
An Implementation of Budget-Based Resource
Reservation for Real-Time Linux�

C.S. Liu, N.C. Perng, and T.W. Kuo

Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan 106, ROC

Abstract. The purpose of this paper is to propose a budget-based RTAI
(Real-Time Application Interface) implementation for real-time tasks
over Linux on x86 architectures. Different from the past work, we focus
on extending RTAI API’s such that programmers could specify a com-
putation budget for each task, and the backward compatibility is main-
tained. Modifications on RTAI are limited to few procedures without any
change to Linux kernel. The feasibility of the proposed implementation
is demonstrated by a system over Linux 2.4.0-test10 and RTAI 24.1.2 on
PII and PIII platforms.

1 Introduction

Various levels of real-time support are now provided in many modern commer-
cial operating systems, such as Windows XP, Windows CE .NET, and Solaris.
However, most of them only focus on non-aging real-time priority levels, in-
terrupt latency, and priority inversion mechanisms (merely at very preliminary
stages). Although real-time priority scheduling is powerful, it is a pretty low-level
mechanism. Application engineers might have to embed mechanisms at different
levels inside their codes, such as those for frequent and intelligent adjustment
of priority levels, or provide additional (indirect management) utilities to fit the
quality-of-services (QoS) requirements of each individual task.

In the past decade, researchers have started exploring scheduling mecha-
nisms that are more intuitive and better applicable to applications, such as
budget-based reservation [1,2,3] and rate-based scheduling [4,5,6,7]. The con-
cept of budget-based reservation, that is considered as an important approach
for applications’ QoS support, was first proposed by Mercer, et al. [8]. A
microkernel-based mechanism was implemented to let users reserve CPU cy-
cles for tasks/threads. Windows NT middlewares [1,2] were proposed to provide
budget reservations and soft QoS guarantees for applications over Windows NT.
REDICE-Linux implemented the idea of hierarchical budget groups to allow
tasks in a group to share a specified amount of budget [3]. There were also many
other research and implementation results on the QoS support for real-time ap-
plications. In particular, Adelberg, et al. [9] presented a real-time emulation
� This research was supported in part by the National Science Council under grant

NSC91-2213-E-002-104

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 226–233, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



An Implementation of Budget-Based Resource Reservation 227

program to build soft real-time scheduling on the top of UNIX. Childs and In-
gram [10] chose to modify the Linux source code by adding a new scheduling
class called SCHED QOS which let applications specify the amount of CPU
time per period1. Abeni, et al. presented an experimental study of the latency
behavior of Linux [11]. Several sources of latency was quantified with a series of
micro-benchmarks. It was shown that latency was mainly resulted from timers
and non-preemptable sections. Swaminathan, et al. explored energy consumption
issues in real-time task scheduling over RTLinux [12].

The purpose of this paper is to explore budget-based resource reservation for
real-time tasks which run over Linux and propose its implementation. We first
extend Real-time Application Interface (RTAI) API’s to provide hard budget
guarantees to hard real-time tasks under RTAI. We then build up an imple-
mentation for soft budget guarantees for Linux tasks with LXRT over that for
hard real-time tasks under RTAI. Backward compatibility is maintained for the
original RTAI (and LXRT) design. The software framework and patch for the
proposed implementation is presented, and we try to minimize the modifications
on RTAI without any change to the Linux source code. Modifications on RTAI
are limited to few procedures, such as the timer interrupt handler, the RTAI
scheduler, and rt task wait period(). The feasibility of the proposed imple-
mentation is demonstrated over Linux 2.4.0-test10 and RTAI 24.1.2 on PII and
PIII platforms.

The rest of the paper is organized as follows: Section 2 summarizes the layered
architecture and the functionalities of RTAI. Section 3 presents our motivation
for this implementation design. Section 4 is the conclusion.

