the right to view his/her own data”. The
semantics of permissions and of the representation function can be embedded in
a straight forward way in the algebraic theory presented in [10,11].

Related work in the literature mainly deals with the RBAC approach (e.g.
[1,2,3]). Our approach goes beyond in several respects. First, we are concerned
with the development process of user right models in the context of object ori-
ented modeling techniques. Moreover, we provide an increased expressiveness by
supporting arbitrary first-order predicates to specify user rights.

Actor-Centric Modeling of User Rights 167

An approach with similar expressiveness is [12]. While this approach has
been designed with the primary goal of code generation, our focus has been the
development of concepts adequate for the whole development process. A scheme
of user rights modeling in the context of use cases has been first presented by [13].
We overtake some of these ideas, but present a more elaborate theory. Further
references in a specific setting are [14,15] dealing with the development process
and checking of user rights in SAP applications.

The rest of this paper is organised as follows. In section 2 we give some back-
ground information. Section 2.1 gives an overview of the artifacts of a kernel
object oriented method our approach is based on. Section 2.2 sketches the syn-
tactical and semantical specification framework. A formal model of user rights
is given in section 3, which is divided into a description of the representation
function (see section 3.1) and permissions (section 3.2). The specification of
permissions in OCL is presented in section 4 and extensions are introduced in
section 5. In section 6 a conclusion is drawn.

In the sequel we assume the reader to be familiar with basic concepts and
notations of object oriented modeling with UML and OCL.

2 Basics

In this section we first give a short overview of the modeling context our approach
is based on. Throughout this paper we will use as running example a case study
based on TimeTool, a software project that was realised in our research group.
TimeTool is a portion of a project management tool allowing team workers to
account worked hours for projects and allowing project managers to supervise
project budgets.

2.1 The Core Object Oriented Artifacts

In this section we will shortly characterise the core artifacts of the object oriented
process together with the dependencies.

The Business Model captures the organizational environment of the IT-
system. The model describes

– Who (or, more precisely, what roles) act in the business domain (actors)
– What activities the actors perform
– Which objects the activities need as input and which objects they produce

as output

In TimeTool the actors are the project manager, the team worker and the ad-
ministrator. Example activities are Account Worked Hours and Post Adjustment
(performed by the team worker or the project manager) and Prepare Monthly
Report (performed by the project manager). Example classes in the application
domain are the project, the accounting and the team worker.

Actors, activities and objects are modeled by several diagrams. In the UML
context this comprises activity diagrams modeling business processes and activ-
ities, and class diagrams modeling the organizational structure of the company
and the structure of static concepts (users, projects, accountings, etc.).

168 Ruth Breu and Gerhard Popp

The System Requirements describe a black box view of the system to be
developed based on the concept of use cases. Each use case corresponds to a
coherent interaction between some actor and the system. The use cases together
describe the whole functionality of the system. Basic concepts of the use case
model are

– the actors interacting with the system
– the use cases
– the objects being involved in the use cases

In extension to business modeling the actors in the use case model might not
only represent human beings (like the team worker and the project manager)
but also external systems. For instance, additional actors in TimeTool are the
web browser and the human resources system which hosts the databases with
available staff and to which the system connects to for data import. Sample use
cases are Account Worked Hours, Adjustment Posting and View Statistics.

The System Requirements basically consist of two descriptions, the use case
diagram together with the textual description of use cases, and the class model
describing the static concepts.

Commonly, the class model of the System Requirements is the same or a
refined version of the class model of the Business Model. Figure 1 depicts the
class model for TimeTool.

ProjectInformation Project Activity ActivityType

Administrator Accounting

description : String

name : String
address : String
email : String
pswd : String
userid : String
state : UserState

name : String
address : String
email : String
pswd : String
userid : String

accountDate : Timestamp
requiredHours : Real
annotation : String

name : String
budget : Real

plannedStart : Timestamp
plannedEnd : Timestamp
realStart : Timestamp
realEnd : Timestamp
plannedHours : Real
state : ActivityState

name : String

1

*

*

1
1

*

*

pr
oj

ec
t-

m
an

ag
er

*

**

*

1 11 1 *

User

Fig. 1. Class Diagram of the TimeTool Example

The Application Architecture refines the level of description. More pre-
cisely, the system is divided into a set of logical components. Each component
is responsible for a portion of the system structure and behaviour. Interfaces
enable the independent development of the system components.