2 RTAI

RTAI is one the most popular real-time patches to let Linux provide deterministic
and preemptive performance for hard real-time tasks [13]. LXRT is an advanced
feature for RTAI. It allows users to develop real-time tasks using RTAI’s API
from the Linux user space. While in the user space, real-time tasks have the full
range of Linux system calls available. Besides, LXRT also provides the same set
of RTAI API calls available for RTAI applications in the Linux user space. When
a real-time task over Linux is initialized (by invoking rt task init), a buddy
task under RTAI is also created to execute the RTAI function invoked by the
soft real-time task running in the Linux user space. The rt task wait period()
serves as an example function to illustrate the interactivity between a real-
time task and its corresponding buddy task, where rt task wait period() is
to suspend the execution of a real-time task until the next period. When a
real-time tasks over Linux invokes rt task wait period() via 0xFC software
trap, the corresponding buddy task is waken up and becomes ready to execute

1 The approach is very different from that of this paper. We intend to propose an
RTAI-based implementation to deliver budget-based reservations to hard and soft
real-time applications.



228 C.S. Liu, N.C. Perng, and T.W. Kuo

rt task wait period(). In the invocation, the buddy task delays its resump-
tion time until the next period, and LXRT executes lxrt suspend() to return
CPU control back to Linux.

We refer real-time tasks (supported by RTAI) in the Linux user space as
real-time LXRT tasks for future discussions, distinct from real-time tasks under
RTAI (referred to as real-time RTAI tasks). Note that all tasks under RTAI
are threads. For the rest of this paper, we will use terms tasks and threads
interchangeably when there is no ambiguity.

3 Budget-Based QoS Guarantee

The concept of budget-based resource reservation is considered as a high-level re-
sourse allocation concept, compared to priority-driven resource allocation. Each
real-time task τi is given an execution budget Wi during each specified period Pi.
The computation power of the system is partitioned among tasks with QoS re-
quirements. The concept of budget-based resource reservation could provide an
intuitive policy that ensures an application with resource allocation can always
run up to its execution budget. Although some researchers have proposed ex-
cellent implementation work and designs for budget-based resource reservations
in Linux (or other operating systems) or emulation of real-time support over
Linux, little work is done on the exploring of the implementations for resource
reservations over both Linux and RTAI (that is considered under Linux), and
even for real-time LXRT tasks. Note that real-time LXRT tasks run over Linux,
but they also invoke RTAI services.

3.1 Semantics and Syntax of Budget-Based RTAI APIs

A real-time RTAI task can be initialized by the RTAI API rt task init()
with the entry point of the task function, a priority, etc. The invocation of
rt task init() creates the corresponding real-time RTAI task but leaves it
in a suspended state. Users must invoke rt task make periodic() to set the
starting time and the period of the task. A periodic real-time RTAI task is
usually implemented as a loop. At the end of the loop, the real-time RTAI task
invokes rt task wait period() to wait for the next period.

Non-root users develop real-time tasks in the Linux user space with LXRT.
All inline functions in rtai lxrt.h do a software interrupt 0xFC to request
RTAI services, where Linux system calls use the software interrupt 0x80. The
interrupt vector call rtai lxrt handler() is to pass parameters and to transfer
the execution to the corresponding buddy task in the kernel space. A real-time
LXRT task can be also initialized by rt task init(), which resides in the header
file rtai lxrt.h and differs from the RTAI counterpart. This API generates a
buddy task in the kernel space for the real-time LXRT task to access RTAI
services. Users then do the same work as they program a real-time RTAI task.

In order to support budget reservation, we revise and propose new RTAI
API’s as follows: A real-time RTAI/LXRT task with budget-based resource



An Implementation of Budget-Based Resource Reservation 229

reservation could be initialized by invoking rt task make periodic budget(),
instead of the original rt task make periodic(). The format of this new func-
tion is exactly the same as the original one, except that an additional parameter
for the requested execution budget is provided. Under this model, a real-time
task τi can request an execution budget Wi for each of its period Pi. Suppose
that the maximum execution time of τi is Ci, and Ci ≤ Wi. The execution of
τi will remains the same without budget reservation because τi always invokes
rt task wait period() before it runs out of its budget. It is for the backward
compatibility of the original RTAI design. When Ci > Wi, the execution of τi

might be suspended (before the invocation of rt task wait period()) until the
next period because of the exhaustion of the execution budget. The remaining
execution of the former period might be delayed to execute in the next period. If
that happens (e.g., Ci,j > Wi, where Ci,j denotes the execution time of the task
in the j-th period), then the invocation of rt task wait period() (that should
happen in the former period) in the next period (i.e., the (j+1)-th period) will be
simply ignored. The rationale behind this semantics is to let the task gradually
catch up the delay, due to overrunning in some periods (that is seen very often
in control-loop-based applications).

3.2 An Implementation for Budget-Based Resource Reservation

Hard Budget-Based Resource Reservation. Additional attributes are now
included in the process control block of real-time RTAI tasks (rt task struct).
We revise some minor parts of the RTAI scheduler (rt schedule()) and the
timer interrupt handler (rt timer handler()) to guarantee hard budget-based
resource reservation.
struct rt_task_struct {

...
// appended to provided budget-based resource reservation
RTIME assigned_budget;
RTIME remaining_budget;
int rttimer_flag;
int wakeup_flag;
int if_wait;
int force_sig;

};

Additional members assigned budget and remaining budget are for the
reserved execution budget and the remaining execution budget of the corre-
sponding task in a period, respectively. The remaining execution budget within a
period is modified whenever some special event occurs, such as the changes of the
task status. rttimer flag serves as a flag to denote whether the corresponding
real-time task is suspended by a timer expiration or a rt task wait period()
invocation. wakeup flag is to denote that the corresponding real-time task is
suspended because of budget exhaustion. if wait is used to count the num-
ber of delayed invocations of rt task wait period(), where an invocation is
considered delayed if it is not invoked in the supposed period because of bud-



230 C.S. Liu, N.C. Perng, and T.W. Kuo

get exhaustion. force sig is set when a budget-related signal is posted to the
corresponding LXRT task.

The implementation of budget-based resource reservation in RTAI must con-
sider two important issues: (1) The correct programming of the timer chip (e.g.,
8254). (2) The behavior of rt task wait period(). Besides, the RTAI scheduler
(rt schedule()) and the timer interrupt handler (rt timer handler()) must
also be revised to guarantee hard budget-based resource reservation: Whenever
the timer expires, rt timer handler() is invoked. rt timer handler() is used
to re-calculate the next resume times of the running task and the to-be-awaken
task and then trigger rescheduling. We propose to revise rt timer handler()
as follows to include the considerations of task budgets.

1 static void rt timer handler(void) {
2 ...
3 // calculate the remaining budget
4 if (new task−>tid != 0) {
5 temp time = rt times.tick time + new task−>remaining budget;
6 if (temp time < rt times.intr time) {
7 // assigned budget is used up
8 new task−>remaining budget = 0;
9 rt times . intr time = temp time;

10 } else {
11 // assigned budget is not used up
12 new task−>remaining budget −= (rt times.intr time−rt times.tick time);
13 }
14 }
15 ...
16 }

The value in rt times.intr time denotes the next resume time of the run-
ning real-time RTAI task. Line 5 derives the resume time based on the remaining
budget of the task, where rt times.tick time is the current time. If the task
uses up its budget before the next resume time (i.e., rt times.intr time), then
code in Lines 8 and 9 should modify the next resume time to the time when
budget is used up. Otherwise, the remaining budget time at the next resume
time is recalculated in Line 12.

As explained in previous paragraphs, the semantics of
rt task wait period() is to ignore the invocation of the function that should
happen in some former periods. rt timer handler() is also revised to reflect
such semantics: If there is no budget remained, and the invocation is for hard
budget-based resource reservation, then the remaining budget and the next ready
time (i.e., the resume time) of the running real-time RTAI task must be reset.