Concerning the design of the system behavior the textual descriptions of
the use cases are refined into scenarios in the Application Architecture. The

Actor-Centric Modeling of User Rights 169

scenarios describe the use cases as message flows between objects. That way,
an object oriented view of the whole system is achieved. In the UML context
the Application Architecture typically consists of the following diagram types:
One or several component diagrams containing components, interfaces and the
related classes, a set of sequence diagrams each one related to some use case,
and state diagrams modeling complex processes or class interfaces.

Business Model, System Requirements and the Application Architecture have
in common that they rely on an application oriented system view and are inde-
pendent of any technical platform.

The Software Architecture is based on an implementation oriented view of
the system. In this model the hardware and software platform is chosen and
roughly described. Since we will not deal with the platform dependent level in
this paper we do not go into more detail at this place.

2.2 The Specification Framework

As specification framework we use the specification language P-MOS [10,11].
P-MOS supports first-order predicates with a built-in notion of objects and is
provided with a semantics in an algebraic setting. The kernel syntactic constructs
can be found below.

P-MOS can be compared in its expressiveness with OCL but provides the full
flexibility of an algebraic specification language. In our approach P-MOS serves
as an intermediate language for developing concepts and providing a semantics.
As we will demonstrate OCL can be used as target language within our method.

P-MOS Expressions. Each P-MOS expression is based on a class diagram.
The expression describes a navigation in an object structure delivering some
result.

Semantically each P-MOS expression is interpreted in the context of a so-
called object environment describing a concrete object structure over the class
diagram given. P-MOS is a hybrid language which means that we distinguish
between basic types and class types. While an expression of some basic type
(such as Bool or int) denotes a value (true, false, 0, 1, . . .) an expression of a
class type denotes a reference to an object in the given object structure.

P-MOS expressions are built by the application of one of the six rules that
can be found below. We assume to be given a set of basic data types (such as
Bool and int) and type constructors. In particular, we assume a type constructor
Set[] describing sets of arbitrary elements.

(1) Basic Functions. Let f: (s1, . . . , sn) s be a function in a basic data type
(such as +: (int, int) int or true: () Bool). If e1, . . ., en are P-MOS expressions
of type s1, . . ., sn then f(e1, . . ., en) is a P-MOS expression of type s.

(2) Variables. Let X be a set of typed variables. Then each variable x of type s
is a P-MOS expression of type s.

170 Ruth Breu and Gerhard Popp

(3) Attributes. Let A:T be some attribute of class C (T either being some class
name or some basic data type) and e be some P-MOS expression of type C.
Then e.A is a P-MOS expression of Type T.

(4) Assocations. Let us assume an assocation

C D�role
a. . .b

in the class diagram. Then e.role is a P-MOS expression of type Set[D] (D,
resp. in the special case a. . .b = 1. . .1) if e is expression of type C. If the role
name is missing then the navigation expression is constructed by e.d (the class
name D written in lower case).

(5) Generalisation. If e is P-MOS expression of type C and C is subclass of
class D (in the transitive closure) then e is P-MOS expression of type D.

(6) State-Based Functions. Let funct f:(T1,. . .,Tn) T be a state based function
(where T1,. . .,Tn, T are either basic types or classes) and e1, . . ., en are P-
MOS expressions of type T1,. . .,Tn. Then f(e1, . . ., en) is a P-MOS expression
of type T.

A state-based function describes a generic navigation in the given object
structure based on n parameters and delivering a result of type T (either a
basic value or some object reference). The properties of a state-based function
are defined by P-MOS predicates as defined below.

Query operations in the class diagram include state-based functions in the
following way:

For each query operation f:(x1:T1,. . .,xn:Tn):T in class C we define a state
based function funct f:(C,T1,. . .,Tn) T and write expressions f(e,e1, . . ., en) as
e.f(e1, . . ., en) in the usual way.

P-MOS Predicates. Based on the notion of P-MOS expressions P-MOS pred-
icates are formed in the usual way as given in table 1.