Soft Budget-Based Resource Reservation. Let a real-time LXRT task
Task1 be initialized by invoking rt task init(), and a corresponding buddy
RTAI task RT Task1 is created. When the next period of Task1 arrives, Task1
resumes through the following sequence, as shown in Fig. 1: When the timer
expires, let RTAI schedule RT Task1. RT Task1 is suspended right away be-



An Implementation of Budget-Based Resource Reservation 231

Task1

RT_Task1

Pi

Budget

Buddy

Linux Kernel

User Space

Task1 resumes The timer expires
Signal to

wait_period()

LXRT

wait_period()

RTAI modules

Task1 resumes

RTAI

wait_period()

Fig. 1. Scheduling flowchart of the revised LXRT

cause it is a buddy task. The CPU execution is then transferred to the Linux
kernel such that Task1 is scheduled. On the other hand, when Task1 requests
any RTAI services through LXRT, such as rt task wait period() (in the user
space), Task1 is suspended, and RT Task1 resumes its execution to invoke the
requested RTAI service (i.e., rt task wait period() in RTAI). The budget in-
formation of each real-time LXRT task is maintained in the rt task struct of
its corresponding buddy task.

There are two major challenges in the implementation of soft budget-based
resource reservation for real-time LXRT tasks: (1) How to interrupt a real-time
LXRT task when its budget is exhausted and to transfer the CPU execution right
to a proper task. (2) When a higher-priority real-time LXRT task arrives, how to
interrupt a lower-priority real-time LXRT task and dispatch the higher-priority
real-time LXRT task.

We propose to use signals to resolve the first challenging item. Note that
we wish to restrict modifications on RTAI without any change to the Linux
source code. When the budget of Task1 is exhausted in the current period,
the timer will expire such that a signal of a specified type, e.g., SIGUSR1, is
posted to Task1. The signal handler of the specified type is registered as a
function wait(), that only contains the invocation of rt task wait period().
The signal type for such a purpose is referred to as SIGBUDGET2. The signal
posting is done within rt timer handler(). The catching of the SIGBUDGET
signal will result in the invocation of rt task wait period() such that Task1
and its buddy task RT Task1 are suspended until the next period (for budget
replenishing), as shown in Fig. 2.

The implementation for second challenge item is also based on the signal
posting/delivery mechanism. A different signal number, e.g., SIGUSR2, is used
for the triggering purpose of rescheduling. The signal type for such a purpose is
referred to as SIGSCHED. The signal handler of SIGSCHED is registered as a
function preempted(), that only contains the invocation of lxrt preempted().
Consider two real-time LXRT tasks Task1 and Task2, where RT Task1 and
RT Task2 are the corresponding buddy RTAI tasks. Suppose that the prior-
ity of Task1 is lower than that of Task2. We must point out that the arrival
of any real-time RTAI task will result in the expiration of the timer because

2 Note that new signal numbers could be created in Linux whenever needed (under
limited constraints).



232 C.S. Liu, N.C. Perng, and T.W. Kuo

RTAI

Task 1

Kernel

RT_Task 1

Task 1 resumes

The timer

expires

(a) No system call is involved (b) The system call is done

A signal

is posted

Task 1 resumes

The timer

expires

A system call

is invoked

A signal

is posted

Fig. 2. The timer expires when the running real-time LXRT task is in the user space.

of the setup of the resume time of the task (initially, aperiodically, or period-
ically). When Task2 arrives (while Task1 is executing), the timer will expire,
and rt timer handler() is executed to post a signal to the running task, i.e.,
Task1. The SIGSCHED signal is delivered to lxrt preempted() (similar to the
signal delivery in Fig. 2). As a result, lxrt preempted() is executed such that
Task1 is suspended, and the CPU execution right is transferred to RTAI. RTAI
realizes the arrival of Task2 and dispatches RT Task2, instead of RT Task1,
because the priority of RT Task1 is lower than that of RT Task2, due to the
priority order of Task1 and Task2. The dispatching of RT Task2 results in the
transferring of the CPU execution right to Task2 through LXRT.

The following example code is for the implementation of a real-time LXRT
task. The registerations of signal handlers for SIGBUDGET (i.e., SIGUSR1)
and SIGSCHED (i.e., SIGUSR2) are done in Lines 4 and 5. Line 7 is for the
initialization of a real-time LXRT task. Line 9 sets up the budget for the task.
The loop from Line 10 to Line 13 is an example code for the implementation of
a periodic task.
1 void wait(){ rt_task_wait_period(); }
2 void preempted(){ lxrt_preempted(); }
3 void main(void) {
4 signal(SIGUSR1,wait);
5 signal(SIGUSR2,preempted);
6 //initialization codes
7 rt_task_init();
8 //use the system call to gain the budget
9 rt_task_make_periodic_budget(srt_task, now + period, period, budget);

10 while(1) {
11 //computation codes that needs budget service.
12 rt_task_wait_period();
13 }
14 }

4 Conclusion

We extend RTAI API’s to provide hard budget guarantees to hard real-time
tasks under RTAI and soft budget guarantees for LXRT tasks over that for real-



An Implementation of Budget-Based Resource Reservation 233

time RTAI tasks. Backward compatibility is maintained for the original RTAI
(and LXRT) design. We try to minimize the modifications on RTAI without any
change to the Linux source code. The feasibility of the proposed implementation
is demonstrated over Linux 2.4.0-test10 and RTAI 24.1.2 on PII and PIII plat-
forms. For the future research, we shall further extend the implementation work
to multi-threading processes for the sharing of a single budget. We shall also
explore the synchronization issues for cooperating processes, especially when a
budget is reserved for each of them. A joint management scheme for multiple
resources such CPU and devices will also be explored.

References

1. Jones, M., Rosu, D., Rosu, M.: Cpu reservation and time constraints: Efficient,
predictable scheduling of independent activities. ACM Symposium on Operating
Systems Principles (1997) 198–211

2. Kuo, T.W., Huang, G.H., Ni, S.K.: A user-level computing power regulator for soft
real-time applications on commercial operating systems. Journal of the Chinese
Institute of Electrical Engineering 6 (1999) 13–25

3. Wang, S., Lin, K.J., Wang, Y.: Hierarchical budget management in the red-linux
scheduling framework. 14th Euromicro Conference on Real-Time Systems (2002)

4. Deng, Z., Liu, J.W.S.: Scheduling real-time applications in an open environment.
IEEE Real-Time Systems Symposium (1997)

5. Spuri, M., Buttazzo, G., Sensini: Scheduling aperiodic tasks in dynamic scheduling
environment. IEEE Real-Time Systems Symposium (1995)

6. Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke, J., Plaxton, C.: A
proportional share resource allocation algorithm for real-time, time-shared systems.
IEEE Real-Time Systems Symposium (1996) 288–299

7. Waldspurger, C.: ottery and stride scheduling: Flexible proportional-share resource
management. Technical report, Ph.D. Thesis, Technical Report, MIT/LCS/TR-
667, Laboratory for CS, MIT (1995)

8. Mercer, C.W., Savage, S., Tokuda, H.: Processor capacity reserves: An abstrac-
tion of managing processor usage. In Proceedings of the Fourth Workshop on
Workstation Operating Systems (WWOS-IV) (1993)

9. Adelberg, B., Garcia-Molina, H., B.Kao: Emulating soft real-time scheduling using
traditional operating systems schedulers. IEEE 15th Real-Time Systems Sympo-
sium (1994) 292–298

10. Childs, S., Ingram, D.: The linux-srt integrated multimedia operating systems:
Bring qos to the desktop. IEEE Real-Time Technology and Applications Sympo-
sium, Taipei, Taiwan, ROC (2001) 135–140

11. Abeni, L., Goel, A., Krasic, C., Snow, J., Walpole, J.: A measurement-based anal-
ysis of the real-time performance of linux. Eighth IEEE Real-Time and Embedded
Technology and Applications Symposium (2002)

12. Swaminathan, V., Schweizer, C.B., Chakrabarty, K., Patel, A.A.: Experiences in
implementing an energy-driven task scheduler in rt-linux. Eighth IEEE Real-Time
and Embedded Technology and Applications Symposium (2002)

13. Cloutier, P., Mantegazza, P., Papacharalambous, S., Soanes, I., Hughes, S., Yagh-
mour, K.: Diapm-rtai position paper. Real Time Operating Systems Workshop
(2000)


	Introduction
	RTAI
	Budget-Based QoS Guarantee
	Semantics and Syntax of Budget-Based RTAI APIs
	An Implementation for Budget-Based Resource Reservation

	Conclusion