Table 1. P-MOS Predicates

P-MOS Predicate Element Description

e1 = e2 e1, e2 P-MOS expressions of the same type
¬P, P1∨P2, P1∧P2, P1⇒P2, P1⇔P2 P, P1, P2 predicates
∀x:T.P, ∃x:T.P P predicate, x variable, T type expression

Actor-Centric Modeling of User Rights 171

Table 2. Access Rights from Team Workers and Project Managers

actor → Team Worker Project Manager
↓ class

Accounting R: all own accountings R/W/C: all accountings of
(independent of the activities of own
project) projects (i.e. where

W/C: own accountings actor is the project
from released manager of)
activities

Activity R: all activities from R/W: all activities of
projects allocated own projects
to the actor C: –

W/C: –

Project R: all projects R: all projects
W/C: – W/C: –

User R: all users R: all users
W/C: – W/C: –

3 Formal Modeling of User Rights

The central notion for capturing individuals and their roles in business process
modeling and use case modeling is that of an actor. For instance, in the business
process model an actor stands for the person (or, more precisely, for the role of
this person) being involved in the business process. In extension, actors in the
use case modeling also may stand for the roles external systems play.

TeamWorker
has permission to

Project

ProjetInfo

Activity

ActivityType

User

Administrator

Accounting

Fig. 2. Actors have Permissions on Objects.

The key idea to the modeling of user rights in our approach is that actors have
some kind of permissions with respect to objects of the class model (see Figure
2). In this respect our user right model both refers to the model containing the
actor (business process model or use case model) and to the class model. The
separation of role concept and classes has the advantage that the way how roles
are represented in the system has not to be fixed within requirements elicitation.

In early phases of the development we may wish to specify user rights in an
informal, textual way. Table 2 depicts such a textual user rights model for our
case study. The informal model contains coarse-grained permission categories

172 Ruth Breu and Gerhard Popp

(R = Read, W = Write, C = Create) for each class. The textual statements
characterise the objects of the given class which the actor may read, write or
create. For large parts of an application such a coarse-grain description may be
sufficient. For critical parts we require more fine-grained ways to express user
rights. For that reason we offer a specification mechanism at the level of methods.
More precisely, each method m in class C is associated with a permission

perm C,m

specifying under which condition an actor has access to call the method on an
object of the given class. In section 5 we will present a mechanism to aggregate
permissions supporting a more coarse-grained level of detail.

What is missing in the framework sketched so far is a connection between
actors and classes. Such a connection is required in cases where permissions refer
to the actor himself like in the example the team worker has read permissions
to own accountings. In order to support such kinds of specifications we provide
a function

rolerep

mapping actors to objects of some class. This class (in most cases some class like
User) is the internal representation of actors. In fact the representation function
is an abstraction of the authentication procedure in the implementation. More
information on that will be given in section 3.1.

To conclude this section we shortly summarise in table 3 the development
steps of a user rights model in the context of the object oriented process.

Table 3. Development Steps of a User Rights Model

Development Step Activities

Business Process Model Informal description of actor permissions in tables.
Use Case Model Adaptation of the informal model to the actors of the

use case model (e.g. including extended systems).
If possible development of a first formal model.

Application Architecture Development of a complete formal model.

In the context of iterative development the abstract user right model has to
be adapted and extended in each iteration (e.g. concerning new classes).

In the sequel we will present the formal mechanism of method permissions
(section 3.1) followed by the representation function (section 3.2).

3.1 The Function rolerep

As motivated in the preceding section the function rolerep maps actors to their
internal representation. In order to provide a homogeneous specification frame-
work within P-MOS we internally extend the class diagram by a class hierarchy
representing the actor roles.

Actor-Centric Modeling of User Rights 173

In particular, we introduce a superclass ACActor modeling all kinds of actors.
Subclasses of the class ACActor are all actors defined in the business process or
use case model, respectively. Actor hierarchies in the use case model are trans-
formed in a corresponding class hierarchy. In the example, we obtain subclasses
ACAdministrator, ACTeamWorker and ACProjectManager, where ACProject-
Manager is a subclass of ACAdministrator (see Figure 3). In our model actors

+

Actor

+

ACActor

passwd
userid

Project

ProjetInfo

Activity

ActivityType

User

ACProject-
Manager

AC
Administrator

AC
TeamMember

ACActor

Administrator Accounting

Adjustment
Posting

Create New
Projects

Modify
Posting

TeamWorker

Administrator

Project-
Manager

Use Case Model and/or
Activity Model

Domain Model

I II

III IV

1

1 *

*

1

1

*

*
*

*

*

*

1
1

1

pr
oj

ec
t

m
an

ag
er

is of
kind

Fig. 3. The Extension of Actor Classes for an Actor–User Mapping.

also may have attributes. These attributes represent the input that is required
to authenticate the actor (human being or external system) within the system.
In most cases the attributes are the userid and the password, but also biometric
data, credentials or “no information” (if the actor is anonymous to the system)
are possible.

Formally, the (state-based) representation function rolerep has the function-
ality

funct rolerep : (ACActor) Object

where Object is the superclass of all classes (like in Java).

174 Ruth Breu and Gerhard Popp

The function rolerep is part of the actor class ACActor and can be specified
in this class for all actor types, or in each subclass for specific actor types. Equiv-
alently the function rolerep can be conceived as query operation of functionality
rolerep : ()Object.

As example we present the specification of the rolerep function for the two
actors TeamWorker and Administrator of the TimeTool example.

ACTeamWorker

passwd: String
userid: String

rolerep : () Object
∀ tw : ACTeamWorker . ∀u : User . tw.rolerep () = u ⇒

u.state = �active ∧
tw.userid = u.userid ∧ tw.passwd = u.passwd

ACProjectManager

rolerep : () Object
∀ pm : ACProjectManager . ∀u : User . pm.rolerep () = u ⇒

∃ p : Project . p.projectmanager = u

The specification of actors including the representation function in our mod-
eling framework is part of the actor description in the use case model. During
construction the representation function is implemented by the authentification
procedure.

3.2 Permissions

Permissions are method preconditions associated with the semantics that the
corresponding method can only be executed if the permission expression is eval-
uated to true at the beginning of the execution. Since the basis for our approach
is the fail-safe defaults principle, every method execution which is not permit-
ted explicitly through a permission is prohibited. Each method permission may
depend on the calling actor, on the actual object, and on the actual parameters
of the method call. Thus, permissions are state-based functions of the kind

funct perm C,m : (ACActor, C, T1, . . . , Tn) Bool

where C is a class, and m a method in C of the form m-id : (x1 : T1, . . . , xn :
Tn) T (In the special case of create methods or class methods the parameter of
type C is omitted).

The properties of method permissions are specified by P-MOS predicates
describing conditions over the given object structure.

In the following we will give a few examples of permission specifications.
We model some access rights from Table 2 for the team worker and the project
manager of our TimeTool example.

Actor-Centric Modeling of User Rights 175

Example 1a: As first example we specify the permission that a team worker
can read all his own accountings, independent of the project the accounting
belongs to. As sample we use the method getAccountingDate() as representative
for a reading method.

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep ()
⇒ perm Accounting, getAccountingDate(tw, a)

The expression states, that the user object, that is linked with the accounting
object must be the internal representation of the given team worker. Only if this
expression evaluates to true, the team worker has access to the getAccounting-
Date() method of the class Accounting.

Example 1b: As second example we consider the permission that a project
manager can read all accountings associated with his own projects. Again we
specify the permission of getAccountingDate.

∀ pm : ACProjectManager . ∀ a : Accounting .

a.activity.project.projectmanager = pm.rolerep ()
⇒ perm Accounting, getAccountingDate(pm, a)

Example 2: A further permission for the team worker is, that he can only write
accountings to released activities. Activities are associated with a state which
may be set to released or frozen. In this way, it can be prohibited that somebody
manipulates accounting objects related to finished activities. The permission is
given in the following predicate:

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep () ∧
a.activity.state = �released

⇒ perm Accounting, writeAccountingDate(u, a)

Example 3: As last example we study the permission of a create method. The
project manager can only create accountings from activities of own projects.
Here we assume for short, that the create method has the activity and the user
the accounting refers to as only attributes.

∀ pm : ACProjectManager . ∀ ac : Activity . ∀u : User .

ac.project.projectmanager = pm.rolerep ()
⇒ perm Accounting, create(pm, ac, ac)

176 Ruth Breu and Gerhard Popp

Permission Inheritance. There are two aspects where the specification of
permissions interferes with the concept of ineritance.

The first aspect is related with the hierarchy of actors (see quarter IV of
Figure 3). In our example the project manager is a special kind of team worker.
Thus, for permissions of a project manager not only the axioms for project man-
agers but also for team workers hold. For instance, referring to Example 1 and 2,
a project manager has reading access both to his own accountings (independent
of the projects) and to all accountings of his own project (independent of the
user).

The second aspect is related with inheritance in the domain model referring
to the objects that we want to protect with our permissions. In the same way
as above, methods of subclasses inherit the permissions of their superclasses. In
addition, we provide the possibility to let permissions unspecified in superclasses
and deferring their specification to their subclasses.

4 Specification of Access Policies in OCL

Regarding tool support for the modelling of access rights and for implementa-
tion aspects the formal specification in the framework presented has to be trans-
formed into a specification language, designed especially for use in the context
of diagrammatic specification languages such as UML.

In the following we show the realisation of our concepts within the Object
Constraint Language (OCL) [8,9] that is part of UML. We extend the spec-
ification section of a method (comprising the pre- and postcondition) by an
additional permission section. In this section the method permission is specified
by an OCL-expression using the variables of the method, the actual object and
the actor which is handled as parameter of the permission section.

The representation function rolerep is treated as query operation of the actor
hierarchy as introduced in section 3.1 and may be used in the permission section.

Example 1: A team worker can read all his own accountings, independent of
the project the accounting belongs to (exemplified by the permission of getAc-
countingDate).

context Accounting :: getAccountingDate()
perm (act : ACTeamWorker):

self.user = act.rolerep()

Example 2: A team worker can only write own accountings of released activi-
ties.

context Accounting :: writeAccountingDate()
perm (act : ACTeamWorker):
self.user = act.rolerep() and
self.activity.state = ActivityState::released

Actor-Centric Modeling of User Rights 177

Example 3: The project manager can only create accountings for activities of
own projects, i.e. activities of projects, where he is project manager of.

context Accounting :: create(a : Activity, u : User)
perm (act : ACProjectManager):
a.project.projectmanager = act.rolerep()

Regarding the semantics of a method permission it has to be made clear
that the given actor is not the object directly calling the method but the role
initiating the call of this method from outside the system (eventually causing
a chain of method calls). In the implementation the calling actors can be han-
dled by an additional method parameter or, like in J2EE, by some method call
infrastructure.

5 Extensions

As explained in the previous section our basic view of user rights is that of
an actor having permission to perform a certain method on a certain object.
This fine-grained paradigm provides a maximum of flexibility for specifying any
kind of user permissions in all phases of the development. However, it is clear
that for practical applications we need an aggregation mechanism for supporting
more coarse-grained specifications. We therefore introduce the notion of method
categories. A method category CAT basically is a set of methods

CAT ⊆ METH

where METH is the set of all methods (sorted by the classes they belong to)
in the system. Categories may contain methods of a single class (we use the
class name as index in this case) or of several classes. Moreover, categories may
comprise other categories, i.e. categories may be structured in a hierarchical way.
We define coarse-grained permissions

perm CatC
: (ACActor, C) Bool

for each category CatC containing methods of class C. A category permission
induces method permissions in the obvious way.

∀ a : ACActor, o : C, a1 : T1, . . . , an : Tn .

perm CatC
(a, o) ⇒ perm C,m(a, o, a1, . . . , an)

for all methods m of class C in CatC . Of course, such a category permission
may only depend on the actor and the actual object.

If a category Cat comprises methods of different classes (and create methods)
we define permissions.

perm Cat : (ACActor) Bool

178 Ruth Breu and Gerhard Popp

and induce the following method permissions for all methods m of class C in
Cat.

∀ a : ACActor, o : C, a1 : T1, . . . , an : Tn .

perm Cat(a) ⇒ perm C,m(a, o, o1, . . . , on)

Category permissions of this kind only depend on the actor initiating the method
call. Concerning the application of this concept we provide a set of predefined
categories:

READC the category of all methods reading some attribute of class C
UPDATEC the category of all methods updating some attributes of class C
CREATEC the category of all creation methods of class C

Moreover, we define the get and set methods of attributes to be predefined
members of the READC and UPDATEC category, respectively. Please notice
that there may be methods both belonging to the READC and the UPDATEC

category.
As an example the informal specifications of Table 2 can be immediately

expressed in a corresponding way with method categories. E.g. the clause ”The
team worker can read all own accountings” can be expressed with the following
category permission:

∀ tw : ACTeamWorker . ∀ a : Accounting .

a.user = tw.rolerep ()
⇒ perm READAccounting

(ac, a)

The set of predefined method categories may be replaced and complemented by
user-defined categories. This is advisable if a whole part of the class diagram
is associated with the same kind of permissions (e.g. the permission true). A
further typical case in which we need a more fine-grained categorisation is the
following. The attributes of a class (e.g. Person) are divided into critical (e.g.
salary of a person) and uncritical ones (e.g. name and address of a person).

6 Conclusion

In the preceding sections we introduced a formal specification framework for
the modeling of user rights. Our method is novel in the respect that it is com-
pletely integrated in the concepts of use case driven object oriented modeling
and provides the full expressiveness of first-order logic. We separate the aspects
of authentication and data access and thus enable a concise specification of per-
missions connecting roles and their internal representation. We both support the
specification of permissions on the most fine-grained level of methods and on a
coarse-grained level based on the notion of method categories.

Currently we conduct two case studies in real contexts (health information
systems, e-government) in order to validate our approach. Future work will be

Actor-Centric Modeling of User Rights 179

done in several directions. First of all we will develop tool support for our method.
This comprises the possibility to develop method permissions, actor specifica-
tions and the definition of categories and category permissions within some UML
tool. Moreover, our concept of specifying permissions well be applied in imple-
mentation oriented contexts. In the project SECTINO we develop a framework
for specifying access policies for inter-organisational workflows based on Web
Services. Besides this, we work on a testing environment testing and analysing
rights in collaborative systems.

References

1. Ferraiolo, D.F., Chandramouli, R., Kuhn, D.R.: Role-Based Access Control. first
edn. Artech House Publishers (2003)

2. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST Standard for Role-Based Access Control. In: ACM Transac-
tions on Information and System Security. Number 3. ACM (2001) 224–274
http://csrc.nist.gov/rbac/rbacSTD-ACM.pdf.

3. Sandhu, R.S.: Role Hierarchies and Constraints for Lattice-Based Access Controls.
In: Proceedings of the European Symposium on Research in Security and Privacy.
(1996)

4. Miller, J., Fan, M., Sheth, A.P., Kochut, K.: Security in Web-Based Workflow
Management Systems. In: Proceedings of the International Workshop on Research
Directions in Process Technology, Nancy, France (1997)

5. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison Wesley Longman, Inc. (1999)

6. http://www.v-modell.iabg.de.
7. Breu, R., Burger, K., Hafner, M., Jürjens, J., Popp, G., Wimmel, G., Lotz, V.: Key

Issues of a Formally Based Process Model for Security Engineering. In: Proceedings
of the 16th International Conference on Software & Systems Engineering and their
Applications (ICSSEA03), Paris, December 2 - 4, 2003. (2003)

8. Warmer, J., Kleppe, A.G.: The Object Constraint Language – Precise Modeling
with UML. first edn. Addison Wesley Longman, Inc. (1999)

9. OMG: Unified Modeling Language Specification – Version 1.5 (2003)
10. Breu, R.: An Integrated Approach to Use Case Based Development (2004) To

appear.
11. Breu, R.: Objektorientierter Softwareentwurf – Integration mit UML. Springer-

Verlag (2001) in German.
12. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based Modeling Lan-

guage for Model-Driven Security. In: Proceedings LNCS 2460, Springer (2002)
426–441

13. Fernandez, E., Hawkins, J.: Determining role rights from use cases. In: Workshop
on Role-Based Access Control, ACM (1997) 121–125

14. Höhn, S., Jürjens, J.: Automated Checking of SAP Security Permissions. In:
Proceedings of the 6th IFIP WG 11.5 Working Conference on Integrity and Internal
Control in Information Systems (IICIS), Nov. 13-15, 2003, Lausanne, Switzerland,
Kluwer (2003)

15. Services, I.B.C.: SAP Berechtigungswesen, Design und Realisierung von Berech-
tigungskonzepten f r SAP R/3 und SAP Enterprise Portal. SAP Press (2003) in
German.

	1 Introduction
	2 Basics
	2.1 The Core Object Oriented Artifacts
	2.2 The Specification Framework

	3 Formal Modeling of User Rights
	3.1 The Function textit {rolerep}
	3.2 Permissions

	4 Specification of Access Policies in OCL
	5 Extensions
	6 Conclusion
	References

